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Fig. 3.1—Geometrical and stress conditions at bend of
shear reinforcing bar.

occurs at the bends of shear reinforcement, at Point A of
Fig. 3.1, before the yield strength can be reached in the shear
reinforcement, causing a loss of tension. Furthermore, the
concrete within the bend in the stirrups is subjected to
stresses that could potentially exceed 0.4 times the stirrup’s
yield strength f,,, causing concrete crushing. If £, is 60 ksi
(414 MPa), the average compressive stress on the concrete
under the bend has to reach 0.4f,, for equilibrium. Because
this high stress can crush the concrete, however, slip occurs
before the development of the full £, in the leg of the stirrup
at its connection with the bend. These difficulties, including
the consequences of improper stirrup details, were also
discussed by others (Marti 1990; Joint ACI-ASCE
Committee 426 1974; Hawkins 1974; Hawkins et al. 1975).
The movement at the end of the vertical leg of a stirrup can
be reduced by attachment to a flexural reinforcement bar, as
shown at Point B of Fig. 3.1. The flexural reinforcing bar,

however; cannot be-placed any closerto the vertical leg of

the stirrup without reducing the effective slab depth d. Flexural
reinforcing bars can provide such improvement to shear
reinforcement anchorage only if attachment and direct
contact exists at the intersection of the bars (Point B of Fig. 3.1).
Under normal construction, however, it is very difficult to
ensure such conditions for all stirrups. Thus, such support is
normally not fully effective, and the end of the vertical leg of
the stirrup can move. The amount of movement is the same
for a short or long shear-reinforcing bar. Therefore, the loss
in tension is important, and the stress is unlikely to reach
yield in short shear reinforcement (in thin slabs). These prob-
lems are largely avoided if shear reinforcement is provided
with mechanical anchorage.

CHAPTER 4—PUNCHING SHEAR
DESIGN EQUATIONS
4.1—Strength requirement
This chapter presents the design procedure of ACI 318

when stirrups or headed studs are required in the slab in the
vicinity of a column transferring moment and shear. The
equations of Sections 4.3.2 and 4.3.3 apply when stirrups
and headed studs are used, respectively.

Design of critical slab sections perpendicular to the plane
of a slab should be based on

ACI COMMITTEE REPORT

v, <o, “4-D

in which v,, is the shear stress in the critical section caused by
the transfer, between the slab and the column, of factored
shearing force or factored shearing force combined with
moment; v, is the nominal shear strength (psi or MPa); and
¢ is the strength reduction factor.

Equation (4-1) should be satisfied at a critical section
perpendicular to the plane of the slab at a distance d/2 from
the column perimeter and located so that its perimeter b, is
minimum (Fig. 4.1(a)). It should also be satisfied at a critical
section at d/2 from the outermost peripheral line of the shear
reinforcement (Fig. 4.1(b)), where d is the average of
distances from extreme compression fiber to the centroids of
the tension reinforcements running in two orthogonal
directions. Figure 4.1(a) indicates the positive directions of
the internal force V, and moments M, and Muy that the
column exerts on the slab.

4.2—Calculation of factored shear stress v,
ACI 318 requires that the shear stress resulting from

moment transfer by eccentricity of shear be assumed to vary
linearly about the centroid of the shear-critical section. The
shear stress distribution, expressed by Eq. (4-2), satisfies this
requirement. The maximum factored shear stress v, at a critical
section produced by the combination of factored shear force
V, and unbalanced moments M,,, and M, is

uy
vu - Y_ﬂ + vaMuxy + ’YVXM,Q,X (4_2)
A, J, Jy

The coefficients v, and y,, are given by

1
2
1+ 257
1

1 +% [T,

1-

Tvx

(4-3)

Yvy 1~

where Ly and [, are lengths of the sides in the x and y directions
of a rectangular critical section at d/2 from the column face
(Fig. 4.1(a)). Appendix B gives equations for J,, J,, v,,, and
Ty for a shear-critical section of any shape. For a shear-critical
section in the shape of a closed rectangle, the shear stress due
to V,, combined with M,,,, ACI 318 gives Eq. (4-2) with M, =
0 and J, replaced by J;, which is defined as property of assumed
critical section “analogous to polar moment of inertia.” For the
closed rectangle in Fig. 4.1(a), ACI 318 gives

R A s B L
J o= dltr X]u] xf 4.4
¢ d[6+ 2 1T 76 @4

The first term on the right-hand side of this equation is equal
to J,; the ratio of the second term to the first is commonly less
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Fig. 4.1—Ceritical sections for shear in slab in vicinity of
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are indicated.

4.3—Calculation of shear strength v,

Whenever the specified compressive strength of concrete
fo is used in Eq. (4-7a), (4-8a), (4-9a), (4-10a), and (4-12a),
its value is in pounds per square inch; when f, is in MPa,
Eq. (4-7b), (4-8b), (4-9b), (4-10b) and (4-12b) are used. For
prestressed slabs, refer to Chapter 5.

4.3.1 Shear strength without shear reinforcement—For
nonprestressed slabs, the shear strength of concrete at a critical
section at d/2 from column face, where shear reinforcement
is not provided, should be the smallest of

v, = (2 ¥ g)x Jf (in-b units) (4-Ta)
v, = (2 + @x% (ST units) (4-7b)

where B is the ratio of long side to short side of the column
cross section

o d - :
v, = (b_,, + 2)k [f!  (in.-Ib units) (4-8a)
v, = (O‘_b_sd + 2) k-i‘/g- (ST units) (4-8b)

0

where o is 40 for interior columns, 30 for edge columns or
20 for corner columns, and

than 3%. The value of v, obtained by the use of Jy in Eq. (4-2)
differs on the safe side from the value obtained with J...

When the centroid of the shear-critical section does not
coincide with O, the centroid of the column (Fig. 4.2(b)
and (c)), the unbalanced moment M,,, or M, uy about the x- or
y-axis through the centroid of shear-critical section is related
to the unbalanced moment Mo, or M, about the x- or y-axis
through O by

Mw( =M, o, + Vuyo; Muy = MuOy + VuxO 4-5)

where (x¢, yp) are the coordinates of O with respect to the
centroid of the shear-critical section along the centroidal
principal x and y axes.

For the shear-critical section in Fig. 4.2(c), the moments
about the centroidal nonprincipal axes x and y (M,; and M5
are equivalent to the moments about the x and y axes (M,
and M) that are given by Eq. (4-6).

M, = M 50080 — M ;5sin; M, = M zsin® + M, 5cos6 (4-6)

where 0 is the angle of rotation of the axes x and y to coincide
with the principal axes.

v, =4LJf!  (in.-Ib units) (4-9a)
vy =AJf /3 (SIunits) (4-9b)

At a critical section outside the shear-reinforced zone

vy=2hJf]  (in.-Ib units) (4-10a)
Va=AJf /6 (SIunits) (4-10b)

Equation (4-1) should be checked first at a critical section
at d/2 from the column face (Fig. 4.1(a)). If Eq. (4-1) is not
satisfied, shear reinforcement is required.

4.3.2 Shear strength with stirrups—ACI 318 permits the
use of stirrups as shear reinforcement when d > 6 in. (152 mm),
but not less than 16 times the diameter of the stirrups. When
stirrup shear reinforcement is used, ACI 318 requires that the
maximum factored shear stress at d/2 from column face
satisfy: v, < 6, /f, (in.-Ib units) (¢ /£, /2 [SI units]). The
shear strength at a critical section within the shear-reinforced
zone should be computed by

V= Vet v “-11)
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in which
ve=2M1Jf/  (in-Ib units) (4-12a)
ve=0.17AJf (SI units) (4-12b)
and
v, = Aufy (4-13)

& bos

where A, is the cross-sectional area of the shear reinforce-
ment legs on one peripheral line parallel to the perimeter of
the column section, and s is the spacing between peripheral
lines of shear reinforcement.

The upper limits, permitted by ACI 318, of s, and the
spacing s between the peripheral lines are

5,<0.5d 4-14)
5<0.5d (4-15)

where s, is the distance between the first peripheral line of
shear reinforcement and the column face. The upper limit of

, is intended to eliminate the possibility of shear failure
between the column face and the innermost peripheral line of
shear reinforcement. Similarly, the upper limit of s is to avoid
failure between consecutive peripheral lines of stirrups. A line
of stirrups too close to the column can be ineffective in
intercepting shear cracks; thus, s, should not be smaller
than 0.354.

The shear reinforcement should extend away from the
column face so that the shear stress v, at a critical section at
df2 from outermost peripheral line of shear reinforcement
(Fig. 4.1(b) and 4.2) does not exceed ¢v,, where v, is
calculated using Eq. (4-10a) or (4-10b).
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s{typ.)

g < 2d, but not less than
0.6 diameter of column

Fig. A.2—Shear headed stud reinforcement arrangement for
circular columns.

lines of shear studs should not exceed 2d, where d is the
effective depth of the slab. When stirrups are used, the same
limit for g should be observed (Fig, A.1(a)).

The stud arrangement for circular columns is shown in
Fig. A.2. The minimum number of peripheral lines of shear
studs, in the vicinity of rectangular and circular columns, is two.

A.3~8tud length

The studs are most effective when their anchors are as
close as possible to the top and bottom surfaces of the slab.
Unless otherwise protected, the minimum concrete cover of

the anchors should be as required by ACI 318. The cover of

the anchors should not exceed the minimum cover plus
one-half bar diameter of flexural reinforcement (Fig. 6.1).
The mechanical anchors should be placed in the forms above
reinforcement supports, which ensure the specified concrete
cover.

APPENDIX B—PROPERTIES OF CRITICAL
SECTIONS OF GENERAL SHAPE
Figure B.1 shows the top view of critical sections for shear

in slabs. The centroidal principal x and y axes of the critical
sections, V,, M,,, and M, are shown in their positive
directions. The shear force V, acts at the column centroid;
Vi M, and M, represent the effects of the column on the
slab. [, and [, are projections of the shear-critical sections on
directions of principal x and y axes,

The coefficients v, and y,,, are given by Eq. (B-1) to (B-6).
ACI 318-08 gives Eq. (B-1) and (B-2); Eq. (B-3) to (B-6) are
based on finite-element studies (Elgabry and Ghali 1996;
Megally and Ghali 1996).

Interior column-slab connections (Fig. B.1(a))

(B-1)

'va=1_

i
142 L7,

421.1R-13
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Fig. B.I1—Shear-critical sections outside shear-reinforced
zones and sign convention of factored internal forces trans-
Serred from columns to slabs.



421.1R-14

Yoy = -—1 (B-2)

1+ 271,
Edge column-slab connections (Fig. B.1(b))

Yoo = 1-—1— (B-3)

2
1+§,/ly/lx

!
Y,y = 1__—11_—- but 1,,=0 when ¥ <0.2 (B-4)
1+2 [2-02 ’

301,

Corner column-slab connections (Fig. B.1(c))

Yo = 0.4 (B-5)

l
Tyy = 1= buty,, =0 when = <02 (B-6)
2 [l !

1+2 [2-02 Y
341,

Equations (B-7) to (B-9) give the values of A,, /,, and Jy
that determine by Eq. (4-2) the distribution of shear stress v,
whose resultant components are exactly V,, ¥,,M,,, and
yvyMuy. Generally, the critical section perimeter can be
considered as composed of straight segments. The values of
Ac, Jy, and J, can be determined by summation of the contri-
bution of the segments

o A=dyi o B
Jo = dZ[é()’iz'*'yiJ’j*}’jz)} (B-8)
J, = le:%(xiz +x,.xj+xj2)} ®-9)

where x;, y;, x;, and y; are coordinates of points i and j at the
extremities of a typical segment whose length is [ For a
circular shear-critical section, A = 2nd (radius) and J, = J,
= nid (radius)°. !

When the critical section has no axis of symmetry, such as
in Fig. 4.2(c), the centroidal principal axes can be deter-
mined by the rotation of the centroidal nonprincipal x and y
axes an angle 0, given by

20 = 05 (B-10)
1 = — -
an s

The absolute value of 0 is less than n/2; when the value is
positive, 6 is measured in the clockwise direction. J; and J;
can be calculated by Eq. (B-8) and (B-9), substituting x and

ACI COMMITTEE REPORT

y for x and y. J55 is equal to d times the product of inertia of
the perimeter of the critical section about the centroidal
nonprincipal x and y axes

Lines vns tns onss
I5=14 [g(i’-X:yi+x,~yj+xjy,-+2x,~y,-)] (B-11)

The coordinates of any point on the perimeter of the critical
section with respect to the centroidal principal axes can be
calculated by Eq. (B-12) and (B-13)

x = xcos® + ysin® (B-12)
y = —xsinb + ycos8 (B-13)

The x and y coordinates, determined by Eq. (B-12) and (B-13),
can now be substituted in Eq. (B-8) and (B-9) to give the
values of J, and Jj.

When the maximum v, occurs at a single point on the critical
section, rather than on a side, the peak value of v, does not
govern the strength due to stress redistribution (Brown and
Dilger 1994). In this case, v, may be investigated at a point
located at a distance 0.4d from the peak point. This will give
areduced v, value compared with the peak value; the reduction
should not be allowed to exceed 15%.

APPENDIX C—VALUES OF v, WITHIN
SHEAR-REINFORCED ZONE

This design procedure of the shear reinforcement requires
calculation of v, = v, + v; at the critical section at d/2 from
the column face. The value allowed for v, is 2JE (in.-1b
units) (Jf:’ /6 [SI units]) when stirrups are used, and 3 ,/f?
(in.-Ib units) (/f, /4 [SI units]) when headed shear studs are

used. The reason for the higher value of v, for slabs with

headed shear stud reinforcement is the almost slip-free
anchorage of the studs. In structural elements reinforced with
conventional stirrups, the anchorage by hooks or 90-degree
bends is subject to slip, which can be as high as 0.04 in. (1 mm)
when the stress in the stirrup leg approaches its yield strength
(Leonhardt and Walther 1965). This slip is detrimental to the
effectiveness of stirrups in slabs because of their relative
small depth compared with beams. The influence of the slip
is manifold:
* Increase in width of the shear crack;
»  Extension of the shear crack into the compression zone;
¢ Reduction of the shear resistance of the compression
zone; and
¢ Reduction of the shear friction across the crack.

All of these effects reduce the shear capacity of the
concrete in slabs with stirrups. To reflect the stirrup slip in
the shear resistance equations, refinement of the shear failure
model is required. The empirical equation v, = v, + v,
adopted in almost all codes, is not the ideal approach to solve
the shear design problem. A mechanics-based model that is
acceptable for codes is not presently available. There is,
however, enough experimental evidence that use of the
empirical equation v, = v, + v, withv =3 A/f; (in.-1b units)

ws

Sedg,
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Table D.1—Shear stresses* {psi}iue to factored
loads; edge column-slab connetion (Fig. D.2)

Shear-critical section Cal Case Il
v
At d/2 from column face Guda_ g | Gua | Ouls
-338 302 299 | -100
At d/2 from outermost peripheral line e (dp | e | GWp
of studs -13 871 | 71 | -2

v, fepresents stress exerted by column on slab, with psitive sign indicating upward

stress.
Note: I MPa =145 psi.

Step 2—Because the value (v,/¢) exceess v, shear reinforce-
ment is required; the same quantity isless than the upper
limit v, = 8,Jf] , psi (2,/f/ /3, MPa), indcating that the slab
thickness is adequate.

The shear stress resisted by concrete inpresence of headed
studs af the shear-critical section at d/2 fron the column face is

ve=3.Jf; =190 psi (ff /4 =131 MPa)

Use of Eq. (4-1), (4-11), and (4-13) gives

v, > % v =451 — 190 = 261 psi (180 MPa)

A, v,
Sry Yibo _ 261(65.25) _ 3310 8.5 mm)

T fe 51,000

Step 3

5, £0.5d =28 in. (71 mm); s < 0.5d = 2.8 in. (71 mm)

Using 3/8 in. (9.5 mm) diameter studs, arranged as shown
in Fig. D.2(b), with s, = 2.25 in. (57 mm) and s = 2.75 in.
(70 mmy) gives: (A,/s) = 9(0.11)/2.75 = 0.36 in. (9.1 mm).
This value is greater than 0.33 in. (8.5 mm), indicating that
the choice of studs and their spacing are adequate.

Step 4—Try nine peripheral lines of studs; the properties
of the shear-critical section at 4/2 from the outermost peripheral
line of studs are:

b, = 132 in. (3353 mm); A, = 742 in.% (479 x 10° mm?); J,
=142.9 % 10 in.* (59.48 x 10° mm*); '
L2 =45 in. (1143 mm); lyp = 72 in. (1829 mm); y,, = 0.30
(Eq. (B-4));

xc=-27.6in. (701 mm); xp = 17.4 in. (445 mm); xp =
—18.6 in. (472 mm).

The factored shearing force and unbalanced moment at an
axis, passing through the centroid of the shear-critical
section outside the shear-reinforced zone, are (Eq. (4-3)):

Case I: V,, =136 kips (160 kN); Muy = 1720 + 36(-18.6)
= 1050 kip-in. (118 kN-m)

Case Ii: V, = 10 kips (44 kN); M,,; = 900 + 10(~18.6)
=-1090 kip-in. (~123 kN-m)
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Fig. D.3—Example of corner column-slab connection:
shear-critical sections and stud arrangement. (Note: 1 in. =
25.4 mm.)

Equation (4-2) gives the shear stresses at Points C and D,
listed in Table D.1 for Cases I and II.

The maximum shear stress, in absolute value, occurs at
Point D (Case I) and I(v,/¢)p! = 87/0.75 = 116 psi = 1.8 /f,
(0.80 MPa =0.15 sz ). The nominal shear strength outside
the shear-reinforced zone, v, = 2,/f; =126 psi (0.17 Jf, =
0.87 MPa).

Step 5-—The value of (v,/9) is less than v,,, indicating that
the extent of the shear-reinforced zone, as shown in Fig. D.Z(b))
is adequate.

D.3—Corner column-siab connection )
The corner column-slab connection in Fig. D.3(a) is

_designed for gravity loads combined with wind load in positive .

or negative x-direction, The cross-sectional dimensions of
the column are ¢z = c5 = 20 in. (508 mm) (Fig. D.3(a)). The
values of: &, ¢, d, f! ,fy,, D, and d,, in Section D.1
apply in this example. Two cases (I and II) are considered,
producing extreme shear stresses at Points A and B of the
shear-critical section at d/2 from the column or at C and D of
the shear-critical section at /2 from the outermost peripheral
line of studs (Fig. D.3(a) and (b)). The factored forces, due
to gravity loads combined with wind load, are given.
Case I—Wind load in positive X-direction

samic

V), = 6 kips (27 KN); M5 = ~338 Kip-in. (=38 kN-m);
M 55 = 238 kip-in. (27 kN-m)

For the shear-critical section at d/2 from column face, Xp .
=yo=-7.11in. (-181 mm) and 8 = 45 degrees; thus, Eq. (4-5)
and (4-6) give

M,;=-338 + 6(-7.11) = =381 kip-in.;
M z=238 + 6(=7.11) = 195 kip-in.

M,y =~132 kip-in. (=15 kN-m);
M, = 467 Kip-in. (46 kN-m)
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Case II—Wind load in negative X-direction

V, =22 kips (97 kN); M,,g5 = 953 kip-in. (108 kN-m);
M 05 = 377 kip-in. (43 kN-m)

M5 =953 +22(-7.11) = 797 kip-in.;
Mz =377 +22(=7.11) = 221 kip-in.

M, =720 kip-in. (81 kN-m);
M, =407 kip-in. (~46 kN-m)

The five steps of design, outlined in Section 4.4, are followed.

Step I—Properties of the shear-critical section in Fig. D.3(a)
are: b, =45.63 in. (1159 mm); A = 257 in.2 (166 x 10’ mm?);
Jy=2226 %107 in* (9.27 x 10° mm*) and J, = 5.57 x 10 in.*
(2.32 x 10° mm®*). The projections of the critical section on
the x and y axes are: /,; = 16.13 in. (410 mm); and Ly =
32.26 in. (820 mm). The fractions of unbalanced moments
transferred by shear are (Eq. (B-5) and (B-6))

1
1+ (2/3) J(, 71, = 02

Yoy = 1 = 0.267;y,,=04

The factored shear stress at Point A (-8.07, 16.13 in.) in
Case 1is (Eq. (4-2)) ’

6 10° | 04(407 x 10°)16.13 4 0.267(=132 x 10%)(-8.07)
2517 22.26 x 10° 557 x 10°

s =

=192 psi (1.33 MPa)

Similar calculations give the values of v, at Points A and B

(8.07, G in.) for Cases I and I, which are listed in Table D.2.

The maximum shear stress, in absolute value, occurs at
Point B (Case II) and I(v,/¢)gl = 364/0.75 = 485 psi =
7.7Jf; (3.35 MPa = 0.64N/E'B ). The nominal shear stress
that can be resisted without shear reinforcement at the shear-
critical section, v, = 4JE =253 psi (Jf. /3 = 1.74 MPa)
(Eq. (4-7) to (4-9)).

Step 2—Because the value (v,/¢) exceeds v,, shear
reinforcement is required; the same quantity is less than the
upper limit, v, = 8 JE (in.-1b units) (2,/f; /3 [ST units]),
indicating that the slab thickness is adequate.

The shear stress resisted by concrete in the presence of
headed studs at the shear-critical section at d/2 from the
column face is

ve=3f. =190psi (Jf/ /4 =131 MPa)

Use of Eq. (4-1), (4-11) and (4-13) gives

vy 2 %}‘i — v, =485 - 190 = 295 psi (2.03 MPa)

A, vib, _ 295(45.63) .
Dy lre o 222089.09) 026 in. (6.7
P fyr 51,000 6 in. (6.7 mm)

421.1R-21

Table D.2—Shear stresses* (psi) due to factored
loads; corner column-slab connection (Fig. D.3)

Shear-critical section Case 1 Case 11
VA g | Va s
192 ~28 -312 364

At d/2 from column face

At d/2 from cutermost peripheral line e | Gap | (e | b
of studs 89 | 19 | 46 | 65

'v,, represents stress exerted by column on slab, with positive sign indicating upward

stress,
Note: 1 MPa = 145 psi.

Step 3

§,<0.5d =28 in. (71 mm); s < 0.54 = 2.8 in. (71 mm)

Using 3/8 in. (9.5 mm) diameter studs, arranged as shown
in Fig. D.3(b), with 5, = 2.25 in. (§7 mm) and s = 2.5 in.
(64 mm) gives: (A,/s) = 6(0.11)/2.5 =0.26 in. (6.7 mm). This
value is the same as that calculated in Step 2, indicating that
the choice of studs and their spacing are adequate.

Step 4—Try seven peripheral lines of studs; the properties
of the shear-critical section at d/2 from the outermost peripheral
line of studs (Fig. D.3(b)) are:

Xo=Yo=-17.37 in. (441 mm); 0 = 45 degrees;

b, =69 in. (1754 mm); A, = 388 in. (251 x 10> mm?);
J,=116.9x 10% in* (48.64 x 10° mm*); J, =9.60x 10* in.*
(4.00 x 10° mm“);

Lo =15.0in. (380 mm); L = 56.7 in. (1439 mm); y,, = 0.40
(Eq. (B-5)); 1,y = 0.14 (Eq. (B-6)).

The factored shearing force and unbalanced moment about
the centroidal principal axes of the shear-critical section
outside the shear-reinforced zone (Eq. (4-5) and (4-6)), are:

Case I:

V, = 6 kips (27 kN); M,,, = 407 kip-in. (46 kN-m);
M, =-218 kip-in. (=25 kN-m)

Case H:

V, = 22 kips (97 kN); M, = —407 kip-in. (—46 kN-m);
M,y = 402 kip-in. (45 kN-m)

Use of Eq. (4-2) gives the values of v,, at Points C (-10.38,
28.33 in.) and D (4.59, 13.36 in.) for Cases I and II, listed in
Table D.2.

The maximum shear stress, in absolute value, occurs at
Point C (Case I) and (v, /$) o} = 89/0.75 = 119 psi = 1.88 if,
(0.82 MPa = O.lﬁﬁ:’ ). The nominal shear stress outside the
shear-reinforced zone, v, = 2 /£ = 126 psi (0.‘7,\/1‘_;.7 =
0.87 MPa).

Step 5—The value of (v,/¢) is less than v,, indicating that
the extent of the shear-reinforced zone, as shown in Fig. D.3(b),
is sufficient.

D.4—Prestressed slab-column connection
Design the shear reinforcement required for an interior

column, transferring V,, = 110 kips (490 kN) combined with



