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9.13* LATERAL BRACING DESIGN

Point Bracing for Elastic Columns and Beams

CHAPTER 9 LATERAL-TORSIONAL BUCKLING OF BEAMS

However, the constant B must be taken negative (—); thus, the buckling stress
will be lower for the tee in this orientation.

m, = 2%+ VIF B
b

) 3<7.05> [13.3 937
“\ L, 0.398 L,
Setting M., equal to M, = 11.8 ft-kips, then solving for L, gives L, = 68 ft,
The nominal strength relationship for the tee having its stem in compres-
sion is not presented in graphical form; however, M, remains constant at O, F,
(that is, 11.8 ft-kips) to L,, then decreases according to M,,. BN
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The questions of what constitutes bracing and how to design bracing continue to be
major concerns of practicing engineers. The subject is included in this chpater because
a major item of concern in lateral bracing design is the restraint required to prevent
lateral-torsional buckling in beams. The development of this section, however, is
applicable to the bracing of columns as well as beams. In Sec. 6.8 the concept of
braced and unbraced systems was briefly discussed in regard to the effective length
factor K. In the following discussion, the emphasis in on braced systems; that is, the
overall structural system is braced by cross bracing or attachment to an adjoining
system that is braced. The bracing requirements for frames are treated in Chapter 14.
Bracing for individual*beams or columns may consist of cross bracing where the axial
stiffness of the bracing elements is utilized; it may be provided at discrete locations
by flexural members framing in transverse to the member being braced, wherein both
axial and flexural stiffnesses of the bracing member are utilized; or such bracing may
be provided continously by material such as light gage roof decking or wall panels.

Little is available in specifications but point bracing has been treated by Zuk
[9.39], Winter [9.40], Massey [9.41], Pincus [9.42], Galambos [9.43], Urdal [9 44
Lay and Galambos [9.45], Taylor and Ojalvo [9.46], Hartmann [9.47], Mutton an
Trahair [9.48], Medland and Segedin [9.49], and Plaut [9.73]. Recent practical tre
ment has been provided by Yura [9.50], Lutz and Fisher [9.51], Ales and Yura[9.52
Clarke and Bridge [9.53], and Yura [9.72]. What follows is largely a combinatior
the work of Winter [9.40], Galambos [9.43], and Yura [9.50, 9.72].

Consider the axially loaded column of Fig. 9.13.1a where the top and bottom ¢
member are assumed to be supported in such a way that no side movement o
one end relative to the other. Such restraint would constitute a braced system
bracing to create such restraint may be considered as a spring at the top that
of developing a horizontal reaction equal to the spring constant k times the de
A. When the brace has a large spring constant (that is, the brace is very s
deflection A could be close to zero and yet the spring may provide a larg
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(a) (b)

Figure 9.13.1 Bracing for a single-story column.

vent any side motion (sideway) at the top. This would be the
1b. The equilibrium requirement is shown in Fig. 9.13.1c,
wn. If one imagines this as a slightly deflected position, then

it is required that
A = QL = (kAL

If (kAL is less than PA, sidesway occurs. If (kA)L is greater than PA, no side-
the column would be considered braced. The ideal brace, then,

has just enough stiffness k to prevent movement (at the top in this

horizontal force to pre
situation in Fig. 9.13.
wherein a sidesway is sho

in order to have equilibrium,
(9.13.1)

sway occurs, and
would be one that

example); that is,
P
— (9.13.2)

k =
L

for which bracing would be required is the elastic bucking load P,

The maximum load
ding or inelastic buckling if that is lower than the elastic Pe.

or the load causing yiel
Thus the largest required stiffness Kigeal 18

kideal

P
—= 9.13.3
= 9133)

vs kL in Fig. 9.13.2, wherein when k

hed and the column buckles without end translation
t is a braced system. When k is less than Kigear» @ Sidesway
= kL; in other words, a so-called unbraced systemn.

d systems is in Chapter 14, devoted to rigid frames.

y column within a braced system, as
height, i.e., full bracing is

The concept is shown by the plot of P

exceeds Kigeats Per is reac
(sidesway); in other words, 1
deflection will occur such that P
The major treatment of unbrace

Next, extend the concept to a two-stor
shown in Fig. 9.13.3. When no displacement occurs at mid-
provided, the column will buckle at a load nearly equal to

mEA
P .= 13,
« = Ly (9.13.4)
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Figure 9.13.2 Brace stiffness relative to concept of
“praced” (K = 1.0) and “unbraced” (K > 1.0)
systems for column hinged at top and bottom.

In other words, one may imagine that a hinge exists at mid-height. Buckling occurs
when the column snaps into the two half-wave mode of Fig. 9.13.3c.

Taking moments about the imaginary hinge location with the column deflected
by an amount A, as in Fig. 9.13.3b, gives

PA=Z2L (9.13.5)

Since Q = kA,
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Figure 9.13.3 Mid-height brace for a two-story column.
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«ceut 18 the necessary stiffness to create a nodal point

As in the one-story column, if k
o-story column, then

(zero deflection) at mid-height of the tw

2P,
kideal = T (9137)

For situations with more than two equal spans, the same procedure may be used
to obtain kieq- Examination of Fig. 9.13.4 for three equal spans will show that the
spring forces O can act either in the same or in opposite directions. Assuming they act
in the same direction (Fig. 9.13.4a), using imaginary hinges at one-third span points,
and taking moments when slightly deflected at the brace points, gives

o

Figure 9.13.4 Column braced to make three equal spans.

P
OL = (kAL = P.A; kigen = ~L‘31 (9.13.8)
Assuming the forces O acting in opposite directions (Fig. 9.13.4b) gives
3P
=== (9.13.9)

QL/3 = (kA)L = PcrA; kidenl - L

The configuration requiring the highest spring constant is the correct one, that

which will permit the highest critical load. If a lesser stiffness is used, an alternate
buckling mode will occur at a lower load, accompanied by displacement at the springs.
By the same process, ke MY bE determined for any number of equal spans. In

general,

kideal

_ Bl
- 9.13.10)

‘where B varies from 1 for one span {0 4 for infinite equal spans. The variation is given

in Fig. 9.13.5.
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Figure 9.13.5 Variation of required spring
o2 3 4 5 6 7 constant for column with number of equal
Number of Equal Spans unbraced spans.

Thus Egs. 9.13.3, 9.13.7, 9.13.9, and 9.13.10 give the ideal brace stiffness to
_prevent translation at the points where the braces act.

In addition to stiffness, a brace must provide adequate strengrh. The strength Q
required of an ideal brace is

Q = kidealA (91311)

but until buckling occurs, A is zero (see Fig. 9.13.6); therefore there will be no brace
force in the ideal system until buckling occurs.

Figure 9.13.6 Brace force relative to
A column load for ideal system.

Compression members in real structures are not perfectly straight, perfectly
aligned vertically, nor perfectly loaded as assumed in calculations; there is always an
initial crookednesss. In other words, A is not zero even when there is no compressive
load P acting. Reexamine the single-story column of Fig. 9.13.1 assuming there is an
initial deflection A, that exists even when P is zero. Then, as shown in Fig. 9.13.7,
equilibrium requires

(kAL = P(A + A,)
for P = P,

i A
kreqd = ‘i"(] + Ko>
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(a) No load applied (b) When load is applied

Figure 9.13.7 Column with initial crookedness Ag.

Since kigat = Per/L, Eq. 9.13.13 then becomes

A
kreqd = kideal(l + —A_q> (91314)

which is the stiffness requirement for compression members having initial crooked-

ness Ag.
The strength requirement is then

A
Q = krequ = kidea!<1 + —A—9>A
Q = kideal(A + AO) (91315)

Normal tolerances on crookedness of compression members would vary from
1/500 to 1/1000 of the length [9.41]. The AISC Code of Standard Practice* indicates
acceptable out-of-plumbness to be L/500. Considering accidental eccentricity of
loading, Winter [9.41] suggests taking A, from 1/250 to 1/500 of the length.

Load and Resistance Factor Design—Point Bracing

To obtain design equations useful in LRFD, Winter [9.40] has suggests A=A =
1./500. Substitution of this in Egs. (9.13.14) and (9.13.15) gives design equations.

1. For stiffness keeqa
Kreqs = 2Kigear (9.13.16)

* Code of Standard Practice for Steel Buildings and Bridges, American Institute of Steel Construc-

tion, June 10, 1992 (Section 7.11.3.1).




