

India Pvt. Ltd.

207/208, Gauri Complex, Above Bank of Baroda, Vasai Road (E), Dist. Thane - 401 210. Ø (0250) 2392060 / 2392086 / 2392162 • Fax : (0250) 2392146 • E-mail : diatech@vsnl.com After office hours : 9869242761

DETAILED REPORT ON OVERHAULING OF 5.1 MW SYNCHRONOUS MOTOR (11-KBX-203) **AT LDPE PLANT OF IPCL, BARODA**

Work Order Ref:	BSE/3588123 dated 05.11.2005
Duration:	08.01.2007 to 24.01.2007
Customer Co-ordinators:	M.K. Shah, H. Vasavada & S. Bhatwadekar
Site Engineers:	Shashikant Utekar, Manohar Rahate & Julius Tuscano
Report by:	Aditya Korde & Shashikant Utekar
Analysis by:	Aditya Korde

EQUIPMENT DETAILS

Application:	11-KBX-203 Hyper Compressor Motor			
Make:	Jeumont Schneider, France	Туре:	SAT 316-38-30	
Serial Number:	156124	Poles:	30	
RPM:	200	Voltage:	6600 V	
Capacity:	5100 kW	Current:	461 Amps	
Insulation Class:	В	Duty:	Permanent	
Cooling:	IC W37 AT 81	IP:	IP-45	
Excitation Volts:	139	Weight:	38000 kgs.	
Excitation Current:	218	Stator Slots:	225	

DETAILED OVERHAULING PROCEDURE

DISSASSEMBLY & INITIAL TESTING:

- 1. DTIPL team reported at site. Detailed plan for execution of work was chalked out in co-ordination with IPCL engineers.
- 2. Safety training was attended by DTIPL team.
- 3. Work was started on 08.01.2007 at 10:30 AM after obtaining required permits from IPCL.
- 4. The 6.6 kV stator & exciter power supplies were disconnected with proper marking.
- 5. The clearances between end-shields and shaft were measured & recorded at both ends.
- 6. The barring gear was disengaged.
- 7. Top and bottom end-shields were removed from either end.
- 8. The inlet and outlet water pipes of the heat exchanger were removed.
- 9. The heat exchanger of the motor was lowered.
- 10. The position of the stator before sliding was measured, marked & recorded.
- 11. The air-gap between stator & rotor as well as the exciter was measured & recorded at 12, 3 & 6 o'clock positions.
- 12. The coupling guard of the motor was removed.
- 13. The star point of the motor was opened for testing & inspection.
- 14. The stator foundation bolts were unbolted and removed.
- 15. The stator was lifted by about 2 mm with the help of jack bolts & the shims were removed. 5 mm x 400 mm metal bright bars were placed between the stator & foundation. The stator was rested on these rods.
- 16. The stator was shifted towards compressor with the help of jacking studs.
- 17. Thorough visual inspection of the stator & rotor was done after sliding of stator & rotor.
- 18. Initial electrical testing of stator, rotor & exciter was done.

OVERHAULING:

- 1. Scaffolding was done to approach the stator & rotor area.
- 2. Stator wedge mapping work was done. It was decided to re-wedge 100% slots (225) with new wedges.
- 3. The old gaskets from the end-shields were removed.
- 4. The end-shields were cleaned & painted on the inside using Becktol Red.
- 5. De-wedging & re-wedging of all slots was completed.
- 6. All the wedges were tied with fiberglass cord & sleeve and Araldite applied on the lacing.
- 7. Final mapping of wedges was done in presence of IPCL engineers.
- 8. The stator & rotor were thoroughly cleaned by dry compressed air & washed with solvents.
- 9. The full flux loop test was conduct on stator for assessing the stator core condition and also for drying out the stator.
- 10. The rotor was heated by applying DC current through the rotor winding.
- 11. Additional strip heaters were mounted below the stator & rotor for heating.
- 12. The stator & rotor were heated upto to 65°C.
- 13. The stator, rotor & exciter were varnished by using epoxy Gelcoat & Becktol Red.
- 14. Final electrical tests were performed on the stator, rotor & exciter.

POLE REPLACEMENT:

- 1. Visual inspection was done on individual poles (30 nos.) with Jeumont engineers, who recommended replacement of all the poles.
- 2. The work was started with permission of IPCL engineers.
- 3. The new poles were shifted to electrical workshop.
- 4. The weights of all new poles were measured and pole pairs were select for installation.
- 5. All new poles were tested (test report enclosed). Two of them were found faulty. These were rejected and the two old poles were chosen for installation.
- 6. All new poles' threads were cleaned and re-threaded by M36 special tap.
- 7. The varnish was removed from the damper winding joints of old poles and the joints were cleaned.
- 8. Dye Penetrant testing was done on some of the old joints.
- 9. The damper winding joints were de-brazed and cut by hacksaw.
- 10. The field winding joints were de-brazed and de-soldered.
- 11. The pole fastening nut locks were unlocked by grinding.
- 12. The pole fastening nuts were unlocked by motor operated hydraulic wrench.
- 13. The barring gear was unlocked, removed & hung by EOT crane.
- 14. The metallic clamps of cable for pole to pole joint were unlocked and removed.
- 15. The barring gear was installed again.
- 16. The rotor position for removal and installation of pole was set at 12° clock.
- 17. Pole nos. 2 & 3 were removed and two new poles installed as per selection chart.
- 18. The other poles also removed and installed as per selection chart.
- 19. The pole fastening nuts were tightened by motor operated hydraulic wrench at 300 bar pressure.
- 20. The pole fastening nuts were locked by a plate welded to the nuts.
- 21. The damper winding joints were brazed & resistance was measured between two joints.
- 22. The pole to pole field winding joints were brazed & soldered.

- 23. The field winding joints were taped and varnished.
- 24. The barring gear was again removed.
- 25. The voltage drop test were carried out on the field winding joints.
- 26. Pole nos. 1 & 30 (positive & negative) were installed and connection were made.
- 27. The metallic clamp of cable for filed winding joints (pole-to-pole) were installed and locked.
- 28. The barring gear was finally installed and locked.
- 29. The rotor was again tested. All the results were found as per protocol.
- 30. The rotor was thoroughly cleaned by vacuum pump and instrument air.
- 31. The rotor was heated by applying DC supply (125 amps) upto 75° C temp for about 18 hrs.
- 32. The rotor was varnished by Gelcoat after achieving IR in Giga-ohms.

FINAL TESTING OF MOTOR:

Tests & measurements performed in the presence of IPCL engineers:

- Insulation Resistance measurement of stator & rotor.
- Insulation Resistance measurement of exciter stator & rotor.
- Polarization Index measurement of stator.
- Resistance and Inductance measurement of the stator.
- Resistance measurement of the rotor.
- Resistance and Inductance measurement of exciter stator and rotor.
- Resistance measurement of rotating diodes.
- Full flux loop test on stator.
- PI measurement after overhauling.
- Step voltage & dielectric discharge tests on the stator.
- Tan delta & capacitance test on the stator.
- Winding circuit analysis of the stator, rotor & exciter.
- Surge comparison test on the stator & rotor.

FINAL ASSEMBLY OF MOTOR:

- 1. Visual inspection of stator and rotor was done in the presence of IPCL engineers.
- 2. The foundation of the stator was cleaned using vacuum cleaner and solvents.
- 3. New gaskets were stuck to the end-shields.
- 4. The stator was shifted to its original position using 5 mm rollers and sliding fixtures.
- 5. The air-gap between stator and rotor was corrected as per the original readings and the foundation bolts tightened.
- 6. The heat exchanger of the stator was assembled.
- 7. The end-shields were assembled and the clearances were maintained and recorded.
- 8. The 6.6 kV cables were connected to the stator as per original marking.
- 9. The 6.6 kV star point was connected.
- 10. Connections of the main rotor and exciter were done.
- 11. The motor was painted with enamel gray paint.
- 12. No load trial of the motor was taken.

DISASSEMBLY, INSPECTION & ASSEMBLY OF BEARING:

- 1. The exciter end bearing housing oil was drained.
- 2. The top cover of bearing was removed.
- 3. Top half of the bearing was removed.
- 4. The bearing & housing area were cleaned.
- 5. The radial clearance of the bearing was measured using lead wire. The clearance was found to be 0.36 mm, which was as per the protocol.
- 6. DP test was carried on top half of the bearing. The results was satisfactory.
- 7. The bearing was re-assembled after getting clearance from IPCL.

ELECTRICAL TESTS

MAIN STATOR & ROTOR:

1. Insulation Resistance, Dielectric Discharge & Polarization Index (at 2.5 kV) before overhauling (5 kV Metrel Tera-ohm meter):

Parameter	R – Phase	Y – Phase	B – Phase
R ₀₁ (GΩ)	3.35	2.86	4.59
R ₁₀ (GΩ)	13.00	16.7	19.9
R ₃₀ (GΩ)	19.9	42.2	33.6
PI	3.88	5.83	4.34
DD	2.59	1.96	1.48
Volts (V)	2644	2641	2643
Leakage Current (nA)	132	62.5	78.4
Capacitance (nF)	115	114	112

2. Insulation Resistance, Dielectric Discharge & Polarization Index (at 5 kV) after overhauling (5 kV Metrel Tera-ohm meter):

Parameter	R – Phase	Y – Phase	B – Phase
R ₀₁ (GΩ)	3.17	2.87	2.67
R ₁₀ (GΩ)	12.1	11.6	11.2
R ₃₀ (GΩ)	19.3	17.3	17.8
PI	3.82	4.04	4.21
DD	2.19	2.25	2.66
Volts (V)		5261	5260
Leakage Current (nA)		303	295
Capacitance (nF)		111	108
	R – Y	Y – B	R – B
IR bet ⁿ Phases (GΩ)	6.09	4.78	6.35

3. Resistance of stator winding (AGRONIK digital micro-ohm meter):

R – Y Phase (mΩ)	160.7
Y – B Phase (mΩ)	160.9
B – R Phase (mΩ)	161.2

	Frequencies (Hz)						
Parameter	R – Phase:						
	400	200	100	60	50	30	25
Impedance (Ω)	40.2	20.4	10.3	6.18	5.17	3.13	2.63
Frequency response (%)	-51	-49	-47	-44	-41	-31	-27
Phase Angle (⁰)	84	79	68	57	53	38	34
Phase balance (%)	8	8	16	25	30	50	57
	Y – Phase	e :					
Impedance (Ω)	40.2	20.4	10.3	6.18	5.18	3.13	2.63
Frequency response (%)	-51	-49	-47	-44	-41	-31	-27
Phase Angle (⁰)	84	79	68	57	53	38	34
Phase balance (%)	8	8	16	25	30	50	57
	B – Phase	e:					
Impedance (Ω)	40.3	20.5	10.3	6.19	5.19	3.14	2.63
Frequency response (%)	-50	-49	-47	-44	-41	-31	-27
Phase Angle (⁰)	84	79	68	57	53	38	34
Phase balance (%)	8	8	16	25	31	50	57

4. Winding Circuit Analysis of stator (All-Test Pro AT-31):

5. Winding Circuit Analysis of rotor with old poles (All-Test Pro AT-31):

	Frequencies (Hz)						
Parameter	400	200	100	60	50	30	25
Impedance (Ω)	366	221	128	84.9	73.4	49	42.3
Frequency response (%)	29	38	42	42	42	42	42
Phase Angle (⁰)	84	76	72	71	70	69	69

6. Winding Circuit Analysis of rotor with new poles (All-Test Pro AT-31):

	Frequencies (Hz)						
Parameter	400	200	100	60	50	30	25
Impedance (Ω)	357	230	135	90.1	77.9	51.8	44.7
Frequency response (%)	-17	-34	-41	-42	-42	-42	-42
Phase Angle (⁰)	82	73	71	70	70	69	69

7. Resistance of rotor winding (AGRONIK digital micro-ohm meter):

With old poles	477 mΩ
With new poles	464 mΩ

8. Resistance of winding RTDs (multi-meter):

RTD nos.	Resistance (Ω)
1	117.85
2	112.19
3	113.16
4	114.34
5	119.75
6	113.96

9. Resistance measurement of space heaters (multi-meter):

Phases	Space heater 1	Space heater 2	Space heater 3	Space heater 4
R – Y	223	224	439	223
Y – B	220	226	439	223
B – R	225	224	439	223

10. Insulation Resistance of each new pole at 250 V (5 kV Metrel Tera-ohm meter):

Pole No.	IR (GΩ)	Pole No.	IR (GΩ)
1	158.0	16	160.0
2	134.0	17	435.0
3	468.0	18	400.0
4	49.94	19	227.0
5	78.90	20	230.0
6	78.40	21	300.0
7	18.24	22	345.0
8	92.60	23	10.80
9	75.20	24	10.70
10	29.30	25	15.80
11	243.0	26	89.60
12	270.0	27	161.0
13	6.603	28	125.0
14	170.0	29	173.0
15	135.0	30	158.0

Pole no.	Compressor side joint (μΩ)	Exciter side Joint (μΩ)	Pole no.	Compressor side joint (μΩ)	Exciter side joint (μΩ)
1-30	3	4	15-16	8	7
29-30	2	4	14-15	9	4
28-29	6	6	13-14	8	4
27-28	2	2	12-13	4	6
26-27	9	8	11-12	5	3
25-26	7	5	10-11	7	2
24-25	7	2	9-10	2	2
23-24	5	3	8-9	3	5
22-23	5	6	7-8	5	5
21-22	10	4	6-7	8	10
20-21	4	3	5-6	6	3
19-20	6	5	4-5	6	9
18-19	2	4	3-4	8	4
17-18	4	3	2-3	5	8
16-17	8	8	1-2	7	2

11. Resistance between joints of damper winding of new poles after brazing (AGRONIK digital micro-ohm meter):

12. Pole identification nos. after installation of new poles:

Old / New Pole No.	Old / Pole No.
1 (positive) – 12	16 – 30
2 – 11	17 – 22
3 – 28	18 – 18
4 – 21	19 – 16
5 – 04	20 – 15
6 – 27	21 – 09
7- 03	22 – 17
8 – 13	23 – 01
9 – 2 (old pole, 1975)	24 – 23
10 – 14	25 – 07
11 – 8 (old pole)	26 – 25
12 – 29	27 – 26
13 – 10	28 – 19
14 – 24	29 – 06
15 - 05	30 (negative) - 20

13. Full Flux Loop Test:

Applied Voltage: 415 V Number of Loop Turns: 48 Current: 70 A 30° C Ambient Temperature: 2 hours Duration: 39.5⁰ C Temperature rise in 2 hours. detection of stator core hot spots Purpose: Conclusion: Stator scanned by Raytek infrared temperature gun. No hot spots were found in the stator core.

14. Surge Comparison Test (at 5 kV):

No interturn shorts were found in the stator winding.

Waveforms of pole nos. 2 & 8 did not match those for the other coils. These poles are probably defective & hence not used.

Frequency	400 Hz	200 Hz	100 Hz	60 Hz	50 Hz	30 Hz	25 Hz
Pole 1 :				•			
Impedance (Ω)	8.48	4.52	2.40	1.46	1.19	0.74	0.62
Phase Angle (⁰)	57	46	31	21	18	11	10
Frequency response (%)	-41	-37	-26	-17	-14	-6	-5
Pole 2 :							
Impedance (Ω)	5.38	3.09	1.85	1.23	1.05	0.68	0.57
Phase Angle (⁰)	42	32	22	16	15	10	9
Frequency response (%)	-34	-27	-17	-13	-12	-8	-6
Pole 3 :							
Impedance (Ω)	8.23	4.34	2.29	1.39	1.16	0.71	0.59
Phase Angle (⁰)	57	45	30	20	17	11	9
Frequency response (%)	-42	-37	-26	-16	-13	-6	-4
Pole 4 :							
Impedance (Ω)	8.24	4.35	2.30	1.39	1.16	0.72	0.60
Phase Angle (⁰)	57	45	30	20	17	11	9
Frequency response (%)	-42	-37	-25	-16	-13	-6	-4
Pole 5 :							
Impedance (Ω)	8.24	4.34	2.29	1.39	1.16	0.71	0.59
Phase Angle (⁰)	58	45	30	20	17	11	9
Frequency response (%)	-42	-37	-25	-16	-12	-6	-4

15. Winding Circuit Analysis of new poles before installation (All-Test Pro AT-31):

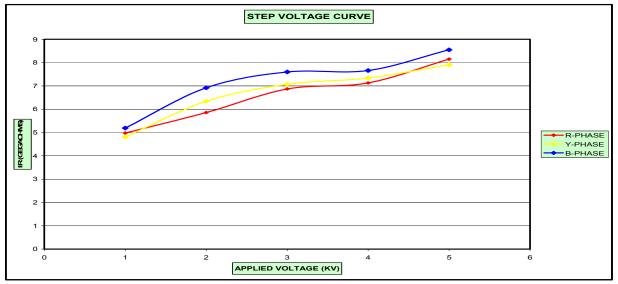
Pole 6 :							
Impedance (Ω)	8.35	4.37	2.30	1.39	1.17	0.71	0.60
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-37	-25	-16	-12	-6	-4
Frequency	400 Hz	200 Hz	100 Hz	60 Hz	50 Hz	30 Hz	25 Hz
Pole 7 :							
Impedance (Ω)	8.17	4.33	2.30	1.40	1.17	0.72	0.60
Phase Angle (⁰)	58	45	30	20	17	11	9
Frequency response (%)	-42	-37	-25	-16	-13	-6	-5
Pole 8 :							
Impedance (Ω)	6.23	3.67	2.11	1.33	1.12	0.70	0.58
Phase Angle (⁰)	44	36	26	19	16	10	9
Frequency response (%)	-33	-29	-21	-16	-14	-7	-6
Pole 9 :							
Impedance (Ω)	8.33	4.35	2.30	1.39	1.16	0.71	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-37	-25	-16	-12	-6	-4
Pole 10 :							
Impedance (Ω)	8.38	4.36	2.29	1.38	1.16	0.70	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-38	-25	-16	-12	-5	-4
Pole 11 :							
Impedance (Ω)	8.27	4.33	2.28	1.39	1.16	0.71	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-42	-37	-25	-16	-12	-6	-4
Pole 12 :							
Impedance (Ω)	8.36	4.34	2.28	1.38	1.15	0.70	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-38	-25	-15	-12	-6	-4
Pole 13 :							
Impedance (Ω)	8.22	4.29	2.28	1.42	1.21	0.77	0.65
Phase Angle (⁰)	59	46	29	19	16	10	9
Frequency response (%)	-43	-37	-28	-15	-12	-6	-4
Pole 14 :							
Impedance (Ω)	8.32	4.34	2.29	1.39	1.16	0.71	0.60
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-37	-25	-16	-13	-6	-4

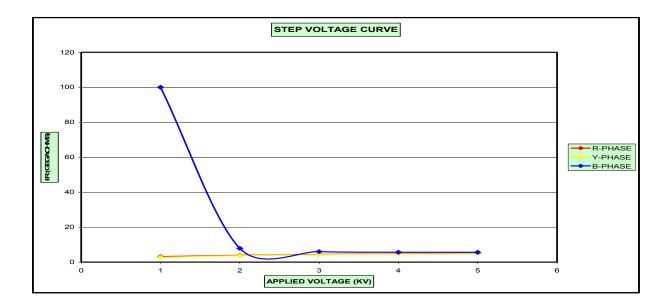
Frequency	400 Hz	200 Hz	100 Hz	60 Hz	50 Hz	30 Hz	25 Hz
Pole 15 :							
Impedance (Ω)	8.29	4.32	2.28	1.38	1.16	0.71	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-38	-24	-15	-12	-6	-4
Pole 16 :							
Impedance (Ω)	8.40	4.38	2.33	1.50	1.13	0.81	0.61
Phase Angle (⁰)	59	46	30	19	16	11	9
Frequency response (%)	-42	-39	-31	-10	-12	-6	-4
Pole 17:							
Impedance (Ω)	8.38	4.38	2.31	1.40	1.17	0.71	0.60
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-38	-25	-16	-12	-6	-4
Pole 18 :							
Impedance (Ω)	8.38	4.38	2.31	1.40	1.17	0.72	0.60
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-38	-25	-16	-13	-6	-4
Pole 19 :							
Impedance (Ω)	8.34	4.35	2.30	1.39	1.16	0.71	0.60
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-38	-25	-16	-13	-6	-4
Pole 20 :							
Impedance (Ω)	8.28	4.32	2.28	1.38	1.16	0.71	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-37	-25	-16	-12	-6	-4
Pole 21 :		•	•		•		•
Impedance (Ω)	8.48	4.32	2.28	1.38	1.16	0.71	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-37	-25	-16	-12	-6	-4
Pole 22 :		•	•		•		•
Impedance (Ω)	8.37	4.36	2.28	1.38	1.15	0.70	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-38	-25	-16	-12	-5	-4
Pole 23 :							
Impedance (Ω)	8.29	4.32	2.28	1.38	1.16	0.71	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-37	-25	-16	-12	-6	-4

Frequency	400 Hz	200 Hz	100 Hz	60 Hz	50 Hz	30 Hz	25 Hz
Pole 24 :					•		
Impedance (Ω)	8.33	4.33	2.27	1.37	1.15	0.70	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-38	-25	-15	-12	-5	-4
Pole 25 :							
Impedance (Ω)	8.60	4.49	2.38	1.39	1.17	0.71	0.60
Phase Angle (⁰)	59	47	31	20	17	11	9
Frequency response (%)	-42	-38	-26	-16	-13	-6	-4
Pole 26 :							
Impedance (Ω)	8.39	4.37	2.29	1.39	1.16	0.72	0.60
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-38	-25	-15	-12	-6	-4
Pole 27 :							
Impedance (Ω)	8.39	4.40	2.33	1.42	1.19	0.73	0.61
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-42	-37	-25	-16	-13	-6	-4
Pole 28 :							
Impedance (Ω)	8.43	4.53	2.41	1.43	1.20	0.73	0.61
Phase Angle (⁰)	57	47	31	20	18	11	9
Frequency response (%)	-41	-37	-26	-16	-13	-6	-4
Pole 29 :							
Impedance (Ω)	8.17	4.33	2.30	1.40	1.17	0.72	0.60
Phase Angle (⁰)	58	45	30	20	17	11	9
Frequency response (%)	-42	-37	-25	-16	-13	-6	-4
Pole 30 :							
Impedance (Ω)	8.32	4.34	2.29	1.39	1.16	0.71	0.59
Phase Angle (⁰)	59	46	30	20	17	11	9
Frequency response (%)	-43	-37	-25	-15	-13	-6	-4

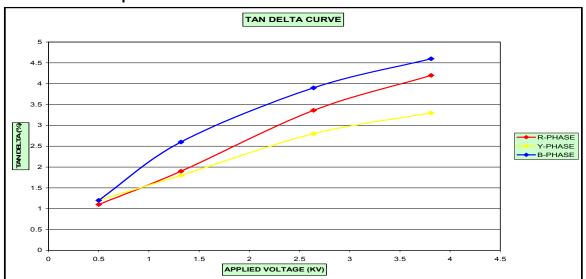
The windings of pole nos. 2 & 8 are clearly defective, probably having inter-turn shorts. These were thus not used.

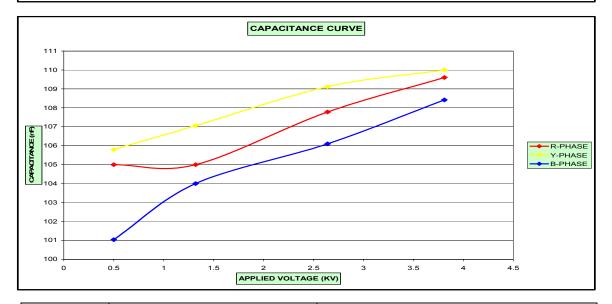
		sured by DTI		Measured by Jeumont			
Pole no.	Weight of pole (at site)	Difference from median	R (mΩ)	L (mH)	Pole no.	Z (250 Hz)	Calculated inductance
1	171.9	0.45	15.20	3.4	3	5.61	3.573
2	172.4	-0.05	15.11	2.9	5	5.54	3.529
3	172.5	-0.15	15.25	3.4	7	5.55	3.535
4	171.7	0.65	15.40	3.4	1	5.62	3.580
5	172.5	-0.15	15.50	3.4	6	5.53	3.522
6	172.1	0.25	15.06	3.4	9	5.50	3.503
7	172.3	0.05	15.30	3.4	2	5.54	3.529
8	172.3	0.05	15.00	3.2	4	5.60	3.567
9	172.3	0.05	15.60	3.4	14	5.56	3.541
10	172.7	-0.35	15.30	3.4	8	5.60	3.567
11	172.2	0.15	15.31	3.4	23	5.54	3.529
12	171.5	0.85	15.30	3.4	10	5.60	3.567
13	171.9	0.45	15.31	3.4	22	5.56	3.541
14	172.1	0.25	15.33	3.4	30	5.54	3.529
15	171.9	0.45	15.30	3.4	28	5.56	3.541
16	172.6	-0.25	15.30	3.4	11	5.63	3.586
17	172.5	-0.15	15.30	3.4	17	5.62	3.580
18	172.9	-0.55	15.20	3.4	25	5.56	3.541
19	173.0	-0.65	14.90	3.4	20	5.50	3.503
20	172.5	-0.15	15.20	3.4	24	5.65	3.599
21	172.6	-0.25	15.25	3.4	27	5.59	3.561
22	172.0	0.35	15.00	3.4	15	5.59	3.561
23	172.3	0.05	15.20	3.4	21	5.51	3.510
24	171.9	0.45	15.10	3.4	26	5.54	3.529
25	172.9	-0.55	15.60	3.4	29	5.65	3.599
26	172.6	-0.25	15.20	3.4	12	5.56	3.541
27	172.4	-0.05	15.42	3.4	19	5.59	3.561
28	172.8	-0.45	15.61	3.4	13	5.62	3.580
29	172.4	-0.05	15.20	3.4	16	5.56	3.541
30	171.9	0.45	14.50	3.4	18	5.53	3.522


16. Values measured by DTIPL & Jeumont of new poles before installation:


DTIPL pole number – written with white marker Jeumont pole number – punched on each pole

17. Voltage drop test after installation of new poles: All new poles were installed & connected with each other. Then; 63.8 V, 138 A DC was applied between pole nos. 1 & 30.


Pole no. (in Between)	Voltage Drop (V)
2-3	4.24
4-5	4.22
6-7	4.20
8-9	4.19
10-11	4.26
12-13	4.22
14-15	4.22
16-17	4.22
18-19	2.09
20-21	4.24
22-23	4.20
24-25	4.21
26-27	4.21
28-29	4.22
30-1	59.17
30	2.09
1	2.09



Voltage (kV)	R – Phase		Y – P	Y – Phase		hase
	IR (GΩ)	IR (GΩ)		IR (GΩ)	
	before	after	before	after	before	after
1	4.98	3.15	4.81	2.72	5.19	100.00
2	5.86	3.87	6.34	3.66	6.92	7.86
3	6.87	4.36	7.07	4.20	7.60	5.96
4	7.13	4.73	7.34	4.59	7.66	5.66
5	8.15	5.03	7.91	4.84	8.55	5.61

19. Tan Delta & Capacitance Results:

APPLIED	ТА	N DELTA	(%)	CAPACITANCE (nF)			
VOLTAGE (kV)	R	Y B		R	Y	В	
0.50	1.10	1.20	1.20	105.00	105.80	101.04	
1.32	1.90	1.80	2.60	105.00	107.06	104.00	
2.64	3.36	2.80	3.90	107.78	109.12	106.10	
3.81	4.20	3.30	4.60	109.60	110.00	108.42	
TIP-UP (%)	<mark>1.03</mark>	<mark>0.70</mark>	<mark>1.13</mark>	<mark>4.38</mark>	<mark>3.97</mark>	<mark>7.30</mark>	

The tan delta & capacitance tip-ups are extremely high, in absolute terms as well as in comparison with the other 5.1 MW motor. These indicate significant presence of voids as well as partial discharges in the winding insulation. Re-test motor within 6 months in order to plan action.

EXCITER STATOR & ROTOR:

Frequency	400 Hz	200 Hz	100 Hz	60 Hz	50 Hz	30 Hz	25 Hz
Stator:							
Impedance (Ω)	496	287	167	113	97.3	65.5	57.0
Phase Angle (⁰)	90	77	71	67	68	64	63
Frequency response (%)	-17	-39	-42	-41	-42	-41	-41
Phase balance (%)		23	9	8	7	4	6
Rotor:	+ ve Pa	ath					
		200 Hz			50	Hz	
	A-B	B-C	A-C	A-B	B-C	A-C	
Impedance (Ω)	1.54	1.63	1.39	0.43	0.49	0.43	
Phase Angle (⁰)	21	22	19	6	6	6	
Frequency response (%)	-16	-16	-15	-2	-2	-2	
Phase balance (%)	73	68	74	86	87	87	
	- ve Pa	th					
		200 Hz			50	Hz	
	A-B	B-C	A-C	A-B	B-C	A-C	
Impedance (Ω)	1.62	1.61	1.43	0.47	0.60	0.55	
Phase Angle (⁰)	22	20	19	7	6	5	
Frequency response (%)	-18	-16	-14	-2	-2	-2	
Phase balance (%)	69	71	71	87	88	88	

1. Winding Circuit Analysis of exciter stator & rotor (All-Test Pro AT-31):

2. Resistance measurement of winding (AGRONIK digital micro-ohm meter):

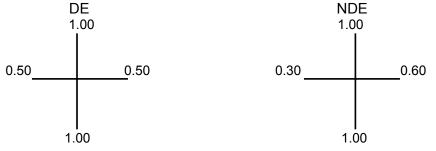
Test Circuit	Resistance					
Exciter stator	1.656 Ω					
Exciter rotor	(+ve path) (-ve path					
A – B	47.7 mΩ	47.7 mΩ				
B – C	47.8 mΩ	47.6 mΩ				
A – C	47.7 mΩ 47.7 mΩ					

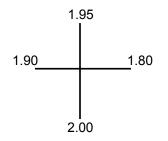
3. Exciter rotating diode milli-volt drop (multimeter):

Diode	+ve path	-ve path	
number	• •e patri		
А	0.393	0.382	
В	0.398	0.388	
С	0.400	0.380	

- 4. Exciter stator IR at 250 V (5 kV Metrel Tera-ohm meter): 34.4 GΩ
- 5. Exciter rootr IR at 250 V (5 kV Metrel Tera-ohm meter): 48.1 GΩ

MECHANICAL MEASUREMENTS


1. Air Gap between stator & rotor (only approach is from compressor end):


2. Clearances between end shield & shaft before dismantling (in mm) :

3. Clearances between end shields & shaft after assembly (in mm) :

4. Air Gap between Exciter Stator & Rotor (in mm):

5. Radial clearance (with lead wire) of main bearing: 0.35 mm

ROTOR DRYING PROCEDURE CHART:

After completion of rotor pole replacement, it was observed that the rotor IR value was very low (in $k\Omega$). Hence, rotor was thoroughly cleaned with compressed air & solvents. Heating by DC current injection was also carried out. IR value improvement chart was as under:

Time	DC Current (Amps)	Temperature (⁰ C)	IR (at 250 V)
1:00 hrs (21.1.07)	100	32	211 kΩ
3:00 hrs	97	48	855 kΩ
5:00 hrs	97	51	980 kΩ
7:00 hrs	115	55	1.12 MΩ
9:00 hrs	113	57	1.24 MΩ
11:00 hrs	122	61	1.70 MΩ
13:00 hrs	122	62	2.98 MΩ
15:00 hrs	122	63	6.10 MΩ
17:00 hrs	122	64	6.44 MΩ
19:00 hrs	118	65	7.09 MΩ
20:00 hrs	120	65	16.15 MΩ
22:00 hrs	119	66	19.00 MΩ
24:00 hrs	119	67	28.50 MΩ
2:00 hrs (22.1.07)	119	67	29.90 MΩ
3:00 hrs	119	68	35.00 MΩ
4:30 hrs	119	69	130.0 MΩ
7:30 hrs	119	70	746.00 MΩ
9:00 hrs	119	70	1.22 GΩ

STATOR WEDGE MAPPING CHART:

Number of stator slots: 225 Number of wedges per slot: 2 Number of wedges: 450 Wedges found loose: 373 Wedges found OK: 77

After wedge mapping it was decided with IPCL to rewedge all the 225 slots with new wedges.

Slot nos.	Wedge nos.		Slot nos.	Wedge nos.		Slot nos.	Wedge nos.	
	'C' end	'E' end		'C' end	'E' end		'C' end	'E' end
1	L	L	53	L	L	104	ОК	ОК
2	L	L	54	L	L	105	L	ОК
3	L	ОК	55	L	L	106	L	L
4	L	L	56	L	L	107	L	L
5	OK	L	57	ОК	ОК	108	ОК	L
6	L	L	58	L	L	109	L	L
7	L	L	59	L	L	110	L	OK
8	L	L	60	L	L	111	L	L
9	L	OK	61	L	L	112	L	L
10	OK	L	62	ОК	L	113	L	L
11	L	OK	63	ОК	L	114	ОК	L
12	L	L	64	L	L	115	L	OK
13	L	L	65	L	ОК	116	OK	L
14	L	OK	66	L	L	117	L	L
15	L	OK	67	L	L	118	L	L
16	L	OK	68	L	L	119	L	L
17	L	L	69	ОК	L	120	L	L
18	L	L	70	ОК	L	121	ОК	L
19	L	L	71	L	L	123	ОК	L
20	L	L	72	L	L	124	L	L
21	OK	L	73	L	L	125	L	L
22	L	L	74	L	L	126	L	L
23	L	L	75	ОК	L	127	L	L
24	ОК	L	76	L	L	128	L	ОК
25	ОК	L	77	L	L	129	L	L
26	L	L	78	L	L	130	ОК	L
27	L	L	79	ОК	L	131	L	L
28	L	L	80	L	L	132	L	L
29	L	L	81	ОК	L	133	L	L

30	L	L	82	L	ОК	134	L	L
31	L	ОК	83	L	L	135	L	L
32	L	ОК	84	L	L	136	L	L
33	L	L	85	L	L	137	OK	L
34	L	L	86	L	L	138	L	L
35	L	L	87	L	OK	139	L	L
36	L	L	88	L	OK	140	L	L
37	L	L	89	L	L	141	L	L
38	L	L	90	L	L	142	L	L
39	L	L	91	L	L	143	OK	L
40	L	L	92	L	L	144	OK	L
41	L	OK	93	L	L	145	L	L
42	L	OK	94	L	OK	146	L	L
43	L	ОК	95	L	L	147	L	ОК
45	L	L	96	L	L	148	ОК	L
46	L	L	97	L	L	149	L	L
47	L	L	98	L	L	150	L	L
48	L	L	99	ОК	L	151	L	OK
49	L	L	100	L	L	152	L	L
50	L	L	101	L	L	153	ОК	L
51	L	OK	102	L	L	154	L	L
52	L	OK	103	L	L	155	L	L
156	L	L	181	L	OK	206	L	OK
157	OK	L	182	L	L	207	L	L
158	L	L	183	L	L	208	L	L
159	L	L	184	L	L	209	OK	L
160	L	L	185	L	L	210	L	L
161	L	L	186	OK	L	211	L	L
162	OK	L	187	OK	L	212	OK	L
163	L	L	188	L	L	213	L	L
164	L	L	189	L	L	214	L	L
165	L	L	190	OK	L	215	L	OK
167	OK	L	192	L	L	216	L	OK
168	OK	L	193	L	OK	217	L	OK
169	L	L	194	L	L	218	L	L
170	L	L	195	L	L	219	L	L
171	L	L	196	ОК	L	220	L	L
172	L	L	197	L	L	221	OK	L

173	L	L	198	L	ОК	222	L	L
174	OK	L	199	L	L	223	L	L
175	OK	L	200	OK	L	224	L	L
176	L	L	201	L	L	225	L	OK
177	L	OK	202	L	L			
178	L	L	203	L	OK			
179	L	L	204	L	L			
180	L	OK	205	L	L			

All the old wedges (450) were removed and installed new wedges with packers.