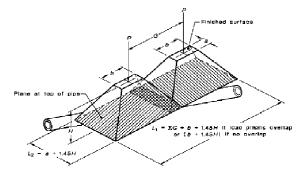
BURIED PIPING COMPLIANCE ASSESSMENT TO AS 2566.1-1998 The calculation is applicable for De >= 75, initial (3-min) ring bending stiffness >=1250 N/m/m and long-term (50 years) ring-bending stiffness >= 625 N/m/m.


Description of pipe under consideration					
PIPE DIMENSIONS:					
External Diameter	D _e	106.4	mm		
Internal Diameter	Di	99.3	mm		
Minimum Wall Thickness	t	3.3	mm		
Mean pipe diameter for calculation	D = D _i + t =	102.6	mm		
PIPE MATERIAL:			PE100		
Minimum yield strength of pipe material (for steel only)	f _y	N/A	MPa		
Ring Bending Modulus (3 minutes)	Eb	950	MPa		Table 2.1
Ring Bending Modulus (3 minutes) (for GRP only)	Е _b	120	MPa		
Ring Bending Modulus (50 years)	E _{bL}	260	MPa		Table 2.1
Ring Bending Modulus (50 years) (for GRP only)	E _{bL}	140	MPa		
Poisson's Ratio	ν	0.4			Table 2.1
Long-term safety factor for pressure	η_p	1.25			Table 2.1
Long-term safety factor for bending	η _b	2			Table 2.1
Long-term safety factor for combined stress Allowable long-term vertical pipe deflection	η	1.25			Table 2.1
for non-pressure	Δ_{yall} / D =	7.5	%		Table 2.1
Allowable long-term ring-bending strain	ϵ_{ball}	4	%		Table 2.1
Allow. long-term hoop stress	σ_{hall}	8	MPa		Table 2.1
Allow. long-term hoop stress for GRP only	σ_{hall}	N/A	MPa	for the assigned pre	essure class
Allow. long-term hoop stress for steel only	σ_{hall} = 0.72 f _y =	N/A	MPa		
Allow. long-term hoop stress considered for calculation	σ_{hall}	8	MPa		
Ring Bending Modulus (3 minutes) for calculation	Eb	950	MPa		
Ring Bending Modulus (50 years) for calculation	E _{bL}	260	MPa		
Second moment of inertia of pipe wall	$I = t^3 / 12 =$	2.995E-09	m ³		Eq. 2.2.1.2
Ring bending stiffness (3-minutes) S _D	$_{\rm PI} = E_{\rm b} {\rm I} {\rm / D^3 *10^6} =$	2361.9	N/m/m	OKAY	Eq 2.2.1.1 (1)
Ring bending stiffness (50 years) S _{DL}	$= E_{bL} I / D^3 * 10^6 =$	720.9	N/m/m	ΟΚΑΥ	Eq 2.2.1.1 (2)
EMBEDMENT CHARACTERISTICS:					

EMBEDMENT CHARACTERISTICS:

Selected native soil	Cl	Table 3.2			
	nedium to no plasticity and containing less than 25% coarse-g				
Selected embedment soil	GM-GL	Table 3.2			
	Sand and coarse-graind soil with less	than 12% fines			
Density index, Dry density ratio, number of blows	RD = 95%, ID = 70%, 24 <nob<=50< td=""><td>Table 3.2</td></nob<=50<>	Table 3.2			
Native soil modulus	E' _n 3 MPa	Table 3.2			
Embedment soil modulus	E' _e 7 MPa	Table 3.2			
Pipe external diameter range	75 <= De <= 150	Fig 3.1			
Minimum Embedment Geometry :					
Pipeline location from table	Subject to vehicular loading in sealed roadways	Table 3.1			
Minumum cover height	H 0.6 m	Table 3.1			
Depth of Bedding below the bottom of pipe	I _b 75 mm	Fig 3.1			
Clearance	l _c 100 mm	Fig 3.1			
Depth of Overlay	l _o 100 mm	Fig 3.1			

The permanent trench Used Embedment Geomet		$B = D_e + 2 I_c =$	306.4	mm		Fig 3.1
Cover Height	ry:	н	1.2	m	OKAY	
Depth of Bedding belo	w the bottom of pipe	۱ _b	75	mm		
Clearance		۱ _с	96.8	mm		
Depth of Overlay		۱ _о	100	mm	OKAY	
The permanent trench	width at springline	B = D _e + 2 I _c =	300	mm		
		$B/D_e =$	2.820			
Design Factor	$\Delta_{f} = [B/D_{e} - 1] / [1.154]$	+ 0.444 (B / D _e -1)] =	0.927			Eq. 3.4.3(3)
Leonhardt CF	ζ = 1.44 / [$\Delta_{\rm f}$ + (1.4	4 - Δ_{f}) * (E' _e / E' _n)] =	0.678			Eq. 3.4.3(2)
Effective combined soil mo	dulus	$E' = \zeta E'_e =$	4.747	МРа		Eq. 3.4.3(1)
		7500 E' =	35603	N/m/m		Clause C1.4.6.2
Long-term ring bending stiffness, SDL is LESS than 7500E. Therefore the pipe is in the FLEXIBLE mode.'						
		10 D =	1.026	m	H > 10 D	Clause 4.3
Cover height is greater than 10*D, therefore the design load due to trench may be conservative.						
Assessed unit weight of tre	nch fill or embankment fill	γ	19	KN/m ³		
The dead load due to trend	h fill or embankment fill	$w_g = \gamma H =$	22.8	KN/m ²		Eq. 4.3
Superimposed uniformly d	istributed dead load	u	0	KN/m ²		Clause 4.6 (a)
Superimposed concentrate	ed dead load	w _{gu}	0	KN/m ²		Clause 4.6 (b)
The total superimposed de	ad load	w _{gs} = u + w _{gu} =	0	KN/m ²		
Internal vacuum		q _v	101.3	KN/m ²		Clause 4.5

Superimposed Live Loads (Road Vechiles)

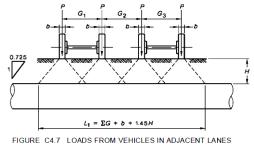


FIGURE 4.2 DISTRIBUTION OF WHEEL OR TRACK LOADS

Wheel Load (Σ P is the sum of the individual wheel loads)	Р	70	KN
Contact area lengths under the wheels	а	0.2	m
	b	0.4	m
Single or dual axles (1 or 2)	sda	2	
Centreline Distance b/w dual axles	dda	1.2	m
Number of axles in adjacent lanes (1 or 2)	noa	1	
The distances b/w wheels from vechiles in adjacent lanes	G_1	0	m
	G ₂	0	m
	G_3	1.4	m
$L_1 = \Sigma G + b + 1$.45 H =	3.54	m
L ₂ = dda + a + 1	.45 H =	3.14	m

Live load impact factor	α = 1.4 - 0.15 H =	1.22		Eq. 4.7.2(2)	
Total superimposed wheel Live load	$\Sigma P = 2*$ (noa + sda) * P =	420	KN		
Superimposed vechile live load	$w_q = \Sigma P / [L_1 * L_2] * \alpha =$	46.10	KN/m ²	Eq. 4.7.2(1)	
DEFLECTION:					
Bedding constant	к	0.1		Clause 5.2	
	$w_g + w_{gs} + w_q =$	68.90	KN/m ²		
A / D = [K /1000 * (Fr. F. 2(2)	
	<pre>wq)] / [8/1000000*S_{DL}+0.061 E'] = cceptable, therefore the selected pipe</pre>			Eq. 5.2(2)	
The Den. Tatio is less than the ac	ceptable, therefore the selected pipe	e and emp		ins of deflection.	
STRENGTH:					
Shape factor					
D _f = [3.33*1E-6 * S _{DL} /E'+0.001	.36]/[1.11*1E-6*S _{DL} /E'+0.000151] =	5.838		Eq. 5.3.1(3)	
Outer surface of corrugated wall to the ne	utral axis c ₁	0.00165	m	Fig 1.2	
Inner surface to the neutral axis	c ₂	0.00165	m	Fig 1.2	
Effective wall thickness of the pipe for the	determination of ring				
bending strain	$t_{es} = MAX(2 c_1, 2 c_2) =$	0.0033	m	Clause 1.5 & Fig 1.2	
	$\varepsilon_{b} = D_{f} * \Delta_{v}/D * t_{es} / D =$	0.44	% < E _{ball}	Eq. 5.3.1(1)&(2)	
Th	e predicted long-term ring-bending s		buii	Lq. 3.3.1(1)Q(2)	
INTERNAL PRESSURE:					
The maximum operating pressure	Pw	0.45	МРа		
The maximum allowable operating pressu	re $P_{all} = 2 \sigma_{hall} t / D =$	0.51	MPa	Clause 1.5	
The maximum	operating pressure is less than the M	IAOP, ther	efore it is SATISFACTORY.		
COMBINED LOADING:					
Re-rounding coefficient					
For $P_w < = 3.0 \text{ MPa}$	$r_{c} = 1 - P_{w}/3 =$	0.85		Clause 5.3.3	
For P _w > 3.0 MPa	r _c =	0		Clause 5.3.3	
P _w <= 3.0 MPa	thus r _c =	0.85			
	1/η =	0.8			
	1/11-	0.8			
$P_w / (\eta_p P_{all}) + r_c * \varepsilon_b / (\eta_b \varepsilon_{ball}) = 0.746 < 1/\eta$ Eq. 5.3.3 The response to the combined external load and internal pressure is SATISFACTORY.					
BUCKLING:					
Design factor for buckling	Fs	2.50			
q _{all 1} =	$1/F_{s} * 24/(1 - v^{2}) * S_{DL} * 1E-3 =$	8.24	КРа	Eq. 5.4(4)	
q _{all 2} =	$(S_{DL} * 1E-6)^{(1/3)} (E')^{(2/3)} * 1E3 / F_s =$	101.31	КРа	Eq. 5.4(5)	
	н	>=	0.5 m		
Allow. buckling pressure q _{all} =	greater of qall 1 and qall 2, =	101.31	КРа	Clause 5.4 (i) & (ii)	
When q _v should be considered because it	is critical				
	$= 1 / F_s * 24 / (1 - v^2) * S_{DI} * 1E-3 =$	26.99	КРа	Eq. 5.4(4) & NOTE	

$q_{all 2} = (S_{Dl} * 1E-6)^{(1/3)} (E')^{(2/3)} * 1E3 / F_s =$	150.46	КРа	Eq. 5.4(5) & NOTE
Allow. buckling pressure q_{all} = greater of qall 1 and qall 2 =	150.46	КРа	Clause 5.4 (i) & (ii) & NOTE
Height of the water surface above the top of the pipe $$\rm H_w$$	3.00	m	
Where H >= H _w γ (H - H _w) + (γ _L + γ _{sub}) [D _e / 2 + H _w) + w _{gs} + w _q + q _v	Eq. 5.4.1		
Specific gravity of soil particles $$\gamma_{\!S}$$	2.65		Clause 5.4 (a) NOTE
Assessed unit weight of liquid external to the pipe $$\gamma_{\!L}$$	10	KN/m ³	for water
Submerged unit weight of trench fill or embankment fill			
γ_{sub} = (γ_{s} - 1) / γ_{s} * γ =	11.830	KN/m ³	Eq. 5.4(2)
q _v = 0 KPa			
γ (H - H _w) + (γ _L + γ _{sub}) [D _e / 2 + H _w) + w _{gs} + w _q + σ _v =	78.549	KN/m ³ PASS	Eq. 5.4(1)
q _v = <u>101.3</u> KPa			
γ (H - H_w) + (γ_L + γ_{sub}) [D_e / 2 + H_w) + w_{gs} + w_q + q_v =	179.849	KN/m ³ FAIL	Eq. 5.4(1)
Where H < H _w γ_L (D _e / 2 - H _w) + γ_{sub} (D _e / 2 + H) + w_{gs} + w_q + q_v <	= q _{all}		Eq. 5.4(3)
q _v = 0 KPa			
γ_L (D_e / 2 - H_w) + γ_{sub} (D_e / 2 + H) + w_{gs} + w_q + q_v =	91.455	KN/m ³ PASS	Eq. 5.4(3)
q _v = 101.3 KPa			
γ_L (D_e / 2 - H_w) + γ_{sub} (D_e / 2 + H) + w_{gs} + w_q + q_v =	192.755	KN/m ³ FAIL	Eq. 5.4(3)