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Abstract 
Wells are becoming more challenging and casing designers 
are faced with increasing design pressures. Deep hydrocarbon 
targets lead to requirements for the casing to resist collapse 
under external pressure while significant internal pressure and 
axial compression or tension may exist at the same time. 

This paper describes the development, and its evaluation, 
of a new collapse strength equation for oil country tubular 
goods (OCTG). It is based on a generalization of a model 
previously proposed by Tamano et al.1. The new model is 
evaluated through comparisons with both finite element 
analyses and test data. It is more accurate in dealing with 
combined internal pressure, external pressure and axial load 
than, for example, the model currently provided in API 
Bulletin 5C32. 

The joint API/ISO SC5 Work Group 2B tasked with 
modernizing the API 5C3 property equations has evaluated a 
number of collapse models available in the literature on their 
performance against several different collapse databases. As a 
result the model presented here is recommended for 
developing collapse ratings in the new ISO 10400 standard.  

 
1.  Introduction 
The design collapse strength equations currently used in the 
industry and provided in API Bulletin 5C32 give a highly non-
uniform failure probability over diameter, weight and grade 
for downhole well tubulars3. In addition, the API 5C3 average 
collapse strength equations are relatively poor predictors of 
true collapse and hence no compelling case exists to use these 
equations for qualifying high collapse pipe and other 
proprietary products. Furthermore, designing deep wells is 
becoming more challenging due to requirements for the casing 
to resist collapse under external pressure while significant 
internal pressure and axial compression or tension may exist at 
the same time. This highlighted the need for revisiting the 
method to account for combined loading in collapse. 

The situation may be improved if more accurate collapse 
prediction formulas could be developed that capture 
adequately the physics of collapse failure, and include more 
explicitly the effect of imperfections. Because the collapse 
failure mechanism is an instability phenomenon – i.e. the 
transition from an essentially round pipe to a pipe that starts to 
ovalize and flatten with the external pressure capacity 
reaching a maximum can happen very quickly – it is not 
feasible to expect a simple equation to capture this failure 
mechanism very accurately. However, theoretical analyses, 
detailed finite-element analyses and numerous collapse tests 
have provided a wealth of insight that has guided the 
development of approximate collapse equations that capture 
collapse failure to a satisfactory degree. 

Like other currently available models the model presented 
in this paper consists of a number of interlinked concepts: 
a) An equation for elastic collapse of a perfect pipe, relevant 

for very thin pipe 
b) An equation for through-wall yield collapse of a perfect 

pipe, relevant for very thick pipe 
c) An equation providing a transition between elastic 

collapse and yield collapse, thus predicting the collapse 
strength for all relevant pipe sizes, weights and grades. 

d) Factors to incorporate the effect of imperfections such as 
ovality, stress-strain curve shape, residual stress and 
eccentricity 

An additional objective of this paper is to address the 
effect of combined loading. API 5C3 describes a conservative 
method to account for axial load and internal pressure, focused 
on use with its lower bound design strength equations. 
However, deriving risk-based collapse ratings require an 
Ultimate Limit State (ULS) model that more accurately 
predicts the actual (50-percentile) collapse strength.  In 
particular for heavy-walled pipe, the effect of internal pressure 
on collapse derived from first principles shows interesting 
differences with the API 5C3 formulation. For very deep wells 
the new approach to combined loading can have significant 
economic implications.  

In the following sections, firstly collapse of ideal pipe is 
addressed, providing formulas for elastic collapse and yield 
collapse under combined loading (section 2). The new general 
formula predicting collapse for all relevant pipe sizes, weights 
and grades and including the effect of imperfections is 
presented in section 3. Section 4 provides additional 
observations about the new equation and compares it with 
some well-known existing equations. Section 5 addresses its 
performance against finite-element analyses and tests. The 
paper ends with a number of conclusions. 
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2.  Collapse of an Ideal Pipe 
For a perfectly round pipe without further imperfections 
collapse under external over-pressure constitutes an instability 
phenomenon. For both elastic and elastic-plastic situations 
theoretical analyses have lead to closed form solutions for the 
collapse pressure under combined loads. The underlying shell 
theory approximation is more accurate for thin-walled pipe 
and hence only the result for elastic collapse is used. 

Finite-element analyses of pipe with D/t ranging from 10 
to 26 showed that thick-walled pipe collapses when the plastic 
zone has extended almost entirely through the wall1. Hence 
the through-wall yield pressure may best approximate the 
yield collapse pressure of thick-walled pipe. This concept 
allowed for a derivation in closed form of the yield collapse 
pressure under combined loads that accounts for all three 
axial, circumferential and radial stresses, and thus is more 
accurate than the method described in API 5C3. 

 
Elastic Collapse 

Derived in Appendix A, the elastic collapse pressure 
difference pe − pi under combined loads is described by 
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where c is a model constant, 
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and the factored Young’s modulus is 

( ) EHkE ee −=′ 1  (3) 

The model bias factor ke and the decrement function He 
accounting for imperfections will be discussed below in 
section 3. From classical collapse theory it follows that elastic 
collapse is only a function of internal and external pressure, 
and not dependent on axial load.  

For c = 0 equation (1) reverts to the thin-wall collapse 
equation found in textbooks. For c = –1+t/D the formula from 
Clinedinst4 used in API 5C3 (excluding the bias factor of 0.95) 
is recovered. However, theoretical considerations5 require the 
elastic collapse strength for thick-walled pipe to be higher than 
that predicted by thin-wall theory, hence c ≥ 0. This has been 
confirmed with finite-element analyses (FEA). Fig. 1 shows 
how c affects the elastic collapse prediction. 
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Fig. 1  Comparison of API average elastic collapse, eq. (1) for 

various values of c, and FEA result for a perfect pipe 
 

Yield Collapse 
A very thick pipe will yield before it reaches its collapse 

pressure. For materials with a limited amount of strain 
hardening there will be little margin between through-wall 
yielding and actual collapse, hence the term ‘yield collapse’ 
used historically. Under the combined action of external 
pressure, internal pressure and axial load, a closed-form 
through-wall yield formulation has been developed (see 
Appendix C) based on a ‘3D-average’ or < 3D > theory (see 
Appendix B) involving stresses and strains that are uniform 
over the wall thickness. 

The yield collapse pressure difference is described by 
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where the yield pressure according to the von Mises criterion 
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Equation (4) yields the average of the Tresca and von Mises 
collapse pressure predictions in the axial compression range. 
Equation (5) describes all four quadrants of the von Mises 
through-wall yield envelope, but the plus sign is relevant for 
almost all of the practical collapse situations where, naturally, 
∆p > 0. Axial load and internal pressure are incorporated: 
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The factored yield strength is 

( ) yyyy Hk σσ −=′ 1  (7) 

The model bias factor ky and the decrement function Hy 
accounting for imperfections will be discussed in section 3. 

Equation (5) is accurate to order ξ2 and is, as Fig. 2 shows, 
very accurate indeed when compared with the exact through-
wall von Mises yield pressure obtained by solving the exact 
equations with an extremely accurate numerical scheme. 

Also shown in Fig. 2 are two FEA results for collapse of 
very thick-walled pipes where the material model included the 
work hardening of actual L80 material (yield strength = 
89.7 ksi, ultimate strength = 105 ksi). Clearly for the D/t = 8 
case the pipe collapsed beyond yield in the work hardening 
range; for D/t = 10 collapse occurred at through-wall yield.  
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Fig. 2  Comparison of API yield collapse, Tresca yield, eq. (4), 

thin-walled yield, and FEA results (perfect pipe; Si = 0) 
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3.  New OCTG Collapse Equation 
Inspired by the approach presented by Tamano et al.1 a 
transition between the models for yield collapse for very thick 
pipe and elastic collapse for very thin pipe is proposed 
comprising the following quadratic form: 
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The yield collapse and elastic collapse pressures are given by 
equations (4) and (1), respectively. The decrement function Ht 
is having its maximum effect at the transition point, i.e. the 
combination of yield strength and D/t ratio where the yield 
collapse pressure ∆pyc equals the elastic collapse pressure ∆pec.  

For thick-walled pipe ∆pec >> ∆pyc and equation (8) 
converges to ∆pc ≅ ∆pyc, whereas for thin-walled pipe 
∆pec << ∆pyc and ∆pc ≅ ∆pec. Note also that for Ht = 0 the 
collapse pressure ∆pc is simply the smaller of ∆pyc and ∆pec.  

 
Accounting for Imperfections 

The models for elastic collapse and yield collapse are 
based on first principles, but they have been derived for ideal 
pipes. Collapse strength, however, is negatively influenced by 
imperfections such as ovality, shape of the material stress-
strain curve, eccentricity and residual stress.  

Decrement Functions 
Purely elastic collapse is a stable process (the pressure 

does not decrease under continued ovalization) but for realistic 
well tubulars even pipes that start collapse in the elastic range 
will soon develop plasticity at the inner fibers and hence show 
a clear pressure maximum. This means that ovality impacts 
the collapse strength of all well tubulars, thick-walled and 
thin-walled. 

The effect of imperfections has been incorporated in the 
model by means of the empirical functions Hy, Ht and He that 
de-rate the strengths in the yield region, the transition region 
and the elastic region, respectively. These decrement functions 
may be taken in an additive form: 

( ) ( ) ( ) ( )ξξξξ ,,,, shHrsHecHovHH sh
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j
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where the subscript j denotes either y, t or e. Note, however, 
that there is, for example, a strong interaction between stress-
strain curve shape and sensitivity to ovality6, so for non-
quenched and tempered materials or cold worked materials the 
decrement contributions Hov and Hsh may better be combined. 

In their simplest form the decrement functions may be 
taken independent of ξ and linearly in the imperfections ov, 
ec, rs and sh. API/ISO SC5 WG2B has taken that initial 
approach and yet has shown that the above model with only 
Ht, and vanishing Hy and He, outperformed other collapse 
models available from the literature when evaluated against 
the WG2B collapse test database. 

Timoshenko7 determined at which external pressure a thin-
walled pipe with an initial ovality reaches the yield stress at 
the extreme fibers. This analysis is lower bound to the collapse 
pressure, and it leads to a decrement function that is linear in 
ov and inversely proportional to ξ. 

Finite-element analyses8 has been used to identify the 
functional relationships of the decrement functions in some 

more detail. For a given grade, the decrease of collapse 
strength due to ovality is much stronger in the transition 
region than for pipes that are either very thick-walled or thin-
walled. This can be modeled by taking different (though 
maybe still linear in ov) functions Hy

ov, Ht
ov and He

ov. 
The effect of eccentricity seems independent from D/t ratio 

and symmetric in ec. This can be established in the model by 
taking Hy

ec = He
ec proportional to ec2 and Ht

ec = 0.  
The effect of residual stress may be considered symmetric 

in rs and is more pronounced in the transition region than in 
the elastic region. Collapse pressures for tubulars with very 
low D/t ratio are largely unaffected by residual stress. Taking 
different functions Hy

rs, Ht
rs and He

rs that are quadratic, or 
even quartic, in rs may approximate this. 

Finally, the effect of stress-strain curve shape can be very 
significant. If the proportional limit of the material is much 
lower than the yield strength (the stress reached at 0.5% total 
strain) the stiffness above the proportional stress reduces 
below the Young’s modulus and this in turn decreases the 
collapse strength. Pipes that have undergone cold working, for 
instance due to cold straightening or due to diametrical 
expansion, will generally show this effect, quite possibly 
reducing the collapse strength by up to tenths of percent. 

Bias Factors 
For any given approach to accounting for imperfections 

through decrement functions, the factors ky and ke can be used 
to adjust the model predictions by a fixed factor. In this way 
the model can be biased such that it matches the average of a 
particular collapse test database, thus leading to factors ky uls 
and ke uls that provide the best prediction of the average 
collapse strength. 

In addition, ky and ke may be used to develop an equation 
that approximates a characteristic value (say the 0.5-
percentile) of the collapse strength probability distribution. In 
that case factors ky des and ke des establish the margin to the 
design collapse strength associated with the desired target 
reliability level. 

 
 

4.  Further Analysis of the New Equation 
Defining dimensionless collapse pressures Y or XY and a 
dimensionless “data space” variable X as 

Y = ∆pc

∆pyc ; XY = ∆pc

∆pec ; X = ∆pyc

∆pec
 (10) 

equation (8) is the solution of the following quadratic form: 

( ) ( ) 0111 2 =++−− YXYXH t  (11) 

Here the focus is on the ratio Y of collapse pressure over yield 
collapse pressure. Alternatively, the ratio XY of collapse 
pressure over elastic collapse pressure may be considered and 
then equation (8) or equation (11) may be written as 
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X
XY

X
H t
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In the limit of very thick-walled pipe X → 0 and Y → 1 
and the solution converges to yield collapse, equation (4). For 
very thin-walled pipe 1/X → 0 and XY → 1 and the solution 
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converges to elastic collapse, equation (1). At the transition 
point where X = 1 the solution is Y = XY = 1/(1+√Ht). 

Comparing (11) and (12) it is clear that Y as a function of 
X behaves entirely similar to XY as a function of 1/X. Hence 
by defining 

{ }ecycref ppp ∆∆=∆ ,min  (13) 

the ratio of ∆pc over ∆pref is a symmetrical function of log(X) 
as shown in Fig. 3.  
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Fig. 3  Collapse pressure difference as a function of log(X) 
 

In order to compare the new collapse equation with other 
equations published in the literature, plots are generated using 
the uniaxial version of ∆pref  
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Timoshenko Model 
The Timoshenko model7 of a thin-walled pipe with an initial 
ovality ov reaching yield at the extreme fibers due to (only) 
external pressure pe can be expressed as 

( ) 0112 =+++− γχχγχ a  (15) 
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where the (uniaxial, thin-walled) yield pressure and the elastic 
collapse pressure are, respectively, 

y
yc
thinp σξ2=  (17) 

( )
3

21
2 ξ

ν−
=

E
pec

thin
 (18) 

Hence 

( ) ( )
2

2
2

2 1111 ⎟
⎠
⎞

⎜
⎝
⎛ −−=−==

t
D

EEp

p yy
ec

yc

thin

thin σ
ν

ξ
σ

νχ  (19) 

In the Timoshenko equation the effect of ovality ov has been 
explicitly modeled and found as 
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In the limit of thick-walled pipe χ → 0 and γ → 1 and the 
solution converges to yield collapse, equation (17). For very 
thin-walled pipe 1/χ → 0 and χγ → 1 and the solution 

converges to elastic collapse, equation (18). At the transition 
point where χ = 1 the solution is γ = χγ = 1+a/2−√(a(1+a/4)). 

Note that from Timoshenko’s analysis follows that the 
effect of ovality is maximum in the transition range, and is 
fading out to zero for either very thick-walled or very thin-
walled pipes. 

 
Tamano Model 
The Tamano model1 of a pipe loaded by external pressure and 
axial load can be expressed as 

( ) 0112 =−++− Hyxyx  (21) 

with the decrement function H proposed as a linear function of 
imperfections such as ovality, eccentricity and residual stress. 
In equation (21) 
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where the yield pressure and the elastic collapse pressure  
were, respectively, 
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Based on curve-fitting the results of elastic-plastic finite-
element analyses Tamano et al.1 proposed fac = 1.47. 
However, it can be shown (see Appendix C) that taking 
fac = 1.5 leads to a through-wall yield collapse pressure 
formula that is second order correct in t/D and in that case 
equation (23) simplifies to 
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In the limit of very thick-walled pipe x → 0 and y → 1−H 
and the solution converges to a factored value of the yield 
collapse pressure, equation (25). For very thin-walled pipe 
1/x → 0 and xy → 1−H and the solution converges to a 
factored value of elastic collapse pressure, equation (24). At 
the transition point where x = 1 the solution is y = xy = 1−√H. 

 
What are the Differences between the Models 

Comparing the new collapse model presented in this paper, 
equation (11), the classical Timoshenko model, equation (15), 
and the original Tamano model, equation (21), it is clear that 
all these models comprise a simple quadratic form as a 
transition between yield collapse and elastic collapse. The 
differences are found in the way the detrimental effect of 
imperfections such as ovality is incorporated. 

Comparing in particular the original Tamano model1 with 
the new model presented in this paper the following 
differences may be noted: 
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• The formula for elastic collapse under combined 
loads, equation (1), is the classical formula augmented 
with a factor to account for thick-wall effects. 

• The formula for yield collapse, equation (4), is second 
order correct in t/D and includes the effect of 
combined axial load, external pressure and internal 
pressure. 

• In the axial compression range the formula for yield 
collapse takes the average of the von Mises and 
Tresca yield predictions whenever this is more 
conservative than the pressure following from the von 
Mises criterion alone. 

• The new collapse strength equation (8) providing the 
transition between yield collapse and elastic collapse 
is formulated in terms of the pressure difference. 

• Yield collapse, transition collapse and elastic collapse 
each has its separate decrement function to account for 
the effect of imperfections. 

• For yield collapse and elastic collapse the decrement 
functions are incorporated as “partial resistance 
factors”. 

Essentially the collapse equation (8) is general enough to 
contain many of the earlier published equations, allowing a 
significantly more flexible tuning to actual test data.  

 
 

5.  Performance of the New Equation 
The OCTG collapse equation (8) builds on two components – 
(a) through-wall yield and (b) elastic collapse of a perfect pipe 
under combined loads – that have been derived from first 
principles. The transition between these two components, 
modeling the collapse strength of real pipe of all sizes, weights 
and grades is entirely empirical, although Timoshenko’s 
analysis7 demonstrates that the quadratic form chosen for this 
transition may be a natural one. The decrement functions Hy, 
Ht and He in equations (3), (7) and (8) allow a comprehensive 
treatment of the effect of imperfections. 

In order to assess the performance of the new model it has 
been (a) validated with FEA analyses of perfect pipe, (b) 
compared with other models, and (c) evaluated against tests. 

 
Comparison with FEA 

Using an actually measured stress-strain curve of an L80 
grade material (see Fig. 4), for three pipe geometries, three 
levels of internal pressure and two axial load situations finite-
element analyses (FEA) have been performed to calculate the 
collapse pressure. The pipes were essentially perfect, with no 
initial ovality or eccentricity. Two diametrically opposed very 
small forces triggered the ovalization deformation associated 
with the collapse phenomenon. The maximum external 
pressure recorded during the analysis was taken as the collapse 
pressure.  

The two very low D/t ratios were chosen to validate the 
yield collapse formula (4); the D/t = 40 case collapses in the 
elastic range and served to verify equation (1). Three levels of 
internal pressure were chosen, and in each case the internal 
pressure was applied first and kept fixed, with the external 
pressure incrementally (using an arc length continuation 
method) applied until a maximum was identified. Finally, 

these sets of analyses have been performed for the situation of 
axial plane strain (zero axial strain) and axial plane stress 
(zero axial load). 
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Fig. 4  Actual L80 stress-strain curve 

 
The results are summarized in Table 1 in terms of the 

pressure difference pe − pi at collapse.  
 

Table 1  FEA results for collapse pressure ∆pc of a perfect pipe 
under various axial load and internal pressure situations 

(realistic L80 stress-strain curve, py = 2ξ σy and σy = 89.7 ksi) 
D/t  Axial Plane Strain Zero Axial Load 

pi  / py 0.000 0.435 0.870 0.000 0.438 0.875 
8 

∆pc / py 1.108 1.101 1.094 1.003 1.004 0.987 
pi  / py 0.000 0.450 0.900 0.000 0.450 0.900 

10 
∆pc / py 1.077 1.072 1.066 0.947 0.898 0.850 
pi  / py 0.000 0.488 0.975 0.000 0.488 0.975 40 
∆pc / py 0.283 0.283 0.283 0.283 0.283 0.283 

 
The FEA results listed in Table 1 are also shown in Fig. 5, 

together with the predictions of equation (8) given by the blue 
curves. Note that in Fig. 5 the stresses have been calculated 
from the loads using the < 3D > equilibrium equations (B-12). 
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Fig. 5  Collapse of perfect pipes: FEA results compared with 

eq. (8) where Hy = Ht = He = 0, ky = ke = 1 and c = 3 
 

For the axial plane strain case the FEA results are only 
dependent on the pressure difference, just as equation (8) 
predicts. Given a plane strain situation not only elastic 
collapse but also yield collapse can be shown to be only a 
function of the pressure difference. 
However, for axial load conditions other than plane strain the 
effect of internal pressure on yield collapse is more involved 
and is a function of the axial load. This is confirmed by the 
FEA for zero axial load. Fig. 5 shows the new model (8) with 
c = 3 to fit the elastic FEA for D/t = 40 rather well. For D/t = 8 
the FEA for zero axial load predicts collapse strengths beyond 
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the through-wall yield envelope, and this is due to the work 
hardening of the material that was modeled. Equation (8), 
however, does not account for work hardening and therefore 
the results for D/t = 8 and D/t = 10 are essentially equal: the 
model predicts yield collapse. 

For this validation with FEA of perfect pipe, the new 
equation (8) was used with vanishing decrement functions and 
with bias factors equal to one, because that is consistent with 
the FEA for ideal pipe. The effect of work hardening may be 
approximated by taking the bias factor ky greater than one, or 
including a negative decrement term in Hy. In that way 
equation (8) would predict collapse pressures outside the yield 
envelope, thus possibly improving the model performance for 
very thick-walled pipe like the D/t = 8 case in Fig. 5.  

For the axial plane strain case the FEA model for very 
thick-walled pipe predicted collapse pressures lower than 
predicted by the von Mises yield criterion. In this axial 
compression range the new model (8) is based on the average 
of the predictions using von Mises and Tresca (see eq. (4)) and 
this appeared to fit the FEA predictions well. 

 
Comparison with Tests 

The API/ISO Work Group 2 - as part of their task of 
modernizing API Bulletin 5C3 / ISO 10400 - evaluated a 
number of collapse strength prediction models on their 
performance against an extensive collapse dataset. The data 
ensemble is in the public domain and contains some 3000 tests 
comprising both API and high collapse grades from various 
sources. 

Initially a modified version of the Tamano equation was 
found to predict these tests rather well (see Adams et al.3). 
Later, the model presented in this paper appeared to improve 
upon that predictive accuracy considerably. In fact, this 
performance was achieved with a simplified version of 
equation (8), where decrement functions Hy and He were taken 
as zero, and only the transition decrement function Ht was 
used as a linear function of the ovality, eccentricity and 
residual stress. 

This would suggest that opportunities for further 
improvement still exist within the framework of the general 
model presented here, for example by utilizing separate 
decrement functions in the yield range, the transition range 
and the elastic range. 

 
Effect of Material Strain Hardening 

The two basic components of the collapse model are 
elastic collapse and through-wall yield collapse. The effect of 
work hardening of the material has not been taken into 
account in equation (8) explicitly, and the model is therefore 
conservative in this respect. Bi-axial collapse tests with K55 
pipe shown in Fig. 6 demonstrate that for a hardening material 
under high axial tension or compression collapse may occur at 
stresses considerably above yield.  

The elastic-plastic collapse model presented in 
Appendix A has been used to (try to) predict these bi-axial 
collapse tests. Equation (A-5) has been derived for perfect 
pipes and should be expected to over-predict actual tests, but it 
appears that this elastic-plastic thin-walled model captures the 
behavior reasonably well. There are two tests in the transition 
range between yield collapse and elastic collapse and for these 

tests the over-prediction of the simple shell theory model is 
indeed very significant. 
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Fig. 6  Biaxial collapse data and predictions by the elastic-plastic 

shell theory model for perfect pipes eq. (A-5) 
 

Further work to incorporate the effect of work hardening 
under combined loading into collapse strength prediction 
formulas would be valuable, perhaps building upon a 
simplified (but effective) method for a thin-walled collapse 
formula that has been suggested by Ju et al.8. 

 
Comparison with Other Models 

The decrement functions Hy, Ht and He in equations (3), (7) 
and (8) allow a comprehensive, albeit empirical, treatment of 
the effect of imperfections. For the case of external-pressure-
only (and taking c ≅ −1) the original Tamano1 formula (21) is 
recovered when Hy = Ht = He. The Timoshenko equation (15) 
can be recovered in several ways, for example by taking 

χχ
χ
a

HHH ety ++
+=−=−=−

1
1111  (26) 

Fig. 7 shows the behavior of a number of formulas, including 
Timoshenko equation (15), Tamano equation 21 and the API 
5C32 average collapse formulas that are given in Appendix D. 
A common feature of these models is the dip in the transition 
range where the effect of imperfections and the decrement 
function is maximum. The dip level can be set with the 
decrement values, but the difference between the formulas that 
remains is in the “dip shape”, its slope, convergence to the 
yield collapse or elastic collapse values, etc. In Fig. 7 only a 
simplified version of the collapse equation (8) is shown where 
ky = 0.99, ke = 1.09, c = −1, Hy = He = 0 and Ht = 0.109. 
Introducing non-trivial values for Hy and He and/or specific 
model parameters enables further development of forms of the 
collapse equation (8) that are specific for particular products. 
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Fig. 7  Comparison of the various models, including a particular 

simple choice for eq. (8)  (grade L80) 
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Effect of Internal Pressure 
An important difference between the collapse strength 

model presented here and the API 5C3 equations is in the 
approach towards internal pressure. The API 5C3 Bulletin 
recommends accounting for internal pressure by defining an 
“external pressure equivalent” of external pressure and 
internal pressure. This API 5C3 method is an ad-hoc, but 
conservative way of dealing with internal pressure in collapse. 

In this paper a model has been presented that takes the 
internal pressure explicitly, and accurately, into account for 
both the elastic collapse formula and the yield collapse 
formula. Elastic collapse is purely a function of the pressure 
difference. For yield collapse the < 3D > model showed that 
the influence of internal pressure on the collapse strength is a 
function of the axial load. 
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Pi = 0   and   Pi = 7.5 ksi

through-wall yield

 
Fig. 8  Effect of internal pressure on the collapse strength 

predicted by eq. (8), or according to the API 5C3 approach to 
combined loads eq. (C-19)  (7” 29# L80 pipe) 

 
In Fig. 8 an example is given of the predictions by 
equation (8). When a plot is made using these particular axes 
parameters the (blue) collapse prediction curve is valid for 
combined loads; i.e. the curves for different levels of internal 
pressure coincide. 

Note that in Fig. 8 the stress differences commonly plotted 
along the axes have been expressed in terms of loads using the 
< 3D > equilibrium equations (B-12): 

( )eir pp ++=−
2
1

αα σσσ  (27) 

( ) ( )eieir pp
t

tDpp
t
R −−=−=−

2
σσ θ

 (28) 

The other two (red) curves in Fig. 8 demonstrate the difference 
with the API 5C3 approach to combined loading given by 
equation (C-19). Both methods give exactly the same collapse 
pressure for the case of zero axial load and zero internal 
pressure. However, the API 5C3 method to account for 
combined loading is not first order correct in t/D. The 
associated differences of up to 10% may have significant 
economic implications, especially for deep wells. 

 
Conclusions 
• A new OCTG collapse strength equation has been 

presented that the API/ISO Work Group 2 - as part of 
their task of modernizing API Bulletin 5C3 / ISO 10400 – 
has found to outperform a number of publicly available 
collapse strength prediction models when evaluated 
against an extensive collapse dataset. 

• The model comprises a simple, but flexible, quadratic 
form to interpolate between yield and elastic collapse. 

• Both the yield collapse and the elastic collapse 
components of the new model have been derived from 
first principles to incorporate the effect of combined axial 
load and internal pressure accurate to second order in t/D. 

• The effect of imperfections has been accounted for by 
separate decrement functions in the yield range, the 
transition range and the elastic range. 

• The model may be tuned to various pipe product types 
and thus form the basis for developing reliability-based 
design collapse strengths. 
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Nomenclature 
 c = constant in the elastic collapse equation (1) 
 D = pipe outside diameter 
 Dav = cross-section-average outside diameter 
 ec = (tmax – tmin) / tav = eccentricity 
 E = Young’s modulus 
 E’ = factored Young’s modulus, eq. (3) 
 He = decrement factor for elastic collapse, eq. (3) 
 Ht = decrement factor in transition region, eq. (8) 
 Hy = decrement factor for yield collapse, eq. (7) 
 ke = bias factor for elastic collapse, eq. (3) 
 ky = bias factor for yield collapse, eq. (7) 
 ov = (Dmax – Dmin) / Dav = ovality 
 pe = external pressure 
 pi = internal pressure 
 pref =  reference collapse pressure of ideal pipe, eq. (14) 
 rs = σres / σy = residual stress over yield stress 

(compression at the inside diameter is negative) 
 R = (D – t) / 2 = pipe mid-wall radius 
 sh = parameter characterizing stress-strain curve shape 
 Si = combined loading parameter in yield collapse 
 t = pipe wall thickness 
 tav = cross-section-average wall thickness 
 T = τ / σy = torsional shear stress over yield stress 
 X = yield pressure over elastic pressure, eq. (10) 
 XY = pressure over elastic collapse pressure, eq. (10) 
 Y = pressure over yield collapse pressure, eq. (10) 
 ∆p = pe – pi = pressure difference 
 ∆pc = collapse pressure difference, eq. (8) 
 ∆pec = elastic collapse pressure difference, eq. (1) 
 ∆pyc = yield collapse pressure difference, eq. (4) 
 ν = Poisson’s ratio 
 ξ = t / (2 R) = characteristic pipe geometry parameter 
 σ = equivalent stress 
 σa = average axial stress 
 σθ = circumferential, or hoop, stress 
 σr = radial stress 
 σy = yield stress 
 σ’y = factored yield stress, eq. (7) 
 τ = torsional shear stress 
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Appendix A:  Elastic-Plastic Collapse 
For convenience the thin-wall theory formulas for elastic-
plastic collapse are provided. These can be found in the 
literature9,10. 

Writing the constitutive equations as 

βαβα εσ && L=  (A-1) 

where Lαβ are the elastic-plastic, plane stress stiffness moduli, 
which are the inverse of the compliance moduli Cαβ 
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and where Et is the slope of the uniaxial stress-strain curve 
( εσ && tE= ), the elastic-plastic, plane stress stiffness modulus 
in circumferential direction is 

xxxx

xx

CCCC
C

L
θθθθ

θθ −
=  (A-3) 

For realistic results, it is recommended to use “J2 deformation 
theory plasticity” for calculating the moduli in the collapse 
analysis, replacing E and ν in equation (A-2) by Es and νs 
respectively 
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From a bifurcation analysis of a cylinder under axial load and 
with the internal and external pressure modeled as follower 
forces, the result for the collapse pressure is 

∆pc = pe − pi = 1
4

t
R
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

3

Lθθ = 2 ξ 3 Lθθ
 (A-5) 

 
Elastic Collapse 
Note that the thin-wall shell theory equilibrium equations (see 
e.g. Appendix B) determine the stresses, the stresses determine 
the moduli, hence the modulus Lθθ is, in general, a function of 
the loading. However, in the elastic range 

21 νθθ −
= EL  (A-6) 

and in that case the collapse pressure following from thin-wall 
theory is not dependent on the axial load. 

For thick-walled pipes the elastic collapse strength should 
be expected5 above that predicted by thin-wall theory, the 
more so the thicker the pipe. This may be approximated by 
adding a multiplicative factor to equation (A-5) that is linear 
in ξ : 

( )ξξ
ν

cEppp ie
c +

−
=−=∆ 1

1
2 3

2
 (A-7) 

 
Appendix B:  < 3D > Pipe Equilibrium Equations 
For a pipe length with mid-radius R, wall thickness t, that is 
fixed at one end and loaded with axial load F and torsional 
moment M at the other end x = L, and further loaded with 
internal pressure pi and external pressure pe, the exact 
equilibrium equations can be conveniently stated in form of 
the principle of virtual work 

extWW δδ =int  (B-1) 

Using axial coordinate x, circumferential coordinate θ and 
radial coordinate r, normal stresses σj, normal strains εj, 
displacements uj, torsional shear stress τ and shear strain γ (no 
other shear components are considered) and end-section 
rotation φ the internal virtual work is 
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 (B-2) 

where the distance from the mid-surface z = r − R.  
The external virtual work is 
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where 
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For arbitrary kinematically admissible virtual displacements, 
and using the incremental compatibility equations 
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equation (B-1), using (B-2) and (B-3), generates the usual set 
of axisymmetric pipe equilibrium equations. 

In order to develop a model that is correct up to a 
particular order in ξ = t/(2R) all variables are expanded like 
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For example, after expanding the displacements, (B-5) yields 
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hence 
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Expanding all stress and strain components in (B-2) as 
indicated in (B-6) the internal virtual work term can be 
integrated over the wall thickness. The result is 

{ })(2 200000000
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 (B-9) 

Note that the first order terms vanish. Expanding the 
displacements uj and using (B-8) the external virtual work can 
be expressed as 
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Finally, equating internal virtual work (B-9) and external 
virtual work (B-10), retaining only zero order terms in ξ, 
yields 
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which thin-wall stresses are zero order correct in ξ.  
Alternatively, retaining up to the first order ξ terms in 
equation (B-10) results in 
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and these stresses are first order correct in ξ. 
Note that only uniform (zero order) stress terms are 

involved in equilibrium equations that define stresses correct 
up to first order. The familiar equations (B-11) are referred to 
as thin-wall theory; equations (B-12) have been called 
“3D average” or < 3D > theory. 

 
 

Appendix C:  Yield Collapse 
The von Mises yield criterion may be written as 
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Defining “effective axial load” and “effective axial stress” as 

( ) ( ){ }222 112 ξξπσπ +−−−=≡ eieffaeff ppRFtRF  (C-2) 

the von Mises criterion (C-1) is 
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which can be written in terms of loads using equation (B-12)  
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The effective axial load is a function of both internal and 
external pressure. Re-organizing equation (C-4) in terms of 
pressure difference pe − pi yields 
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where, defining Si = (σa + pi) / σy and T = τ / σy ,  
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The solution of equation (C-5) is 
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The equilibrium model (B-12) was first order correct in 
ξ = t/(2R) for the stresses and therefore equation (C-2) may 
have been taken linearized as well. In that case equation (C-7) 
would have been found as 
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Consistent with equations (B-12) the right-hand side of (C-8) 
is accurate up to first order in ξ and hence may be linearized in 
ξ resulting in 
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This linearization brakes down for those load combinations for 
which the square root factor vanishes (for example at very 
high axial compression) and in those cases equation (C-8) 
should be used.  

The plus sign in equations (C-7), (C-8) and (C-9) is 
relevant for almost all of the practical collapse situations 
where ∆p > 0. 

 
As an alternative for the von Mises yield criterion, the 

more conservative Tresca criterion may be used. Given the 
pipe stresses σa , σθ , σr and τ from equation (B-11) the 
principal stresses are 
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The Tresca yield criterion is 

{ } yσσσσσσσ =−−− 133221 ,,max  (C-11) 

 
 

Yield Collapse – External Pressure only 
If only external pressure is present, Si = 0 and T = 0 and 

then equation (C-9) becomes simply 
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In Fig. C.1 this formula is compared with the formula by 
Tamano et al.1  
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and with the exact through-wall yield solution found by 
integrating from the inside radius ri to the outside radius re  
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Note that both equations (C-12) and (C-13) are second order 
correct in ξ, provided fac = 1.5. In that case 
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Fig. C.1  Accuracy of the various through-wall yield formulas 
 
 

Yield Collapse – API 5C3 Approach to Combined Loads 
It may be interesting to compare the combined loading 

collapse equation (8) to the API 5C3 approach2 to combined 
loading. Within the context of the new model presented here 
but following the logic given in API 5C3, one would use the 
elastic collapse equation (1) for only external pressure 

( )ξξ
ν

cEp ec
e +
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 (C-16) 

and the yield equation (4) for only external pressure based on 
the “axial stress equivalent yield strength” to account for axial 
load 
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Solving for the external collapse pressure using (C-16) and (C-
17) in equation (8) : 
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Finally, introducing the “external pressure equivalent” to 
account for internal pressure, the result would be 
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Appendix D:  API 5C3 Average Collapse 
API Bulletin 5C32 provides not only the formulas for the 
lower bound design values for collapse strength. The 
document also describes the formulas for average collapse. 
The basis for these formulas is the regression equation fitting 
2488 tests, called plastic collapse. That formula for plastic 
collapse was augmented with a yield collapse formula and an 
elastic collapse formula. The yield collapse formula was 
conservatively taken as the external pressure that generates 
minimum yield stress on the inside wall of the pipe calculated 
by means of the Lamé equations. The elastic collapse pressure 
formula was derived from the formula developed by 
Clinedinst4: the average elastic collapse resistance was taken 
as 95 percent of that formula.  
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The “axial stress equivalent yield strength” is defined as 
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Two constants A and B are 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++= 053132.0

100
21301.0

100
10679.0

100
8762.2 yayayaA

σσσ  (D-2)  

050609.0
100

026233.0 yaB
σ

+=  (D-3)  

where the yield strength σya is to be taken as its value in [ksi]. 
The API 5C3 average yield collapse pressure in [ksi] is 
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the API 5C3 average plastic collapse pressure in [ksi] is 
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and the API 5C3 average elastic collapse pressure in [ksi] is 
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Which of the three formulas (D-4), (D-5) or (D-6) governs, is 
determined by the D/t ratio and the yield strength σya 
according to the following decision scheme:  

( )

i
pcAcA

e

i
ecAcA

e

ycAecA

i
ycAcA

e

p
D
tpp

else

p
D
tpp

then
AB
AB

t
Dorppifelse

p
D
tpp

then
B

ABA
t
Dif

⎟
⎠
⎞

⎜
⎝
⎛ −+=

⎟
⎠
⎞

⎜
⎝
⎛ −+=

+><

⎟
⎠
⎞

⎜
⎝
⎛ −+=

−++−
<

21

21

/3
/2

21

2
282 2

 (D-7) 

This logic scheme defines the average external collapse 
pressure pe

cA in units [ksi] under combined axial stress σa in 
[ksi] and internal pressure pi in [ksi]. 

 


