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in which ¢, is the critical value of the uniform pressure given by Eq.
(7-12). It is seen that at points A, B, C, and D, w and d*w/d6? are zero.
Hence the bending moments at these points are zero, as was assumed
above. The maximum moment occurs at § = 0 and at & = x, where

w19 ; w
Mm.x =¢qR = R o 7-19
q-<w‘+q.r—q> T =0/, ;( )

It is seen from Eq. (7-19) that for small values of the ratio ¢/q., the change
in the ellipticity of the tube due to pressure ¢ can be neglected and the

maximum bending moment obtained by multiplying the compressive -

force gR by the initial deflection w,- When the ratio ¢/g,. is not small,
the change in the initial ellipticity of the tube should be considered and
Eq. (7-19) must be used in calculating M,,,. ‘

The maximum compressive stress is now obtained by adding to the
stress produced by the compressive force gR the maximum compressive
stress due to bending moment M,,,. Thus we find that
| _aB &R _w
“Et W I- o ©
Assuming that this equation can be used with sufficient accuracy up to
the yield-point stress of the material, we obtain the following equation:

Tmax

— qR Bw 1
ity Sl o iy -5 gy @)

from which the value of the uniform pressure gyr, at which yielding in the
extreme fibers begins, can be calculated. When the notations BR/h = m
and wi/R = n are used, the equation for calculating‘ gxp beqomes

ayp

o, g =0 )

Pxe — ['%‘3 + @+ 6mn)qor] g +
It should be noted that the pressure gye determined in this manner-is
smaller than the pressure at which the collapsing of the tube occurs, and
it becomes equal to the latter only in the case of a perfectly round tube.
Hence, by using the value of gvr calculated from Eq. (e) as the ultimate
value of pressure, we are always on the safe side.’
In Fig. 7-9 several curves are shown giving the values of the average
tangential compressive stress gveR/h at which yielding begins, calculated
from Eq. (¢) by taking » = 0.1, 0.05, 0.025, 0.01, and oy» = 40,000 psi.

t Experiments with long tubes submitted to uniform external pressure were made by
R. T. Stewart, Trans. ASME, vol. 27, 1906. See also H. A. Thomas, Bull. Am. Petro-
leum Inst., vol. 5, p. 79, 1924, and B. V. Bulgakov, Nauch.-Tehn. Upravl. V.S.N.H.,
Moscow, no. 343, 1930. '
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These curves can be used for calculating safe pressures on the tubes if
the ellipticity of the tubes is known and if a suiy{ble‘ factor of safety is
chosen. D
7.6. Buckling of a Uniformly Compressed Circular Arch. If a curved
b.ar with hinged ends and with its center line in the form of an are of a
f:ucle is submitted to the action of a uniformly distributed pressure g
it will buckle as shown by the dotted line in Fig. 7-11. The eritical valué
of the pressure ¢ at which this buckling occurs can be found from the
- differential equation of the deflec-
tion eurve of the buckled bar.
Considering, as before, the initial

circular are as a funicular curve for
0 the uniform pressure, Eq. (7-1)
becomes '
dw R2Sw
Fie. 7-11 e Y=g @

where 8 = ¢R is the axial compressive force and w is the radial displace-
ment toward the center. Using the previous notation

- qR®
W=t ®
. d2w
we obt: g =
¢ obtain ap THw=0

The general solution of this equation is
w = Asin k6 4+ B cos k6

To satisf).v .the conditions at the left end (§ = 0), we must take B = 0,
The conditions at the right end (6 = 2a) will be satisfied if we take

sin 20k = 0 (©
'I"h‘e-smallest root of this equation Satisfying the condition of inexten-
sibility of the center line of the bar [see Eq. (j), Art. 7.2] is

k=X
[+

and, using notation (b), we obtain!

_ EI (»* .
O = T\ 1 (7-20)

! This solution was obtained by E. Hurlbrink, Schiffbau, vol. 9, p. 517, 1908; see also

Timoshenko, Buckling of a Uniformly Compressed Ci
Inst., Kiev, 1910. P Circular Arch, Bull. Polytech.
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By taking ¢ = /2, we find that Eq. (7-20) gives the same value of g, as
for a complete ring [Eq. (7-13)]. This result should be expected, since
at this value of « the bar represented in Fig. 7-11 is in exactly the same
condition as each half of a buckled ring (Fig. 7-8) between the two
opposite inflection points.

When « approaches the value =, i.e., when the arc approaches the com-
plete ring, the value of g, from Eq. (7-20), approaches zero. = This can
be explained if we observe that for & = = both hinges coincide and that
the ring will be free to rotate as a rigid body about this common hinge.

When « is small in comparison with , unity can be neglected in com-
parison with #2/a? in the parentheses of formula (7-20). Then the critical
compressive force g..R becomes equal to the critical load for a prismatic
bar with hinged ends and length Rea.

In the derivation of formula (7-20) it was assumed that ‘the buckled
arch had an inflection point at the middle (Fig. 7-11). From the general
discussion of inextensional deflection of an are (Art. 7.2), we know that
it is possible to have also inextensional deflection curves symmetrical
with respect to the middle of the bar. The simplest of these curves has
two inflection points. By taking such a curve as a basis for caleulating
the critical load, we obtain a critical value larger than that given by Eq.
(7-20).! Hence, this lafter equation should be used for calculating g..

If, instead of a circular arch, we have a flat parabolic arch and a vertical
load uniformly distributed along the span AB (Fig. 7-11), the variation
of the compressive force along the length of the arch can be neglected
and its critical value can be calculated by taking half the length of the
arch and applying Euler’s formula as for a bar with hinged ends.?

In the derivation of Eq. (7-20) it was assumed that the curved bar,
before buckling, had its center line in the form of an arc of a circle. This
condition is fulfilled only if uniform unit compression ¢.R/AE of the
center line of the bar is produced before fastening the ends to the sup-
ports; otherwise some bending under the action of uniform pressure will
start at the very beginning of loading. This bending is very small as
Jong as the compression ¢ is small ‘in comparison with g,, and the con-

1 Calculations of this kind were made by E. Chwalla, Sitzber. Akad. Wiss. Wien.,
Abt. IIa, vol. 136, p. 645, 1927.

2 The results of experiments are in satisfactory agreement with such calculations;
see R. Mayer, Der Eisenbau, vol. 4, p. 361, 1913, and “Die ‘Knickfestigkeit,” Berlin,
1921. Here the case of an arch with three hinges is considered and the effect on the
critical load of the compression of the center line of the arch and of the lowering of
the middle hinge is discussed. Tests on uniformly loaded arches with three hinges
were made by E. Gaber, Bautechnik, 1934, p. 646. The results of these tests are in
agreement with Eq. (7-20). A discussion of buckling of arches with three hinges
under the action of nonsymmetrical loading is given by E. Chwalla, Der Stahibau,
no. 16, 1935.
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ditions are analogous to the bending that i
. ; oceurs in columns be
various kinds of imperfections. N omse of

Substituting E/(1 — »*) instead of E and h3/12 ins ;
12 instead
(7-20), we obtain the equation /12 instead of I in Eq

Eh? L
= Bi- AR (E - 1) @20

which can be used in calculating the critical load for a cylindrical shell

hinged along the edges 6 = 0 and § = 2« (Fi i
. = = ig. 7-11
the action of uniform pressure. (Fie ) and submitted to

If the ends of a uniformly com-
pressed arch are built in! (Fig. 7-12),
the shape of buckling will be as shown
by the dotted line. At the middle .
point C' there will act after buckling
not only the horizontal compressive
force S but also a vertical shearing
force Q. Considering again the ini-
tial circular arc as the funicular curve ' Fie. 7-12
for uniform pressure and designating with w the radial displacement

toward the center, the bending mOment at any Cross Secb. y
’ 1011, deﬁned b

M = Sw—~ QRsin 0

and the differential equation (7-1) becomes

R? :
W+w= -E,T(Sw—QRsinﬂ)

or, using notation (b), |

d2w __ QR%sing
d T Fv = 7
The general solution of this equation is
w = Asin ko + B cos ko 4 28D 0
cos k0 + ® = 1)EI (d)
The conditions for determining the constants 4 and B and the force Q are
dw .
dw

It is assumed again that the arch is uniformly compreséed before fixing the ends.
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Conditions () are satisfied by taking B = 0 in solution (d). From con-
ditions (f) we then obtain ~

Asinka+Q(TI,f§%%7=o ()
g

R3cos &

Akcoska-i—Q(k,_ 1EI=0

The equation for calculating the critical value of uniform pressure ¢ is
obtained by equating to zero the determinant of Eqgs. (g), which gives

sin ko cos @ — k sin a cos ka = 0
or k tan a cot ka = 1 )

The value of k and the critical value of the pressure ¢ depend on the
magnitude of the angle . Several solutions of Eq. (h) for various values

TapLE 7-1
« 30° 60° 90° 1200 | 150° 180°
E | 8.621 | 4.375 3 | 2.364 | 2.066 2

of o are given in Table 7-1.' When k is substituted in Eq (b), the critical

value of the uniform pressure is found to be :
EI
g =7z B = 1) (7-22)

This value of ¢, is always greater than that obtained from Eq. (7-20).

The problem of buckling of a uniformly compressed circular arch of
constant cross section has been solved also for symmetrical three-hinged
and one-hinged arches.? One of the forms of buckling in the case of three
hinges is the same as that in the case of a two-hinged arch (Fig. 7-11).
The presence of the hinge at the crown of the arch does.not change the
critical load for this case. The other possible form of buckling is sym-~
metrical and is connected with a lowering of the central hinge as shown in
Fig. 7-13. For smaller values of A/l this second form of buckling requires
the smaller load and hence gives the limiting value of g..

In all four cases under consideration the critical pressure ¢, can be
represented in the form : ' '

; EI
Qe = "1 g3 (7-23)
1 This solution is due to E. L. Nicolai, Bull. Polytech. Inst., St. Petersburg, vol. 27,

1918; see also Z. angew. Math. u. Mech., vol. 3, p. 227, 1923.
1 8ee A. N. Dinnik, Vestnik Inzhenerov, no. 6, 1934; see also his book “Buckling and

Torsion,” pp. 160-163, Moscow, 1955.
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Values of the factor v; are given in Table 7-2 for various values of the
centrgi;nﬁ;a f2az. The values for arches with no hinges and two hinges
are obtained from Egs. (7-22) and (7-20), res; ctively, T ini

values were calculated by Dinnik.! )-’ ; v Y- The remaiing

Tux(.)m 7-2. VALUES oF THE FAcTOR v; FoR UNIFORMLY COMPRESSED
IRCULAR ARCHES OF ConsTaANT CROSS SectionN [Eq. (7-23)]

2a No hi ‘ . - ¥
(deg) o hinges | One hinge | Two hinges | Three hinges

30 2904 162 143 108

60 73.3 40.2 '35 27.6
90 32 4 17.4 15 12.0
120 18.1 102 | 8 6.75
150 11.5 6.56 476 | 432
180 8.0 4.61 '

3.00 3.00

Fox_' practical use it is convenient to represent the critical pressure as a
function of the span ! and the rise & of the arch (see Fig, 7-13). Then the

- formula for g, takes the form '

G =g (7-24)
in which v, depends on the ratio &/l and
the number of hinges. Numerical values
of y; are given in Table 7-3. It is seen
from Tables 7-2 and 7-3 that the critical
load decreases with an increase in the num- ‘ Fig. 7-13
be1: of hinges. The only exception is when 2a = 180° (or h/l = 0.5), in .
v?hlch case the critical load for two- and three-hinged arches is the ‘sar’ne '
since both arches have the same critical buckling form (see Fig. 7-11). ’

TaBLE 7-3. VALUES oF THE FaACTOR y; FOR Uﬁxromm CoMPRESSED
CIRCULAR ARCHES OF ConstanT Cross Section [Eq. (7-24)]

7 No hinges | One hinge | Two hinges | Three hinges

0.1 | 589 33 28.4, | 22,2
0.2 90.4 50 39.3 33.5
0.3 93.4 52 40.9 34.9
0.4 80.7 46 32.8 30.2
0.5 64.0 37 24.0 ‘24,0

. In the.precedin,g discussion of buckling of circular arches it was assumed
thla;: b?;nng buckling, the external forces rem@ix_@edr normal to the buckled
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axis of the arch, as in the case of hydrostatic pressure. Sometimes we
encounter the case in which the forces retain their initial directions during
buckling. An investigation of this problem has shown that the slight
changes in the directions of the forces during buckling have only a small
influence on the values of the critical pressure.’

The problem of elastic stability of the arch shown in Fig. 7-11 can be solved also in
certain cases for a varying cross section. Assuming, for instance, that the cross-sec-
tional moment of inertia for the left side of the symmetrical arch varies along the
length of the arc following the law

=1 [1 - (1 - —f—:) g] (7-25)

in which I, and I, are the moments of inertia for ¢ = 0 and @ = a, respectively, we
obtain for the critical pressure

EL, (7-26)

Qor = 73 3R
where vs is & numerical factor depending on the angle « and on the ratio I,/I.. Sev-
eral values of this factor? are given in Table 7-4. The first line in the table {a@ = 0)
gives the values of the coefficient s for the case of a straight bar of variable cross sec-

tion when buckled with an inflection point at the middle. The last column in the
table gives vs for an arch of constant cross section [see Eq. (7-20)L

TaBLE 7-4. VALUES OF THE FACTOR v; FOR UNIFORMLY COMPRESSED
Crecorar Two-HINGED ARCHES oF VARYING Cross SECTION
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distributed along the span (Fig. 7-14), there will be axial compression but no bending
f’f the arch, since a parabola is the funicular curve for a uniform load. By a gradual
increase of the intensity of the load we can reach the condition in which the parabolic
form of equilibrium becomes unstable and the arch buckles in a form similar to that
fqr a circular arch. Considering symmetrical arches of uniform cross section with no
!1mges or with one, two, and three hinges, we can express the critical values of the
intensity of the load by the formula

EI ?
ch='74—l,— (7-27) i s e e e

The numerical factor v, depends on the ratio

h/l, where h is the rise of the arch and [ is the ; 4 }
span (Fig. 7-14). Values of the factor! v, are
given in Table 7-5. It is seen that for flat
parabolic arches (h/L < 0.2) the values of 74 iz 42—

differ only slightly from those given in Table Fia. 7-14

7-3 for circular arches.

The numerical factor v, is expressed graphically as a function of &/l in Fig. 7-15.
The portions of the curves indicated by dotted lines correspond to symmetrical forms
of buckling. In these cases unsymmetrical buckling will occur, and in obtaining
values of 4, we have to use the curves for arches without a central hinge. For exam-
ple, in the case of a three-hinged arch with 2/l > 0.3, we take for v, the value from the
curve for a two-hinged arch. Experiments made with models of arches are in satis-
factory agreement with the theoretical values given above.?

&
B

TaBLE 7-5. VALUES OF THE FACTOR 9, FOR PARABOLIC ARCHES OF
Constant Cross SecTioNn witH UnirorM Loap [Eq. (7-27)]

Eq. (7-26)]
L/I,
0.1 0.2 0.4 0.6 0.8 1
2a
(deg)
0 4.67 5.41 6.68 7.80 8.85 x2
60 4.54 5.20 6.48 7.58 8.62 9.60
120 4.16 4.82 5.94 6.94 7.89 8.77
180 3.53 4.08 5.02 5.86 6.66 7.40

h

i No hinges | One hinge | Two hinges | Three hinges
0.1 60.7 33.8 28.5 . 22.5
0.2 101 59 45.4 39.6
0.3 115 46.-5 46.5
0.4 111 96 43.9 43.9
0.5 97.4 38.4 38.4
0.6 83.8 80 30.5 30.5 -
0.8 59.1 59.1 20.0 20.0
1.0 43.7 43.7 141 14.1

7.7. Arches of Other Forms. In the preceding article we considered uniformly
compressed arches with a circular axis. There are several other forms of archés for
which the buckling problem is solved and some of the results are given in the following.?

Parabolic Arch. If a parabolic arch is submitted to the action of a load ¢ uniformly

1 Ibid., pp. 163-165.

2 See A. N. Dinnik, Vestnik Inzhenerov, nos. 8 and 12, 1933; see also 1. J. Steurman,
Bull. Polytech. Inst., Kiev, 1929, and *Stability of Arches,” Kiev, 1929. .
_ 38ee K. Federhofer, Sitzber. Akad. Wiss. Wien, 1934, and Bautechnik, no. 41, 1936,
A. N. Dinnik, Vestnik Inzhénerov, nos. 1 and 12, 1937, and “Buckling and Torsion,”
PP. 171-193, Moscow, 1956.

In the case of a parabolic arch of rectangular cross section having constant width
and depth proportional to sec ¢, where ¢ is the angle between the horizontal and the
tange.nt to the arch axis at any point A (Fig. 7-14), we can use again formula (7-27).
In this case, I represents the moment of inertia of the cross section at the crown of the

arch (¢ = 0). The values of the factor v, are given in Table 7-6.3

1 These values were calculated by Dinnik, op. cit.
2 8ee E. Gaber, Bautechnik, 1934, pp. 646-656; C. F. Kollbrunner, Schweiz. Bauzty.,

Springer-Verlag, Berlin, 1955..
3 8ee A. N. Dinnik, ‘“Buckling and Torsion,” Moscow, 1955.

. vol. 120, 1942, p. 113; and Kollbrunner and M. Meister, “Knicken,” pp. 191-200,
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Catenary Arch. Let us assume now that the load is uniformly distributed along the
axis of the arch, as in the case of the dead load of an arch of uniform cross section.
Then the catenary is the funicular curve for the load and no bending will be produced
in an arch of that shape.! Buckling occurs when the intensity of the load reaches the
critical value, which can be expressed again by formula (7-27). Table 7-7 gives
values? of the factor v,. Comparing Tables 7-7 and 7-5, we see that for flat curves
there is only a small difference in v, for the two forms of arches.

TABLE 7-6. VALUES OF THE FACTOR vy, FOR PARABOLIC ARCHES OF
Varving Cross SecrioN witTH UNiForM Loap [Eq. (7-27)] "

’—; No hinges | One hinge | Two hinges | Three hinges
0.1 655 36.5 30.7 24
0.2 134 75.8 59.8 51.2
0.3 204 | ..... 81.1 81.1
0.4 277 187 101 101
0.6 444 332 142 142
0.8 587 497 170 170
1.0 700 697 193 193

1 As in our previous discussions, it is assumed that the contraction of the arch axis
takes place before the end constraints are applied. '
2 See tbid.
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TApLE 7-7. VALUES OF THE FACTOR v, FOR CAquiifhncnms or CONSTANT
Cross SectioN wiTH LoaDp. UNrrorMLY DISTRIBUTED ALONG THE
ArcH Axis [Eq. (7-27)]

% No hinges | Two hinges
0.1 - 594 28:4
0.2 96.4 43.2
0.3 112.0 | 41.9
0.4 92.3 - 35.4
0.5 80.7 .| 27.4
1.0 27.8 - 7.06

Tn the design of arches we have to consider loads of séveral types, some of which
produce only compression of the-arch ‘while others produce bending also. - As longas
the compressive foree is.small in comparison with:its critiesl value, we.can neglect its
influence on bending and disregard the deformation of the arch.in determining stresses.
However, in the: case of -slender arches of long span, the axial compression. may
approach the critical value.  Then the influence of axial force on bending becomes
important and the deformation of the arch must be considered in carrying out a
stress analysis. S : o : :

7.8. Buckling of Very Flat Curved Bars.! In the previous articles only
extensionless forms of buckling of curved bars were considered. - In the
case of very flat curved bars, buckling in which axial strain is considered
may occur at a smaller load than extensionless buckling and must, be
investigated. As anexample of such o L
buckling, let us consider a flat uni-
formly loaded arch with hinged ends , oy o .
(Fig. 7-16), the initial center line of AT — e X
which is given by the equation T

Y

NS §
T — : ‘ ) : R
y=asin (@ . Fra. 7-16

If the rise a of the arch is large, the axial deformation of the arch under the
action of the load can be neglected and the critical load can be obtained
by assuming that during buckling there is an inflection point at the middle
of the arch (see Art. 7.6). If a is very small, the axial deformation of the
arch during loading cannot be neglected and the arch can buckle in'a

symmetrical form as shown in the figure by the dotted line.

In investigating the deformation of the arch, let us assume first. that
one of the hinges is on rollers; then the center line of the arch after loading
can be represented with sufficient accuracy (see p. 27) by the equation

R A LA L LN

C T 384EI) 1 B
1 8ee Timoshenko, J. Appl. Mech., vol. 2, p. 17, 1935.
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