Bending Co-efficient Cb (US)

b. All values of C_b

 C_b is the bending coefficient. A new expression for C_b is given in the LRFD Specification. (It is more accurate than the one previously shown.)

$$C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 3M_A + 4M_B + 3M_c}$$
 (F1-3)

where M is the absolute value of a moment in the unbraced beam segment as follows:

 $M_{\rm max}$, the maximum

 M_A , at the quarter point

 M_B , at the centerline

 M_c , at the three-quarter point

The purpose of C_b is to account for the influence of moment gradient on lateral-torsional buckling. The flexural strength equations with $C_b = 1.0$ are based on a uniform moment along a laterally unsupported beam segment causing single curvature buckling of the member. Other loadings are less severe, resulting in higher flexural strengths; $C_b \ge 1.0$. Typical values of C_b are given in Table F-1. For unbraced cantilevers, $C_b = 1.0$. C_b can conservatively be taken as 1.0 for all cases.

Bending Co-efficient am (Australian)

(iii)
$$\alpha_{\rm m} = \frac{1.7M_{\rm m}^*}{\sqrt{\left[\left(M_2^*\right)^2 + \left(M_3^*\right)^2 + \left(M_4^*\right)^2\right]}} \le 2.5$$

where

 $M_{\rm m}^*$ = maximum design bending moment in the segment

 M_2^* , M_4^* = design bending moments at the quarter points of the segment

 M_3^* = design bending moment at the midpoint of the segment; or

Load Height Factors in AS4100

Destabilizing and stabilizing loads