9. LUG ANALYSIS

9.1 Introduction to Lug Analysis

Lugs are connector-type elements widely used as structural supports
for pin connections. In the past, the lug strength was overdesigned since
weight and size requirements were for the most part unrestricted. How-
ever, the refinement of these requirements have necessitated conservat1ve

methods of design.

This section presents static strength analysis procedures for uniformly
loaded lugs and bushings, for double shear joints, and for single shear joints,
subjected to axial, transverse, or oblique loading. Also listed is a.section
which applies to lugs made from materials having ultimate elongations of at
least 5% in any direction in the plane of the lug. Modifications for lugs with
less than 5% elongation are.also presented. In addition, a short section on
the stresses due to press fit bushings is presented.

9.2 Lug Analysis Nomenclature

Fb,uL = Lug ultimate bearing stress
Fb,yL = Lug yield bearing stress
Frux = Cross grain tensile ultimate stress of lug material
) = Cross grain tensile yield stress of lug material
Fypu = Allowable ultimate bearing stress, MHBS5
Fy,y - = Allowable yield bearing stress, MHB5
i = Ultimate tensile stress
F““L = Allowable lug net-section tensile ultimate stress
F“VL = Allowable lug net-section tensile yield stress
bryg = Allowable bearing yield stress for bushings
F.y = Bushing compressive yield stress
Fbria = Allowable bearing ultimate stress for busl'nngs
F'“p = Ultimate shear stress of the pin material
F‘“p = Pin ultimate tensile stress
F‘“T = Allowable ultimate tang stress
. = Maximum lug bearing stress
b,.“x: Maximum bushing bearing stress
Saax Maximum pin shear stress
anup = Maximum pin bending stress
Pt,mLp = Allowable lug ultimate bearing load
nug = Allowable lug net-section ultimate load

P = Allowable bushing ultimate load
P = Allowable design ultimate load

Py, = Allowable lug-bushing ultimate load
Pu,: Pin ultimate shear load
Pu-bp = Pin ultimate bending load
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Lug tang strength

Allowable lug transverse ultimate load
Allowable bushing transverse ultimate load
Net-tension stress coefficient

Plastic bending coefficient for pin

Plastic bending coefficient for tang

Plastic bearing coefficient for lug

Plastic bending coefficient for lug
Transverse ultimate load coefficient
Transverse yield load coefficient
Maximum pin bending moment

Ultimate pin failing moment

Area, in. 2

Distance from edge of hole to edge of lug, inches

Ductility factor for lugs with less than 5% elongation

Effective bearing width, inches

Hole diameter of pin diameter, inches
Modulus of elasticity, psi

Edge distance, inches

Stress, psi

Cyclic stress amplitude on net section of given lug,
1bs /in. 2

Mean cyclic stress on net section of given lug, lbs/in. 2

Maximum cyclic stress on net section of given lug,
Ibs /in. 2

Minimurm cyclic stress on net section of given lug,
lbs/in. 2

Gap between lugs, inches

Edge distances in transversely loaded lug, inches

Effective edge distance in transversely loaded lug

Allowable stress (or load) coefficient

Fatigue parameters '

Bending moment, in. -lbs.

Fatigue life, number of cycles

L.oad, lbs.

Stress ratio, f,,/f,,,

Bushing wall thickness, inches

Lug thickness, inches

Lug width, inches

Angle of load to axial direction, degrees

Strain, inches/inch

Density, lbs/in. 3



Subscripts

all = Allowable opt = Optimum

ax = Axial P = Pin

B = Bushing . = Shear

b = Bending T = Tang

br = Bearing ¢ = Tensile

R = Compression er = Transverse

L . = Lug N = Ultimate

max = Maximum x = Cross grain

n = Net tensile v = Yield

o = Oblique 1, 2 = Female and male lugs

¢ 3 Lug and Bushing Strength Under Uniform Axial Load

Axially loaded lugs in tension must be checked for bearing strength and
for net-section strength. The bearing strength of a lug loaded in tension, as
shown in Figure 9-1, depends largely on the interaction between bearing,
shear-out, and hoop-tension stresses in the part of the lug ahead of the pin.
The net-section of the lug through the pin must be checked against net-tension
failure. In addition, the lug and bushing must be checked to ensure that the
deformations at design yield load are not excessive.
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Figure 9-1. Schematics of Lugs Loaded in Tension

9.3.1 Lug Bearing Strength Under Uniform Axial Load

The bearing stresses and loads for lug failure involving bearing,
shear-tearout, or hoop tension in the region forward of the net-section
in Figure 9-1 are determiped from the equations below, with an allowable
load coefficient (K) determined from Figures 9-2 and 9-3. For values of
e/D less than 1.5, lug failures are likely to involve shear-out or hoop-
tension; and for values of e/D greater than 1.5, the bearing is likely to be
critical. Actual lug failures may involve more than one failure mode, but
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such interaction effects are accounted for in the values of K. The lug ultimate

bearing stress (F,  )is
L
Fope = K—2 F,, (e/D<1.5) (9-1a)
L D
Fypu = K Fyy,» (e/DZ 1.5) (9-1b)

L

The graph in Figure 9-2 applies only to cases where D/t is 5 or less, which
covers most of vthe cases. If D/t is greater than 5, there is a reduction in
strength which can be approximated by the curves in Figure 9-3. The lug

yield bearing stress (F""L) is

Fb'::ﬁL =K% Ftyx: (e/D<1.5) (9-2a)
FbryL = K Fyyyo (e/Dz1.5) (9-2b)
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Figure 9-2. Allowable Uniform Axial Load Coefficient
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The allowable lug ultimate bearing load (Pb,uL) for lug failure in bearing, \I/
shear-out, or hoop tension is

= Fyey Dt, (if Fyyp 5 1.304 Fyp) (9-3a)

yy)
o
-1
c
=
]

1.304 Fyey Dt, (if Fy,, >1.304 Fyy,) (9-3b)

Py, /Dt should not exceed either F,,, or 1. 304 F,,,, where F,,, and F,,
are'the allowable ultimate and yield bearing stresses for the lug material
for e/D = 2.0, as given in MIL-HDBK-5 or other applicable specification.

Equations (9-3a)and (9-3b) apply only if the load is uniformly dis-
tributed across the lug thickness. If the pin is too flexible and bends
excessively, the load on the lug will tend to peak up near the shear faces
and possibly cause premature failure of the lug.

A procedure to check the pin bending strength in order to pre-
vent premature lug failure is given in Section 9. 4 entitled ""Double Shear
Joint Strength Under Uniform Axial Load."

9.3.2 Lug Net-Section Strength Under Uniform Axial Load

The allowable lug net-section tensile ultimate stress (F,, )
on Section 1-1 in Figure 9-4a is affected by the ability of the lug material T
to yield and thereby relieve the stress concentration at the edge of the hole.

I-'_‘nuL =KnFtu - (9-4)
K,, the net-tension stress coefficient, is obtained from the graphs shown
in Figure 9-4 as a function of the ultimate and yield stress and strains of
the lug material in the direction of the applied load. The ultimate strain(g,)
can be obtained from MIL-HDBK-5.

0)

wJ T
D + (o)
P
o
Figure 9-4. Net Tension Stress Coefficient S
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The allowable lug net-section tensile yield stress (F"’L) is

Fay, = KiFy (9-5)

The allowable lug net-section ultimate load (P"“L) is

Py = Fay (W-D)t, (if Fy, 5 1. 304 Fy) . (9-6a)
P““L = 1.304 F,,,,L (w-D)t, (if F,, >1.304 F,,) (9-6b)
9.3.3 L.ug Design Strength Under Uniform Axial Load

The allowable design ultimate load for the lug (P“L) is the
lower of the values obtained from Equations (9-3) and (9-6).

P (Equations (9-3a) and (9-3b), or

u'_ b!u
P“ (Equations (9-6a) and (9-6b))

(9-7)

9.3.4 Bushing Bearing Strength Under Uniform Axial Load

The allowable bearing yield stress for bushings (F""Va) is re-
stricted to the compressive yield stress (F ovg ) of the bushing material,
unless higher values are substantiated by tests.
The allowable bearing ultimate stress for bushings (Fb,us) is : \r/‘
Fyp, = 1.304 F"’e (9-8)
The allowable bushing ultimate load (P“B) is

P, = 1. 304 F.y, Dt (9-9)

This assumes that the bushlng extends through the full thickness
of the lug.

9.3.5 Combined Lug-Bushing Desgign Strength Under Uniform Axijal Load

The allowable lug-bushing ultimate load (P,
loads obtained from Equations (9-7) and (9-9).

) is the lower of the
“a

P, = PuL (Equation (9-7), or P,. (Equation {9-9)) (9-10)

tg

9.4 Double Shear Joint Strength Under Uniform Axial Load

The strength of a joint such as the one shown in Figure 9-5 depends
on the lug-bushing ultimate strength (P ) and on the pin shear and pin
bending strengths. '
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Figure 9-5. Double Shear Lug Joint
9.4.1 Lug-Bushing Design Strength for Double Shear Joints Under

Uniform Axial Load

The allowable lug-bushing ultimate load (P“L )} for the joint is
)

computed, using Equation (9-10). For the symmetrical joint shown in
the figure, Equation (9-10) is used to calculate the ultimate load for the
outer lugs and bushings (ZP“L ) and the ultimate load for the inner lug
8
1
and bushing (PuL ). The allowable value of ZP“L for the joint is the lower .
_ 82 B

of these two values.

P, =2P, (Equation (9-10)), or P, (Equation (9-10)) (9-11)
Lg te 4 ts2



9.4.2 Pin Shear Strength for Double Sheér Joints Under Uniform
Axial Load

. The pin ultimate shear load (P,, ) for the symmetrical joint
shown in Figure 9-5 is the double shear stprength of the pin:

P,, = 1.571 D,? 120 (9-12)

Ulv
where F,up is the ultimate shear stress of the pin material.

9.4.3 Pin Bending Strength for Double Shear Joints Under Uniform
Axial lL.oad

Although actual pin bending failures are infrequent, excessive
pin deflections can cause the load in the lugs to peak up near the shear
planes instead of being uniformly distributed across the 'lug thickness,
thereby leading to premature lug or bushing failures at loads less than
those predicted by Equation (9-11). At the same time, however, the con-
centration of load near the lug shear planes reduces the bending arm and,
therefore, the bending moment in the pin, making the pin less critical in
bending. The following procedure is used in determining the pin ultimate
bending load.

/

Assume that the load in each lug is uniformly distributed across
the lug thickness (b} = t}, and 2by = t;). For the symmetrical joint shown
in Figure 9-5, the resulting maximum pin bending moment is

p (t1 tr ,
Mawe = = (2 tT te « (9-13)

The ultimate failing moment for the pin is

~N

3 .
M, = 0.0982 k, D,” Fy, (9-14)

where kbp is the plastic bending coefficient for the pin. The value of ky,
varies from 1.0 for a perfectly elastic pin to 1.7 for a perfectly plastic
pin, with a value of 1.56 for pins made from reasonably ductile materials
(more than 5% elongation).

The pin ultimate bending load (P“bp) is, therefore,

0.1963 k, D, F,,
P

P"bp:(tl N t2 +g> (9-15)
2 4
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If Pubp is equal to or greater than either P“Le (Equation (9-11) or Pu,,

(Equation (9~12)), then the pin is a relatively strong pin that is not critical
in bending, and no further pin bending calculations are required. The
allowable load for the joint (P,,;,) can be determined by going directly to
Equation (9-19a).

1f Pm,p (Equation (9~15)) is less than both P“L. (Equation (9-11))

and Py,, (Equation (9-12)), the pin is considered a relatively weak pin,
critical in bending. However, such a pin may deflect sufficiently under

load to shift the c. g. of the bearing loads toward the shear faces of the lugs,
resulting in a decreased pin bending moment and an increased value of P“b
These shifted loads are assumed to be uniformly distributed over widths b1
and 2bp, which are less than t) and t;, respectively, as shown in Figure 9-5.
-he portions of the lugs and bushings not included in by and 2b; are con-
sidered ineffective. The new increased value of pin ultimate bending load is

0.1963 k, D,> Fu,
(9-15a)

PubP = <i bZ )

The maximum allowable value of P“"p is reached when by and b, are suf-
ficiently reduced so that P“"p (Equation (9-15a)) is equal to P“L (Equation

8 ,
(9-11)), provided that by and 2bp are substituted for t; and tp, respectively,
At this point we have a bala.nced design where the joint is equally critical
in pin-bending failure or lug-bushing failure.

The following equations give the ''balanced design' pin ultimate
bending load (P“bp Iw‘) and effective bearing widths (bj ., and 2b, ,4,):

[, t t ! ’
P,y =zc\l i ( 1, 22 +g>+g2 -2Cg (9-16)

2 4

where

Py tg+ Pyt

The value of Pubp on the right hand side of Equation (9-16) and the values of

ZP“L and P“L in the expression for C are based on the assumption that the
&1 82

full thicknesses of the lugs are effective and have already been calculated.

(Equations (9-10) and (9-15)).

9«11



If the inner lug strength is equal to the total strength of the two
outer lugs (P, =2P, ), and if g = 0, then
- 'e2 3

Pubp nax =d P\:bP p“"az‘ ' v(9'17)

The '"balanced design'' effective bearing widths are

PubP nax tl '
bl-an = 2P, : (9-18a)
te)
Pub tz
P max
2b = —_— -18b
zuin P“ (9 )
L
82
where P, is obtained from Equation (9-16) and P, and P, are
P max tg L
1 82
the previously calculated values based on the full thicknesses of the lugs.
Since any lug thicknesses greater than b or by are not considered

!
effective, an efficient static strength desi'gr’; would"have t] = D] s and

tz = 2b2n1n'

The allowable joint ultimate load (P,,;) for the double-shear joint
is obtained as follows:

If PubP (Equation (9-15) is Igreater than either PuL (Equation (9-11)
or P“"p (Equation (9-12)), then P,;, is the lower of the valuds of P“L or

P“'P' 8
P, = PuLB (Equation (9-11) or P,"P (Equation (9-12)) (9-19a)
If P,,, (Equation (9-15)) is less than both P“LB and P,, , then
P,,; is the lower of the values of P“.P and P‘"’P aax
P §P“,P (Equation (9-12) or P“anx (Equation (9-16)) (9-19b)
9.4.4 Lug Tang Strength for Double Shear Joints Under Uniform Axial Load

If Equation (9-19a) has been used to determine the joint allowable
load, then we have a condition where the load in the lugs and tangs is assumed
uniformly distributed. The allowable stress in the tangs is F,, . The lug tang

9 -12



strength (P,) is the lower of the following values.
Py = 2Fy, Wy t) (9-20a)

P, = F“'z wr, t, | (9-20b)

If Equation (9-19b) was used to determine the joint allowable load,
the tangs of the outer lugs should be checked for the combined axial and bend-
ing stresses resulting from the eccentric application of the bearing loads.
Assuming that the lug thickness remains constant beyond the pin, a load (P/2)
applied over the width b, in each outer lug will produce the following bending
moment in the tangs:

_P (t1-b) )
- g (A5

A simple, but generally conservative, approximation to the maximum com-
bined stress in the outer lug tangs is
6M
P .
Fo 73 t R 12 19-21)
T w
1 WTl 1 bT rl tl

where k, , the plastic bending coefficient for a lug tang of rectangular cross- -
T

section, varies from 1.0 for a perfectly elastic tang to 1.5 for a perfectly
plastic tang, with a value of 1.4 representative of rectangular cross sections -
with materials of reasonable ductility (more than 5% elongation). The allow-
able value of F‘r is F,, . The lug tang strength is the lower of the fol-
lowing values: ! "l

ZFtuT W'rl tl

P, = : (9-22a)

by yn
. 3 1. 21w )
b, t
Pr=F Wy, t -22b
T Qu'lz TZ 2 ‘ (9 )

where b, . is given by Equation (9-18a)

9.5 Single-Shear Joint Strength Under Uniform Axial Load

In single-shear joints, lug and pin bending are more critical than in
double-shear joints. The amount of bending can be significantly affected by
bolt clamping. In the cases considered in Figure 9-6, no bolt clamping is
assumed, and the bending moment in the pin is resisted by socket action in
the lugs.

9 - 13



I:‘br max —

Figure 9-6. Single Shear Lug Joint

In Figure 9-6 a representative single-shear joint is shown, with centrally

applied loads (P) in each lug, and bending moments (M and M) that keep {

the system in equilibrium. (Assuming that there is no gap between the lugs, \,J
M+ M) =P(t+t;)/2). The individual values of M and M) are determined

from the loading of the lugs as modified by the deflectmn, if any, of the lugs,

according to the pr1nc1p1es of mechanics.

The strength analysis procedure outlined below applies to either lug.
The joint strength is determined by the lowest of the margins of safety cal-
culated for the different failure modes defined by Equations (9-23) through (9-27).

9.5.1 Lug Bear1ng Strength for Smgle Shear Joints Under Uniform
Axial Loads »

The bearing stress distribution between lug and bushing is assumed
to be similar to the stress distribution that would be obtained in a rectangular
cross section of width (D) and depth (t), subjected to a load (P) and moment (M).
At ultimate load the maximum lug bearing stress (Fyr max t) 15 approximated by

_ P 6M :
Fbr max L Dt + ~ "_2'_ (9‘23)
kb!‘ Dt
L

where k,,  is a plastic bearing coefficient for the lug material, and is assumed

to be the same as the plastic bending coefficient (k, ) for a rectangular section. {
L \}\\V‘;f_f
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The allowable ultimate value of F,, . is either F""“L (Equations
(9-1a) (9-1b)) or 1. 304 Fb"’L (Equations (9-2a) (9-2h)), whichever is lower.

9.5.2 Lug Net-Section Strength for Single Shear Joints Under Uniform
Axial Load

At ultimate load the nominal value of the outer fiber tensile stress
in the lug net-section is approximated by \
)

’ (9-24)

_,
O

P 6M ¥
thax: + (f '1’/

(w-D)t o (w-D)t? A
L

[

(4

where k, is the plastic bending coefficient for the lug net-section."

The allowable ultimate value of F, .

is F,, (Equation (9-4)) or
1.304 Foy (Equation (9-5)), whichever is lower. t
L

9.5.3 Bushing Strength for Single Shear Joints Under Uniform Axial L.oad

The bearing stress disirihution between bushing and pin is assumed
to be similar to that between the lug and bushing. At ultimate bushing load the
maximum bushing bearing stress is approximated by

P 6M ’
For rax 8 = + : (9-25)

A —. - DPt kb,. Dp tz
L

where kb,L,- the plastic bearing coefficient, is assumed the same as the plastic

bending coefficient (k, ) for a rectangular section.
L .

The allowable ultimate value of F,_ . 5 is 1.304 FQ;B, where F.,

is the bushing material compressive yield strength.

9.5.4 Pin Shear Strength for Single Shear Joints Under Uniform Axial Load

The maximum value of pin shear can occur either within the lug or
at the common shear face of the two lugs, depending upon the value of M/Pt.
At the lug ultimate load the maximum pin shear stress (F, , . ») is approxi-

mated by
Fy gax b =—£i2;:§—f, (if ;{‘%— =2/3) (9-26a)
\l 2M Y !
F 12730 VW B ) vl 1/ if M >2/3)  (9-26b)

s max P ’
e 2 Pt
Dy __.ZM+1-\I(__2M>Z+1>
Pt Pt
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Equation (9-26a) defines the case where the maximum pin shear is obtained
at the common shear face of the lugs, and Equation (9-26b) defines the case
where the maximum pin shear occurs away from the shear face.

The allowable ultimate value of F, ,, » is F the ultimate shear
stress of the pin material.

'u’

9.5.5 Pin Bending Strength for Single Shear Joints Under Uniform
Axial Load

The maximum pin bending moment can occur within the lug or at
the common shear faces of the two lugs, depending on the value of M/Pt. At
the lug ultimate load the maximum pin bending stress (F, ,,, ») is approxi-
mated by

10. 19M Pt . M
Fy pux P = ( - 1), if M =3/8) (9-27a)
K, D, 2M Pt

10.19M (“(

= » Pt | ;
“ b max - S
K, D, 2M (9-27b)
Pt
C(if >3/8)
Pt
where k., is the plastic bending coefficient for the pin. ’ |
Equation (9-27a) defines the case where the maximum pin bending
moment is obtained at the common shear face of the lugs, and Equation (9-27b)
defines the case where the maximum pin bending moment occurs away {rom
the shear face, where the pin shear is zero.
The allowable ultimate value of ¥, _,. , is F,u » the ultimate tensile
stress of the pin material. :
9.6 Example of Uniform Axially Loaded Lug Analysis |
Determine the static strength of an axially loaded, double shear joint,
such as shown in Section 9.4, with dimensions and material properties gi.cn
in Table 9-1. .
N
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Table 9-1. Dimensions and Properties
Female Lugs, Male Lug, 2 Bushings, Pin
1 and 2

e
Material } 2024-T35] Plate 7075-T65]1 Plate] Al. Bronze 4130 Steel
Foy 64000 psi 77000 psi 110, 000 psi 125,000 psi

(X-grain) (X-grain}
F,, 40000 psi 64000 psi 60, 000 psi 103,000 psi

(X-grain) iX-grain)
Foy 60, 000 psi
Fou 82. 000 psi
E 10. 5 x 10° psi 10.3 x 10° 29 x 100 psi
g, 0.12 0.06
Dor D, D~ 1,00 in. D=1.00in. D, =0.75in.,}§ D, = 0.75 in.

D=1.004n,
e 1.25in. 1.50 in.
a 0.75 in, 1.00in.
w = W, 2.50 in. 3.00 in.
t 0.50 in. 0.75 in. 0.50 and
0.75 in,

g 0.10 in.

{1) Female Lugs and Bushings

Fyu = 64,000 psi; 1.304 F,,, = 1.304 x 40000 = 52160 psi.

a) Lug Bearing Strength (Equations (9-2a) and (9-3b))

°1 _1.25 _ ] 25. therefore K, = 1. 46 (from Figure 9-2)
D 1.00 1
waL = 1.304 x 1.46 x 0. 75 x 40000 x 1. 00 x 0. 50 = 28600 1bs.
1
b) . Lug Net-Section Tension Strength (Equations (9-5) and (9-6b))
D _ 1.00 Fo 40000
A g L = 0. 40; = = 0.625; -
w 2.50 : 64000
1 tu
¥
S 64200 = 0.051; therefore, k"l =0.74,
E€y  10.5x 10" x 0.12 .
(by interpolation from Figure 9-4)
Py, =2x1.304x.74x4000x (2.5-1.0)x.5= 57,898 1bs.

L

9 -17



(2)

c¢) Lug Design Strength (Equation (9-7))

P, =P,, = 28600 lbs.

L L]

d) Bushing Bearing Strength (Equation (9-9))

P = 1.304 x 60000 x 0.75 x 0.50 = 29300 lbs.

u

81

e} _(_‘,_om‘:»ined Lug-Bushing Design Strength (Equation (9-10))

P = P, =128600 lbs.

u
LBl Y

Male Lug and Bushing

F,, = 77000 psi; 1.304 F,,, = 1.304 x 66000 = 86100 psi.

a) Lug Bearing Strength (Equations (9-1b) and (9-3a))

[

2 .45 50; therefore, Ky = 1.33 (from Figure 9-7)

0
3

w O

1.
1. x 77000 x 1.00 x 0. 75 = 77000 1bs.

b) Lug Net-Section Tension Strength (Equations (9-4) and (9-6a))

D __1.00 _ g, 333, Fey - 66000 _ 4 g57

wo 3.00 Fy, 77000

bl 77000 = 0.125; therefore K,,2 = 0. 87

Ee, 0.3 x 10° x 0. 06
(by interpolation from Figure 9-4)

P, =1.304x87x66000x(3.0-10)x.75=112,313 1lbs.

c) Lug Design Strength (Equation (9-7))

=P = 77000 lbs.

bruL

ULZ
d) Bushing Bearing Strength (Equation (9-9))

P“u = 1.304 x 60000 x 0.75 x 0.75 = 44000 lbs.
2

¢) Combined Lug-Bushing Design Strength (Equation (9-10))

P = P

\ = 44000 lbs.
ls

v

2 ®2
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Joint Analysis

a)

Lug-Bushing Strength (Equation (9-11))

P, =P, = 44000 1bs.
s ‘e

Pin Shear Strength (Equation (9~12))

P,, = 1.571 x (0. 75)% x 82000 = 72400 lbs.

us

Pin Bending Strength (Equation (9-15))

The pin ultimate bending load, assuming uniform bearing across
the lugs, is

0.1963 x 1. 56 x (0. 75)3 x 125000

P 0.25+ 0.1875 + 0. 10

Since Puh is less than both P and P

weak pin wh1ch deflects suff1c1ently under load to shift the bear-
ing loads toward the shear faces of the lugs. The new value of
pin bending strength is, then,

= 30100 lbs.

I)ub

o, the pin is a relatively

% (0.25 + 0. 1875 + 0. 10) + (0. 10)°

30100
C

pubuu =2Cx (“ - 0.10)

28600 x 44000
286 x 0.75 + 44000 x 0.050

= 29000 1lbs/in.

(from Equation (9-16)) where C =

Therefore, P =2 x 29000 x (0. 754 -~ 0.10) = 37900 1bs.

ubp pax

The '"balanced design'' effective bearing widths are

_ 37900 x 0. 50
letn = 5 & 28600

= 0.331 in. (from Equation (9-18a))

b - 37900 x0.75 _ g ¢46 in. (from Equation (9-18b))
2 win 44000
Therefore, the same value of P, would be obtained if the

P max
thickness of each female lug was reduced to 0. 331 inches and
the thickness of the male lug reduced to 0. 646 inches.

Joint Strength (Equation (9-19b))

The final allowable load for the joint, exclusive of the lug tangs, is
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Pai = Pay, . = 37900 lbs.

(4) Lug Tang Analysis

p, - 2% 64000x2.50x 0.50 _ _ 92700 1bs. (from Equation (9-22a))
1 + _i_ x (1 - O_'3i.l__
1.4 0. 500
oy

P; = 77000 z 3.00 x 0.75 = 173300 lbs. (from Equation (9-22b))

Therefore, the lug tangs are not critical and the allowable joint
load remains at 37900 pounds.

9.7 Lug and Bushing Strength Under Transverse Load

Transversely loaded lugs and bushings are checked in the same general
manner as axially loaded lugs. The transversely loaded lug, however, is a
more redundant structure than an axially loaded lug, and it has a more com-
plicated failure mode. Figure 9-7 illustrates the different lug dimensions
. that are critical in determining the lug strength,

th)

Iptr

Figure 9-7. Schematic of Lugs Under Transverse Loads

“ir

9.7.1 Lug Strength Under Transverse Load

The lug ultimate bearing stress (FbNL) is

F F (9-28)

bruL = tru tux

where K.,y the transverse ultimate load coefficient, is obtained from
Figure 9-8 as a function of the "effective' edge distance (h,,):
h = 6
av
3/h1 + l/hz +1/h3 + 1 h/4
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The effective edge distance can be found by using the nomograph in
Figure 9-9. The nomograph is used by first connecting the h] and hp lines at
the appropriate value of h] and hy. The intersection with line A is noted. Next
connect the h3 and hy lines similarly, and note the B line intersection. Con-
necting the A and B line intersection gives the value of h , to be read at the
intersection with the h line. The different edge distances (hj, hp, h3, hy)
indicate different critical regions in the lug, hj being the most critical. The
distance h; is the smallest distance from the hole to the edge of the lug. If
the lug is a concentric lug with parallel sides, h"/D can be obtained directly
from Figure 9-10 for any value of e/D. In concentric lugs, h} = hgandh =h3.

The lug yield bearing stress (F,,, ) is
t

F =K,., F (9-29)

bryL try tyx

where K“,, the transverse yield load coefficient, is obtained from Figure 9-9,
The allowable lug transverse ultimate load (P,,, ) is
L
P”“L = F\,,,L Dt (if F,,, =1.304 Fiy,) (9~30a)

P

truL

>1.304 F,,,) (9-30b)

tux

= 1.304 F,,, Dt (if F

where F,,, and F,,, are obtained from Equations (9-28) and (9-29)).
. t L
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Figure 9-10. Effective Edge Distance

lug bearing area, and

If the lug is not of constant thickness, then A_,/A,, is substituted
for h,,/D on the horizontal scale of the graph in Figure 9-8, where A, is the

6
A, =

Ay, Az, A3, and Ay are the areas of the sections defined by hy, hy, h3, and
hg, respectively.

The values of K

tru

and K,,, corresponding to A,,/A,, are then obtained
from the graph in Figure 9-8 and the allowable bearing stresses are obtained
as before from Equations (9-28) and (9-29)).
9.7.2 Bushing Strength Under Transverse Load

The allowable bearing stress on the bushing is the same as that for
the bushing in an axially loaded lug and is given by Equation (9-8).
able bushing ultimate load (P,,,

The allow-
) is equal to P"a (Equation (9-9)).
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9.8 Double Shear Joints Under Transverse Load

The strength calculations needed for double shear joint strength analysis
are basically the same as those needed for axially loaded. Egquations (9-11)
through (9-19) can be used; however, the maximum lug bearing stresses at
ultimate and yield loads must not exceed those given by Equations (9-28)
and (9-29).

9.9 Single Shear Joints Under Transverse Load

The previous discussion on double shear joint applies to single shear
joint strength analysis except the equations to be used are now Equations (9-23)
through (9-27).

9.10 Lug and Bushing Strength Under Oblique Load

The analysis procedures used to check the strength of axially loaded
lugs and of transversely loaded lugs are combined to analyze obliquely
loaded lugs such as the one shown in Figure 9-11. These procedures apply
only if a does not exceed 90°.

|
1
| n
P

tr

Figure 9-11. Obliquely Loaded Lug

9.10.1 Lug Strength Under Oblique lLoad

The obliquely applied load (Py) is resolved into an axial component
(P =P_cosa) and a transverse component (P, = Pa sina). The allowable
ultimate value of Py is Py and its axial and transverse components satisfy
the following equation: t

1.6

EI G e

where P,JL is the strength of an axially loaded lug (Equation (9-7)) and P, is
the strength of a transversely loaded lug (Equations (9-30a), (9-30b)). T}Lle
allowable load curve defined by Equation (9-31) is plotted on the graph in

Figure 9-12,.
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Figure 9-12.. Allowable Load Curve

For any given value of a the allowable load (Pa ) for a lug can be
determined from the graph shown in Figure 9-12 by draw1ng a line from the
origin with a slope equal to (P, /Ph.u ). The intersection of this line with the
allowable load curve (point 1 oﬁ the graph) indicates the allowable values of
P/P, and P,,/P,,, , from which the axial and transverse components, P
and P,,, of the alldbwable load can be readily obtained.

9.10.2 Bushing Strength Under Oblique Load

: The bushing strength calculations are identical to those for axial
" loading (Equations (9-8) and (9-9)).

9.11 Double Shear Joints Under Oblique Load

The strength calculations are basically the same as those for an axially
loaded joint except that the maximum lug bearing stress at ultimate load must
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not exceed Py /Dt, where PO.L is defined by Equation (9-31). Use Equations

. L \‘;"
(9-11) through (9-19)). i
9.12 Single Shear Joints Under Oblique Load
The previous discussion on double shear joints applies to single shear
joint strength analysis except the equations to be used are now Equations
(9~23) through (9-27). ‘
9.13 Multiple Shear and Single Shear Connections
Lug-pin combinations having the geometry indicated in Figure 9-13
should be analyzed according to the following criteria: '
(1) The load carried by each lug should be determined by distributing
the total applied load P among the lugs as indicated in Figure 9-13,
b being obtained in Table 9-2. This distribution is based on the
assumption of plastic behavior (at ultimate load) of the lugs and
elastic bending of the pin, and gives approximately zero bending
deflection of the pin.
(2) The maximum shear load on the pinis given in Table 9-2.
4 ' (3) The maximum bending moment in the pin is given by the formulae \T“";
’ T, P,b
L:;/_,,._..,M = — where b is given in Table 9-2.
t/_L - (_///;-—"—
\] These lugs of Two -outer lugs of equal thickness
—_— equal thickness t' not less than Ct' (See Table 9-2)
\—/‘ 36 ’VLV// . Pﬂ
). - -
( Yo CP~—27274 | =
o ! N N ——>,
'1‘-' 5.0 P ~-— LA
A P S BN\—~>», (>
a ' Py 4
An — P,
ey . cP,~— .
: \] V\\%\N\ \\9 _ <
o ® 0
.:}q 9 Qw .v\\ These lugs of cqual
‘ < 57 ,(,7~ thickness t"
v v v
/i N Figure 9-13. Schematic of Multiple Shear Joint in Tension
NI
Y ;\w
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Total number
of lugs includ-| ~ | pin Shear b
ing both sides
t o+t
.35 .50 P 28—
5 A 1 2
t 4t
. 40 .53 P L3312
7 | 1 2
9 .43 | .sap, .37 —-——t';t"
1 44 | .54 P L9ty
2
N .50 .50 P, .50 i-;f-t——

9.14 Axially Loaded Lug Design

This section presents procedures for the optimized design of lugs,
bushings and pin in a symmetrical, double-shear joint, such as shown in
Figure 9-5, subjected to a static axial load (P). One design procedure applies
to the case where the pin is critical in shear, the other to the case where the
pin is critical in bending. A method is given to help determine which mode of
pin failure is more likely, so that the appropriate design procedure will be used.

Portions of the design procedures may be useful in obtaining efficient
designs for joints other than symmetrical, double-shear joints.

9.14.1 Axial Lug Design for Pin Failure

‘ An indication of whether the pin in an optimized joint design is more
likely to fail in shear or in bending can be obtained from the value of R (Equa-
tion (9~32)). If R is less than 1.0, the pin is likely to fail in shear and the
design procedure for joints with pins critical in shear should be used to get
an optimized design. If R is greater than 1.0, the pin is likely to be critical
in bending and the design procedures for joints with pins critical in bending
should be used.

mF <~ F ¥
R - k .“P .“P + 'uP ) (9-32)
v Fou, For a1 Fr a1

where F,, and Fiy, are the ultimate shear and ultimate tension stresses for

the pin mgterial, kb,, is the plastic bending coefficient for the pin, and F,,,,, )
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and Fy, ., are allowable bearing stresses in the female and male lugs. The

value of F,, any; can be approximated by the lowest of the following three values:

D . D_.
K Fuu ) 50 1304 K Py 5 1,304 F”Bl

where F‘mx1 and wa1 are the cross-grain tensile ultimate and tensile yield

stress for female lugs, F,, is the compressive yield stress of the bushings
8]

in the female lugs, and K is obtained from Figure 9-14. Assume D = D, if

a better estimate cannot be made. F,, al, is approximated in a similar manner.

1.1

1. ¢ /

v

"

/

0.
¢ 1 2 3 i
fp . _Pin Material Density
oL Lug Material Density

Figure 9-14. Allowable Bearing Coefficient

9.14.1.1 Axial Lug Design for Pin Failure in the Shearing Mode

Pin and Bushing Diameter

The minimum allowable diameter for a pin in double shear is

D, = 0.798 P (9-33)
F

Iup

The outside diameter of the bushing is D = D, + 2t,, where t, is the bushing
wall thickness.

Edge Distance Ratio (e/D)

The value of e/D that will minimize the combined lug and pin weight
is obtained from Figure (9-15)(a) for the case where lug bearing failure and
pin shear failure occur simultaneously. The lug is assumed not critical in
act tension, and the bushing is assumed not critical in bearing.
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Figure 9-15. Edge Distance Ratio
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The curves in Figure 9-15 apply specifically to concentric lugs ]
(a = e-D/2, and w = 2e), but they can be used for reasonably similar lugs. T

Allowable Loads

The allowable loads for the different failure modes (lug bearing
failure, lug net-tension failure, and bushing failure) are determined from
Equations (9-3), (9-6), and (9-9) in terms of the (unknown) lug thickness.
The lowest of these loads is critical.

Lug Thicknesses

The required male and female lug thicknesses are determined by
equating the applied load in each lug to the critical failure load for the lug.

Pin Bending

To prevent bending failure of the pin before lug or bushing failure
occurs in a uniformly loaded symmetrical double-shear joint, the required
pin diameter is

3 :
t
D, = \[———-—————2' 25 P <tl 2y 2g> (9-34)
ka Ftup 2
where k, is the plastic bending coefficient for the pin. If the value of D, \\T'

from Eq&ation (9-34) is greater than that from Equation (9-33), the joint
must be redesigned because the pin is critical in bending.

Reduced Edge Distance

If the allowable bushing load (Equation (9-9)) is less than the allow-
able lug load (Equation (9-3)), a reduced value of e, obtained by using the curve
shown in Figure 9-16 for optimum e/D, will give a lighter joint in which lug
bearing failure and bushing bearing failure will occur simultaneously. The
previously calculated pin diameter and lug thicknesses are unchanged.

Reduced Lug Width

If the lug net-tension strength (Equation (9-6)) exceeds the bearing
strength (Equation (9-3)), the net-section width can be reduced by the ratio of
the bearing strength to the net-tension strength.

9.14.1.2 Axial Lug Design for Pin Failure in the Bending Mode

Pin and Bushing Diameters (First Approximation)

‘ A first approximation to the optimum pin diameter is shown in
F.quation (9-35). ‘ T,
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4
F
D, = \11'273( £ >2< L (9-35)
kbp FtuP Ft 1111 Ft .“2

where F, Al is either Ftuxl or 1.304 F , whichever is smaller; and

t?xl

F, allsy is either Fiuxp o1 1. 304 Féyxz" whichever is smaller. This approxi-
mation becomes more accurate when there are no bushings and when there
is no gap between lugs. '

The first approximation to the outside diameter of the bushing is
D = D, + 2t,.

= Allowable bushing ultimate

e
Forg .

Z ' bearing stress
Ftux = Lug material cross-grain

ultimate tensile tress

/
7

2.0 /

C ¢.5 1.¢ 1.5 2.0 2.5
DP FbruB/D Ftux

Figure 9-16. Edge Distance Ratio
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Edge Distance Ratio (e/D)

The value of e/D that will minimize the combined lug and pin weight
is obtained from Figure (9-15)(b) for the case of symmetrical double-shear
joints in which lug bearing failure and pin bending failure occur simultaneously.
The lug is assumed not critical in tension and the bushing is assumed not
critical in bearing.

The curves apply specifically to concentric lugs (a = e - D/2, and
w = 2e), but can be used for reasonably similar lugs.

Allowable Loads (First Approximation)

The allowable loads for the different failure modes (lug bearing
failure, lug net-tension failure, and bushing failure) are determined from
Equations (9-3), (9-6), and (9-9), in terms of the (unknown) lug thickness.
The lowest of these loads is critical.

Lug Thicknesses (First Approximation)

The first approximation to the required male and female lug thick-
nesses are determined by equating the applied load in each lug to the lowest
allowable load for the lug.

Pin Diameter (Second Approximation)

The second approximation to the pin diameter is obtained by sub-
stituting the first approximation lug thicknesses into Equation (9-34).

Final Pin and Bushing Diameters and Lug Thicknesses

The final optimum pin diameter is very closely approximated by

Dy 4pe = 1/3 D, (Equation (9-35)) + 2/3 D, (Equation (9-34)) (9-36)
An average value, however, is generally sufficient. If the final optimum
value is not a standard pin diameter, choose the next larger standard pin

and bushing.

The final lug thicknesses corresponding to the standard pin and
bushing are then determined.

Pin Shear

The pin is checked for shear strength {Equation (9-33)).
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Reduced Edge Distance

If the bushing bearing strength (Equation (9-9)) is less than the lug
bearing strength (Equation (9-3)), a reduced value of e/D, obtained from the
curve in Figure 9-16, will give a lighter joint. The pin diameter and lug
thicknesses are unchanged.

Reduced Lug Width

If the lug net-tension strength (Equation (9-6)) exceeds the lug bear-
ing strength (Equation (9-3)), the net-section width can be reduced by the ratio
of the bearing strength to the net-tension strength.

9.14.1.3 Example of Axially LLoaded Lug Design

Using the same materials for the lug, bushing and pin as mentioned
in Section 9. 6, and assuming the same allowable static load of 37900 pounds,
a symmetrical double-shear joint will be designed to carry this load. A 0.10-
inch gap is again assumed between the lugs. The bushing wall thickness is
assumed to be 1/8 inch.

The lug will first be assumed to be concentric (a = e - D/2, and
w = 2e) but the final minimum weight design will not necessarily be concentric.

Pin Failure Mode (Equation (9-32))

The pin is first checked to determine whether it will be critical in
shear or bending, using Equation (9-32). Assuming D = D, as a first approxi-~
mation, determine F,, allg and F,, a1y using the graph in Figure 9-14 to
determine K.

KF 1.02 x 64000 = 65300 psi; 1.304 KF

tux tyxl

1"

1.304 x 1,02 x 40000 = 53100 psi;
1.304 Feyal = 1.304 x 60000 = 78200 psi; therefore, Fy, 4y = 53100 psi

KF = 1.02 x 77000 = 78500 psi; 1. 304 KF”*Z

tuxz

= 1.304 x 1.02 x 66000 = 87900 psi

1.304 F,,.Z = 1.304 x 60000 = 78200 psi; therefore F,, a1p = 78200 psi

Therefore,
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R = J1x 82000 x (82000 82099 13- 3.4 (Equation (9-32))
1.56 x 125000  ° 53100 78200

Therefore, the design procedure for pins critical in bending applies.

Pin and Bushing Diameters - First Approximation (Equation (9-35))

4§ 2 .
) .
\] 1.273 37900 ) % ( 125000 1_2_20_00__)= 0. 741 in.

1.56 . \125000 52160 77000

D=0.741 + 2 x0.125 = 0.991 in.

D, =

Edge Distance Ration (e/D)

The optimum value of e/D for both male and female lugs is 1.24
(Figure 9-15 (b)). Therefore a/D is 0. 74 and w/D is 2.48 for a concentric

lug (therefore, w = 2.46 in.).

Allowable Loads - Female Lugs and Bushings (First Approximation)

(a) Lug Bearing Strength (Equations (9-2a) and (9-36))

P = 1.304 x 1.46 x 0. 74 x 40000 x 0. 991 t, = 55900 tl lbs.

1
where K = 1. 46 is obtained from Figure 9-2 for e/D - 1.24

bruL

(b) Lug Net-Section Tension Strength (Equations (9-5) and (9-6b))

K,. = 0.74 (obtained by interpolation from the graphs shown in

Figure 9-9-4) for

F F
D . 9. 403 Y - 0.625: —_ = 0.051
w tu eu
P,, = 1.304x 40000 x (2.46 - 0.991) t) = 56600 ¢t lbs.
1 |

(c) Bushing Bearing Strength (Equation (9-9))

P“a = 1.304 x 60000 x 0. 741 t, = 58000 t; lbs.
1
Allowable Loads - Male Lug and Bushing (First Approximation)

(a) Lug Bearing Strength (Equations (9-1a) and (9-3a))
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PmLZ = 1.46 x 0.74 x 77000 x 0.991 t, = 82500 t, lbs.

(b) Lug Net-Section Tension Strength (Equations (9-4) and (9-6a))

an = 0. 88 (obtained by interpolation from graphs shown in
Figure 9-4) for
Ft}' Fiu

= 0.403; = 0. 857,
2 tu u

D

= 0.125

P,, =0.88x 77000 x (2.46 - 0.991) t, = 99500 t, lbs.
L2 2 2

(c) Bushing Bearing Strength (Equation (9-9))

P = 1.304 x 60000 x 0. 741 t, = 58000 t., lbs.

Lug Thicknesses (First Approximation)

37900 37900

=0.3391in.; tp = 28000 = 0.654 in.

t] =
2 x 55900

Pin Diameter - Second Approximation (Equation (9-34))

D, = i’ 2.55x 37900 (.339 + 0.327 + 0.200) = 0. 755 in.
1.56 x 125000

D=0.7555+2 % 0.125 = 1.0005 in.

Final Pin and Bushing Diametef (Equation (9-36))

Dyope = —9‘—;—‘31— + 9'—;5’—5 - 0.748 in. (Use 0. 750 inch pin)

D=0.750+2 x0.125 = 1.000 in.
Pin Shear (Equation (9-33))
D, = 0.798 \l 37900 . 9. 541 in.
82000
Therefore, the pinis not critical in shear.

Final Lug Thicknesses

t; = 0.339 x 0.991 - 9.336 in.
1.000
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t, = 0.654 x 0.741 _ 0. 646 in.
, 0. 750

Reduced Edge Distance

The lug tension strength (Equation (9-3)) exceeds the bushing
strength (Equation (9-9)) for the male lug. Therefore, a reduced
e/D can be obtained for the male lug shown in Figure 9-16.

F
De “Prv 0,750 _ 1.304 x 60000

D F,, = 1.000 % 77000

= 0.762

Therefore, ¢/D = 0.97 (male lug)

Reduced Lug Width

The lug net-section tension strength (Equation (9-6)) exceeds the
bearing strength (Equation (9-3)) for both the male and female lugs.
Therefore, the widths can be reduced as follows:

s 55900 tl
1.00 + (2.48 - 1.00) { ——  * >= 2.46 in.
' 56600 t;

€
i

82500 ts
99500 t,

1t

w, = 1.00 + (2.48 - 1.00)( >=2.23 in.

Final Dimensions

D, =0.750in.; D= 1,000 in.
t; = 0.336 in.; e; = 1.24in.; wy = 2.46 in.
ty = 0.646 in.; e; =0.97in.; w, =2.23in,

Since w, is larger than 2e,, the final male lug is not concentric.

9.15 Analysis of Lugs with Less Than 5 PCT Elongation

The procedures given through Section 9-14 for determining the static
strength of lugs apply to lugs made from materials which have ultimate
elongations, C.u, of at least 5% in all directions in the plane of the lug. This
section describes procedures for calculating reductions in strength for lugs
made from materials which do not meet the elongation requirement. In
addition to using these procedures, special consideration must be given to
possible further loss in strength resulting from material defects when the
short transverse gain direction of the lug material is in the plane of the lug.
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The analysis procedures for lugs made from materials without defects
but with less than 5% elongation are as follows: ‘

9.15.1 Bearing Strength of Axially Loaded Lugs with LLess Than 5 PCT
Elongation
(1) Determine F,,/F,, and e,/eu, using values of F,,, F,,, €,, and

€, that correspond to the minimum value of €, in the plane of
the lug.

(2) Determine the value of B, the ductility factor, from the graph
shown in Figure 9-17.

(3) Determine a second value of B (denoted by B 05) for the same
values of F,,, F,,, and €, as before, but with €, = 0.05.

(4) Multiply the bearing stress and bearing load allowables given
by Equations (9-1la) through (9-3b) by B/B' 05 to obtain the
corrected allowables.

\

o~
\

\“Q
\
\ \

' N
“f~:f\w::\\\\ ~

/1))
/7
/3

o

/

Figure 9-17. Ductility Factor

9.15.2 Net-Section Strength of Axially Loaded Lugs with Less Than
5 PCT Elongation

The procedure for determining net-section allowables is the same
for all values of €,. The graphs in Figure 9-4 are used to obtain a value of
K, which is susbstituted in Equations (9-4) and (9-5). 'If the grain direction of
the material is known, the values of F,,, F,,, and €, used in entering the graphs
should correspond to the grain direction parallel to the load. Otherwise, use
values corresponding to the minimum value of €, in the plane of the lug.
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9.15.3 Strength of Lug Tangs in Axially Loaded Lugs with Less Than \7
5 PCT Elongation

The plastic bending coefficient for a rectangular cross section can
be approximated by k, = 1.5B, where B is obtained from Figure 9-17, in
which y and u are the yield and ultimate strains of the lug tang material in
the direction of loading. The maximum allowable value of kbL for a rec-
tangle is 1. 4.

9.15.4 Lug-Bushing Strength in Axially-Loaded Single-Shear Joint
with I.ess Than 5 PCT Elongation

The values of k,, and k, for rectangular cross sections are
approximated by 1. 5B, where B is'determined from the graph as described
in Figure 9-17. The maximum allowable values of k‘“‘L and k, are 1.4,

9.15.5 Bearing Strength of Transversely Loaded Lugs with I.ess Than 5%
Elongation (Equations (9-28) through (9-30b) in Section 9. 7. 1

The same procedure as that for the bearing strength of axially
loaded lugs is used.

(1) Determine B and B_(jg5 as described for axially loaded lugs, N
where B corresponds to the minimum value of €, in the \r
plane of the lug.

(2) Multiply the bearing stress and bearing load allowables
given by Equations (9-28) through (9-30b) by B/Bg_ 5 to

obtain the corrected allowables.

9.16 Stresses Due to Press Fit Bushings

Pressure between a lug and bushing assembly having negative clearance
can be determined from consideration of the radial displacements. After
assembly, the increase in inner radius of the ring (lug) plus the decrease in
outer radius of the bushing equals the difference between the radii of the bush-
ing and ring before assembly:

0= Uring - Ybushing (9-36)

where

6 = Difference between outer radius of bushing and inner radius
of the ring.

u = Radial displacement, positive away from the axis of ring or bushing.
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.Radial displacement at the inner surface of a ring subjected to internal
pressure p is

D

‘ _ » [ CZ + DZ ]
s — + M. -(9-37)
Ering oz DZ ring

Radial displacement at the outer surface of a bushing subjected to
external pressure p is
BP

2 2
u=- B A o eh (9-38)
E 2 2 usn.
bush. B®-A
where

A = Inner radius of bushing D = Inner radius of ring (lug)
B = Quter radius of bushing E = Modulus of elasticity
C = Outer radius of ring (lug) M = Poisson's ratio

Substitute Equations (9-37) and (9~38) into Equation (9-36) and solve for p;

6

p:
D c? 4 p?

Fring = C2 - D2

. ) , _B ( BZ 4 A2 . )

i " Mb .

Ting Epush. B2 . A% s
Maximum radial and tangential stresses for a ring subjected to internal

pressure occur at the inner surface of the ring (lug).

' 2 2

Fr:_p thp[c + D }
2 2
cC”-D

Positive sign indicates tension. The maximum shear stress at this
point is
Ft = Fr
FS = -
The maximum radial stress for a bushing subjected to external pressure
occurs at the outer surface of the bushing is

The maximum tangential stress for a bushing subjected to external pres-
sure occurs at the inner surface of the bushing is
2
2

P8

F, = -
B2 = A2
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The allowable press fit stress may be based on:

(1) Stress Corrosion. The maximum allowable press fit stress in
magnesium alloys should not exceed 8000 psi. For all aluminum
alloys the maximum press fit stress should not exceed 0. 50 F,,.

(2) Static Fatigue. Static fatigue is the brittle fracture of metals
under sustained loading, and in steel may result from several
different phenomena, the most familiar of which is hydrogen
embrittlement. Steel parts heat treated above 200 ksi, which
by nature of their function or other considerations are exposed
to hydrogen embrittlement, should be designed to an allowable
press fit stress of 25% F,,.

(3) Ultimate Strength. Ultimate strength cannot be exceeded, but is
not usually critical in a press fit application.

(4) Fatigue Life. The hoop tension stresses resulting from the press
fit of a bushing in a lug will reduce the stress range for oscillating
loads, thereby improving fatigue life.

The presence of hard brittle coatings in holes that contain a press fit
bushing or bearing can cause premature failure by cracking of the coating
or by high press fit stresses caused by build-up of coating. Therefore,
Hardcoat or HAE coatings should not be used in holes that will subsequently
contain a press fit bushing or bearing.

Figures 9-18 and 9-19 permit determining the tangential stress, F,,
for bushings pressed into aluminum rings. Figure 9-18 presents data for
general steel bushings, and Figure 9-19 presents data for the NAS 75 class
bushings. Figure 9-20 gives limits for maximum interference fits for steel
bushings in magnesium alloy rings.

9.17 Lug Fatigue Analysis

A method for determining the fatigue strength of 2024-T3 and 7075-T6
aluminum alloy lugs under axial loading is presented.

Figures 9-21 and 9-22 show the lug and the range of lug geometries
covered by the fatigue strength prediction method. Fatigue lives for lugs
having dimensional ratios falling outside the region shown should be corrobo-
rated by tests,

I this method the important fatigue parameters are k., kZ* and kj
(see Figure 9-23).
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Figure 9-18. Tangential Stresses for Pressed Steel Bushings

in Aluminum Rings

9 - 41



Fo/.001" Interference-psi.

30000

~3

FT—Tangential Stress at Inner |
Radius of Aluminum Ring
Int:erferem:e---BBuﬁhing__BRing _

Aluminan,

20000
\ T
\ \\ Y,\‘
& ‘—L—
T~
N\ \\ ~6 \4'}‘ —
10000 E\\\? \&
N e T~
\ \_\\ ~9 \\‘m\‘\
\\ =10 J]
\\\ ~1] \§§
\ \ “IZ*N — e —
\%\E e N
: 6‘-—&_\=¥ —
~213 \‘hk
a
‘' os ’

Figure 9-19.

9 - 42

Tangential Stresses for Pressed NAS 75 Bushings

\w}/



Bushing O. D. «Diam. of Hole 11 Ring x 103
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O.D. of the bushing is the after-plating diameter of the bushing.

The curves are based upon a maximum allowable interference tangential
stress of 8000 psi.

Figure 9-20. Maximum Interference Fits of Steel Bushings in
Magnesium Alloy Rings
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Figure 9-22. Region of Lug Geometries Covered by Fatigue
Prediction Method
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k) is plotted vs a/C
k; is plotted vs D/C
k3 is plotted vs D
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Figure 9-23. Parameters To Be Used in Figure 9-24 for Lug Fatigue Analysis
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To find the allowable life knowing the applied stresses and lug dimen- Ny
sions, or to find the allowable stresses knowing the life, R value (R = foin/f ;
and, lug dimensions, use the following procedure:

?IX)

(1) Enter Figure 9-22 to check that the lug dimensional ratios fall
within the region covered by the method. Enter Figure 9-23
and read kj, kp, and k3; calculate the product kjkyks.

(2) Calculate the allowable net-tension static stress for the lug, F
according to the method described in Section 9. 3. 2.

nu 4

(3) Determine the value 0.4 Fry - This is the alternating stress

corresponding to a maximum stress value of 0.8 F"“L when
fu.=0. 0.8 F,, was chosen as an average yield stress value
" L

for 2024 and 7075 aluminum alloy lugs.

(4) Using the value 0,4 F,, as an alternating stress, draw a straight
line between the intersection of this value and the appropriate |
kik2k3 curve on Figures 9-24 or 9-25, and the point 0. 5 F"”L at 1
cycle. This extends the kjkpks curve to cover the entire life range
to static failure.

(5) Enter Figure 9-24 or 9-25 (lug fatigue curves for the casc where N
R = 0) with kjkpk3. For values of life, N = 103, 3 x 103, 104, A
etc., or any other convenient values, determine the corresponding
values of f,, the stress amplitude causing fatigue failure when R=0.

(6) Plot the values of f, found in Step 5 along the R = 0 line in a Goodman
diagram such as shown in Figure 9-26 (f, = f, when R = 0). The
Goodman diagram shown in Figure 9-27 applies to a particular
7075-T6 lug for which k1kpk3 = 1. 32 (see example problem 1},
but is typical of all such diagrams.

(7) Plot the allowable net-tension static stress found in Step 2 as
f, at the point (f,, 0) of the Goodman diagram (f, = f_,, when {, =0).
For the case considered in Figure 9-26, this point is plotted as
(f, = 70,000 psi, f, = 0).

(8) Connect the point plotted in Step 7 with each of the points plotted
in Step 6 by straight lines. These are the constant life lines for
the particular lug being analyzed. The (toodman diagram is now
complete and may be used to determine a life for any given applied
stresses, or to determine allowable stresses knowing the life and
R value.
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9.18 Example Problem of Lug Fatigue Analysis

Given a concentric 7075-T6 aluminum lug as shown in Figure 9-21, with
the following dimensions: a = 0.344 in, ¢ = 0.3444 in, and D = 0.437 in. If the
lug is subjected to a cycle axial load such that the maximum net-section stress
is 27,000 psi and the minimum net section stress is 18,470 psi, find the fatigue

life.

From the lug dimensions,

(2)

a/c=1.0 <¢/D=0.787 (D/c=1.27)

Figure 9-22 indicates that the lug may be analyzed using this method.
From Figure 9-23,

ky =1.0; kp = 1.33; k3 = 0.99; kjkpksz = 1.32

Calculate the allowable net-section tensile ultimate stress, F,_ ,
L

for Equation (9-4) in Section 9. 3.2. For the givenlug, F”“L =

70,000 psi.

0.4 F

ﬂUL

= 0.4 x 70,000 = 28, 000 psi.

(4) Draw a light pencil line on Figure 9-24 from the point (f, = 28,000
psi on kjkpkz = 1.32) to the point (f, = 35,000, N =1 cycle) (This
is illustrated, for clarity, on Figure 9-27).
(5) Enter Figure 9-24 and read values of f, for various numbers of
life cycles, using the line kjkpky = 1.32. These numbers are as
follows:
N l 102 ' 103 l 3% 102 ‘ 104 | 3x104' 10° 1 1061 107
£, l 30KSI i 24.5 18.8 i 13.5 ’ 8. 88 l 5.70 2.34] 1.30
(6) Plot the values of f, along the R = 0 line of the Goodman diagram.

(8)

(Refer to Figure 9-26.)

Plot F"L = 70,000 psi, as f, at the point (f,, 0) of the Goodman diagram.
(Refer to Figure 9-26.)

Connect the points plotted in Step 6 with the point plotted in Step 7
by straight lines. The Goodman diagram is now complete.

9 - 51



(9) Enter the Goodman diagram with values of f, = 27,700 - 18,470 . ““r
2 ;

27,700 + 18,470 _ 23, 085 psi, and read the

2

fatigue life, N = 8 x 104 cycles, by interpolation (test results show
N = 8.6 x 104 cycles).

4,615 psi and {, =

If the known quantities are life and R value, e.g., N = 10% cycles and
R = 0, the allowable stresses can be obtained by using the . same Goodman
diagram. Enter the completed Goodman diagram at R = 0 and N = 104 cycles
and read the amplitude and mean stresses (in this case f, = £, = 13,500 psi).

Only if the lug dimensions are changed, must a new Goodman diagram i
be drawn.

Qe
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