CERTIFIED TRANSFORMER TEST REPORT 3 Phase 60 Hertz Winding High Voltage Coolant-Air Sub/Phase Polarity Winding Low Voltage 1500.0 KVA Volts Wye 480 1500.0 KVA 12470 Volts Delta TAPS: 13094 12782 12470 12158 11847 Resistance, losses, impedance, and regulation corrected to 135 degree C and are based on wattmeter measurements unless otherwise stated. The resistance for 3 phase transformers is the sum of the 3 phases in series. | | Test
Date
10/21/2011 | Resistance (Ohms) %Exc
H.V. L.V. Amps
4.2779 .00172 .7686
Average 0.77
Guarantee | TOTAL 1 | %Imp %R
3 6.17 0.90
LOSS | %X X/R
 6.10 6.78 | |--|----------------------------|--|---------|--------------------------------------|---------------------------| |--|----------------------------|--|---------|--------------------------------------|---------------------------| PF 100% 90% 85% 80% 75% 3.597 4.088 4.474 4.789 1.084 Temperature rises based on data taken from test of similar design. Average rise in degree C. | | 3 | | | |------|--------|--------|--------| | Load | H.V. | L.V. | | | 100% | 94.00 | | Guar | | 133% | | 83.00 | 115.00 | | 7332 | 115.00 | 115.00 | | | | | | 115.00 | | Applied Pot | ential Test: | Insulation | Test | | | | *************************************** | |-------------------------|---|--|--------------------------------|----------------------------|---|-----------------|---| | Winding H.V. L.V. | Rated Volts 12470 480 | Test Volts
Applied
34.0 KV
3.0 KV | Duration of Test 60 Sec 60 Sec | frames manage ampaign | Induced Poter
two times 480
400 hertz for | volts a | t. | | Tap
13094
12782 | Ratio Test I
Phase A
47.249
46.177 | Results Phase B 47.245 46.171 | Phase C
47.255 | Calc.
47.249 | HV
(Ohm) | Load
Loss(W) | 鲁艺 | | 12470
12158
11847 | 45.031
43.957
42.743 | 45.026
43.955
42.742 | 46.177
45.036
43.964 | 46.123
44.997
43.871 | 4.2779 | 13493 | 6.17 | | 11847 | 43.957
42.743 | 43.955
42.742 | 43.964
42.748 | | 44.997
43.871
42.749 | | 4.2779 | 13493 | 6.17 | |------------|----------------------------------|-------------------|------------------|---------------|----------------------------|--------------|--------------|--------------|------| | Phase Rela | ationship and Pol
Angular Dis | placement (LV-HV) | | 3050 | | fficien | -y | | | | Remarks: | -30 Degrees | (DYN1) | man analysis | 125%
98.69 | 100%
98.87 | 75%
99.02 | 50%
99.09 | 25%
98.86 | | ### Remarks: - 1) THERMAL DATA TAKEN FROM DS88490001. - 2) GUARANTEED IMPEDANCE ON NOMINAL TAP IS 5.75% MINIMUM. UNIT SUCCESSPULLY PASSED QC IMPULSE TEST El Musul I hereby certify that this is a true report based on factory tests made in accordance with the latest IEEE C57.12.01 & C57.12.91 test code and that each transformer withstood the insulation 10/24/2011 approved: ## ABB ### QUALITY ASSURANCE PROCEDURES Small Power Transformers Bland, VA Number: QCT1A Page: 1 of 1 Issue Date: 9/1/83 Revision No: 17 Revision Date: 07/02/02 Title: TEST REQUEST - Vent | S.O. #: 905 | 25,90529 | Ref#:PAWE | | | |-------------|--|--|------------------------|--| | Type - kVA | old To: / | T. Alter | ۲.(|). #: | | Vector Grou | - Rise: <u>AA -</u>
ip(VDE): <u>DY1</u> | - | | | | | | | lies | Man Annie (1900) | | Regulation: | LL:
@10PF | GUARANTEED VAL
TL: @0.9 PF
HV / /
IMUM | Sound: | _ AA FA | | Reference T | hermal Data: | @0.9 PF @0.8 PF | @0.7 PF | | | Impedance: | 5.75 % IZ MIN | IMUM | LV/ | | | Other: REQ | | | | | | 1 X | DONE C | ~~~~ | QAP Ref. | NOTES: | | 2 | | Turns Ratio Heated & Vacuum | QAP 11.1 | NOTES: | | 3 X | | Megger 500 V | | Milderman de construir const | | 4 X | Y X | Resistance | QAP 11.6 | and the contraction of contr | | | | Tap Extremes on 1 unit(s) | QAP 11.3 | -milane-parameter and a second | | | 1 | Expected: HV <u>0.668528</u> LV <u>0.000</u> | 819 | ± 10 % | | 5 X | x | | | I 10 % | | 6 | X | aa. oloniacellielli | QAP 11.2 | | | 7 | X | Zero Sequence Imnedance | QAP 11.17 | | | 8 X | X | illipedance and Load Losses | QAP 11.4 | channes proprietal in the contract of cont | | | | Expected LL (Hot) Min 12840 May | 16907 | Web Advantage and Control of the Con | | 9 X | X | . Ab rviteries off 1 fluit(e) | , | | | | | Core Loss & Excitation | QAP 11.5 | | | 0 🗆 | | Expected NL: Min 2324 Max 3486 Corona Test before dielectrics | | error children and company of the co | | 1 X 2 X | | Impulse Test 100% QC | QAP 11.15 | Annual State Annual State Stat | | * * | X | Applied Potential | QAP 11.9 | | | í ĥ | X | Induced Potential | QAP 11.10
QAP 11.11 | **Arm.WeetHashes | | 3 X | X | Corona Test after dielectrics | QAP 11.15 | Avoidman_mandemic_appropriate | | | | Power Factor
Switch & Soak | QAP 11.7 | West and the second sec | | X | x | Applied Potential - Controls | QAP 11.13 | managed in the state of sta | | | X | Temperature Test | QAP 11.10 | | | | | Audible Sound Level | QAP 11.8 | 2 | | | | Primary Switch | QAP 11.12 | abbit de l'immeration publiche abbit de la construcción | | tes: 1. DOE | 99 12% | | | Wilderman glanch | | 2. PROV | VIDE THERMA | L DATA FROM DS88490001 AND RE | | | | | | | CORD ON CTR. | | | | | 43 | | | | | | 94 | | | | **IMPUL | SE TEST - CO | NNECT RESISTORS (PROSE | | | | **UNDE | R TEST [IF WI | NNECT RESISTORS (PROPERLY SIZ
NDING HAS NEUTRAL THEN SOLIDL | ZED) TO PHASES (| OF WINDINGS NOT | | | | TO THE SOLIDI | Y GROUND | |
Engineer: PBW 8/27/11 Approval: HBC 8/29/11 Tested By 10/21/1) | ABB POW | ER T&D | COMPAN | IY, INC | D. | | | Data - 0/07/05 | |---------------------|--|--|---|---|--|--|--| | Quality Ass | | | | Qct-02 | > | Fo | Date: 8/27/2011 | | SO Range: | | | | | | 'A: 1500 | orm Revision: 08 - 02/03/99 | | HV Phase HV Turns (| Voltage
Max) ; | : 12470
661 | | | | LV Phas | ase Voltage : 277.13 | | FCAN (2 | | | | | h. V | rums | : 14 | | | | | · · · · · · · · · · · · · · · · · · · | · | | *** | (2) @ 2.5 % | | | | | | | , [| Meas
Coil#3 | as. Meas. Calc'd
 Avg. Volts | | A 13093.5 | 47.0109 | 47.483 | 31.24 | 91,24 | 51. | To The | | | B 12781.7 | 45.8914 | 46.352 | 61.17 | 11,17 | 4 | 77 | | | C 12470 | | | | | 01,0 | 34 | | | D 12158.3 | 43.6531 | 44.0918 | 11,95 | 71,43 | 1.9 | 3 | | | E 11846.5 | 42.5336 | 42.9611 | 1, 44 | 外级 | 4 4 | 481 | | | Fine | and the contract of contra | And the second s | lan photographic | ************************************** | ampionista. | Allocations | | | G | The second secon | | - | Manadowy | ************************************** | ************************************** | | | J | Фенерация | **PONINGSA | diseaso | ************************************** | | and the same of th | | | K | Additional and the state of | 484-964-964 | Otherwish | descriptions | ** | ************************************** | | | | Milano | Management of the Control Con | ¹ destables ₀₀ , | *************************************** | Yeldowyddigy | 4944666 | | | Test Set Id N | V: AZ | 13 L | on and an | DATE | 6-6 | | | | Ok'd For Assy | By: | 1812 | | Principality | | Date Date | te: 10-14-2011 | Remarks: 90529001 # ABB # QUALITY ASSURANCE PROCEDURES Small Power Transformers Bland, VA Number: QCT 20A Page: 1 of 1 Issue Date: 09/01/91 Revision No. 3 # TITLE: STANDARD TEST DATA SHEET (MAIN LAB) Revision Date: 04/12/(SHOP ORDER NO. DS90529001 DESIGN: 90525 INSULATION RESISTANCE: TEST VOLTAGE: 500 (DC) HV: 10000 MΩ LV: 1000 MΩ CORE: 110/21/11 EQUIPMENT ID: 10452024 (DUE 10/21/11) WINDING RESISTANCE: HV WINDING - (NOM TAP), AMB: 19.8 °C RI-R2: 0,6539 R2-R3: 0,6543 R3-R1: 0,6546 HV WINDING - (MAX TAP), AMB: °C R1-R2: R2-R3: R3-R1: HV WINDING - (MIN TAP), AMB: °C R1-R2: R2-R3: R3-R1: LV WINDING #1 AMB: 19.3 °C RI-R2: 1000 7729 R2-R3: 1000 7973 R3-R1: 1000 8026 LV WINDING #2 AMB: °C RI-R2: R2-R3: BY: 01/21/11 EQUIPMENT ID: 10452028 (6/14/2012), 10452030 (6/15/2012), 10488749 (DUE 6/9/12), 10512284 (DUE 6/9/12), 10743614 (DUE 5/16/12), 10743616 (DUE 5/16/12) POLARITY & PHASE RELATION: H1-H3 (OR 1-2): DYN1 H3-X2: H3-X3: H2-X3: H2-X2: BY: DATE: 10/21/11 EQUIPMENT ID: 10452028 (6/14/2012) LOAD LOSS & IMPEDANCE: AMB #2 NOM TAP: WATTS MAX TAP: 10067 MIN TAP: AMB #1 = WINDING AMB BEFORE, AMB #2 = WINDING AMB AFTER DATE: 10/21/11 EQUIPMENT ID: 10452221 (DUE 10/28/11), 10743614 (DUE 5/16/12), 10743616 (DUE 5/16/12) NO-LOAD LOSS & EXCITATION CURRENT: %VOLTS: 100 V-AVG: 480 WATTS %VOLTS: V-AVG: lex1: lex2: lex3: lex1: lex2: lex3: %VOLTS: V-AVG: BY: DATE: 10/21/11 EQUIPMENT ID: 10452221 (DUE 10/28/11) DIELECTRIC TESTS: IMPULSE: 60 HIPOT (UNIT): 34/3 INDUCED POTENTIAL: 960 HIPOT (CONT): BY: ______ DATE: ______ 10/21/11 EQUIPMENT ID: IMPULSE: 10452051 (DUE 2/17/12), 10513324 (DUE 2/17/12) HIPOT: 10903546 (DUE 6/29/12) INDUCED: 10452221 (DUE 10/28/11) | Dgn: 90525 Phase: 3 KVA: 1500.0 Test Date: 10/21/2011 Tr Customer: Square D Company CoolCls: EA33 DATE: To 21/2011 Tr | 43.957 T5: 42.743 T6: 17. | 198 °C Tap: 3 • 1.2: 65390 2.3: 65430 C Tap: • 1.2: 65390 2.3: 65430 C Tap: • 1.2: 2.3: 7.3: 7.3: 7.3: 7.3: 7.3: 7.3: 7.3: 7 | WATTS:
WATTS: | .08S: | | Audible Sound Level - AA: 0 % of Rated Voltage Save Data
Calculate Values Calculate Values | Special Tests: Comments: | UL Listing | Certified Test Report | Temn Tet Data from Dim Lir | | 3.597 4.088 4.474 4.789 Efficiency 0.00 75% 50% 25% | |---|---|--|----------------------------|--|-----------------------|--|--------------------------|------------|-----------------------|----------------------------|-----|---| | S.O.: DS90529001
Phase Relation: DYM | Tap Voltage Ratio: T1: 4 | Winding Resistances HV Tap: @ HV Tap: @ HV Tap: @ Low Voltage @ | L. Instrument: L. IIZ@ 199 | operative publication and the control of contro | Thermal Data Results: | KVA: 1500 2000 RSE: 115 115 | HVTIL: 83 115 |
 | HVIL: 0.0 0.0 | LV NIL: 0:0 | 000 | 1.00 pf 0.90 pf
Regulation: 1.084 3.597 | | DS90529001
90525 | LL
13493 | NL
3447 | % Z
6.17 | Test Date 10/21/11 | |--|----------------|--------------|--------------|--------------------| | Test History Population - 7 Avg Min Tol. | 13419 | 3422 | 6.18 | 10721731 | | Max Tol. | 12077
14761 | 3080
3764 | 5.95
6.41 | | ### INTERNAL TEST REPORT | | | - | | | ARDS: IEEE | | | Um: | | T | Nº: D | SOCEOOS | |--|--|---|---|--|--
--|--|--|--|---------------------------|---------------------|---------| | | | | | Ambient | Conditions | Maria de Companya de Constitue | | | | | | S905290 | | | | | MEA: | SUREME | NTS OF | WIND | NGS | RESI: | STANC | FS | re: | °C | | °C | | TARE | | ************************************** | and the same of th | MANAGEMENT | | | | | | | | 19.8 | 701 | LTAGE | | CURRENT | R U-V | / (Ω) | R V | W (Ω) | Rw | -U (Ω) | | 57.542 | | 19.3 | | | 12470 69.4 | | .653 | 90 | 1 | 430 | | 460 | Σ W | | | 20.0 | 1 | 480 | | 1804.2 | .000 | 77 | .000 |)79 | .000 | | | 4735 | | 20.0 | | 12470 | | 69.4 | .65441 | -2.1 % | .65481 | -2.1 % | | -2.0 % | Q01: | 3850 | | | | 480 | | 1804.2 | .00077 | -5.7 % | .00079 | -3.3 % | .00080 | -2.0 % | Q01: | .66866 | | | (See load lo | osses) | | | | | 4.000.000.000.000.000.000.000.000.000.0 | <u> </u> | | | 1001. | .00082 | | - | TIO | 1010 | | | | | | | | | | | | | LUA | 4D FC | SS AN | D SHOR | T CIRCU | IT IMF | EDA | VCE | /EASU | REME | NITC | | | 9 | UPPLY | - | - | | | | | | | · / FIAI FI | VIS | | | 0 | OFFLI | V | OLTAGE (V | 7) | CURREN | IT (A) | | Andrian Contract Cont | I C | AD LOSS | EC ////-> | | | | | - | | | | | | W1 | W2 | W3 | Wt | | | | | - | 766.0 | | 69.4 | 1 | | *************************************** | | | 10067 | Hz | | C1 | JPPLY | + | | | 39. | 3 / | / _s c % = | 6.14 | | | 10007 | 60 | | 00 | 71 - 61 | VO | LTAGE (V) | | INTENSIT | Y (A) | Name de Caración d | | LO | AD LOSSE | EC (M/a) | | | | | | | lu | lv | | lw | W1 | W2 | W3 | -S (VVC)
Wt | | | MAC DALLACTOR TO THE STATE OF T | | | | | | | | | | | AAf | Hz | | 511 | PPLY | | | *************************************** | | V | sc % = | | | | | | | 00 | rrut | VOL | LTAGE (V) | | INTENSIT | Y (A) | | Andrew Company of the | LOA | D LOSSE: | S /M/a) | | | | | | | lu | lv | 1 | w | W1 | W2 | W3 | S (VVC) | 1 | | | | | *************************************** | | | | | | | *** | AAf | Hz | | IEEE | LOAD LODGE | - | | | | Vs | c % = | | | | | | | Phase San Law 1 | LOAD LOSSES | & IMPE | DANCE (T. | EMPERATUR | E CORRECT | ED) | Gentlergianscholosomatischen Stationers | Marie Company of the | | | - | | | ses at | 100 000 | | | | , | | TL: | 1 | 6937 | Q01 Rar | 200: | NAINI | | ses at | 19.9 °C Res | | 8586 | Lugy, | 1481 | | NL: | | 3447 | | 3486 | MIN 5.7 | | | 135 °C Res | istives: | 1247 | Eddy: | 1020 | | LL: | 1: | 2400 | | 16231 | % Z | | DOF L | OSSES & EFF | ICIENCY | 1500/ 1 0 a | ** | | | | | | | 10201 | 6.17 | | | | 1 00 1 mm 1 mm 2 mm 1 | 100% LUA | U AND 75C R | FF TEMPS | | | | | | | | | | | | (50% LOA | U AND 75C R | EF. TEMP) | | | <u> </u> | | | | | | | °C Resi | | (50% LOA | | EF. TEMP) | g-1-1-1 | e could | 2 | 916 | NL: | Γ | 3447 | | es at | | stives: | (00% LOA | Eddy: | EF. TEMP) | | | 2 | 916 | NL: | The Board of Street | 3447 | | es at | °C Resid | stives; | (00% LOA | | EF. TEMP) | | LL: | | 916 | MAX | EFF% | 3447 | | es at | °C Resi | stives; | (50% LOA | Eddy: | EF. TEMP) | | | | | MAX | EFF% | | | es at
es at
NEA | °C Resi
°C Resid | stives: [| (00% LOA | Eddy: | EF. TEMP) | | | | | MAX | EFF% | | | es at
es at
NEM | °C Resi °C Resi MA TP-1 EFFIC °C Resistive | stives: [stives: [IENCY | (30% LOA | Eddy:
Eddy: | EF. TEMP) | The state of s | | | | MAX | EFF% | | | es at
es at
NEA | °C Resi
°C Resid | stives: [stives: [IENCY | (30% LOA | Eddy:
Eddy: | EF. TEMP) | | | | | MAX
6659 | - Barrer | 99.16 | | es at es at NEA | °C Resi °C Resi MA TP-1 EFFIC °C Resistive | stives: [stives: [IENCY | NL: | Eddy:
Eddy: | EF. TEMP) | | T.L.; | | | MAX | - Barrer | | | es at es at NEA | °C Residence of Residence of Resistive of Resistive | stives: stives: EIENCY | | Eddy:
Eddy: | EF. TEMP) | TL: | T.L.; | |
363 | MAX
6659 | - Barrer | 99.16 | | es at es at NEA | °C Residence of Resistive °C Resistive °C Resistive COSSES | stives: ElENCY S: NO | NL: | Eddy:
Eddy:
Eddy:
Eddy: | | | TL; | 6: | 363 L | MAX 6659 TP1 EF | - Barrer | 99.16 | | es at es at NEA | °C Residence of Resistive °C Resistive COSSES | stives: ElENCY S: NO | NL: | Eddy:
Eddy: | | | TL; | 6: | 363 L | MAX 6659 TP1 EF | - Barrer | 99.16 | | es at NEM s at s at ANTEED | °C Residence of Resistive °C Resistive COSSES | stives: Estives: EIENCY S: NO NO This transfor (Total or pise | NL: | Eddy:
Eddy:
Eddy:
Eddy: | of and they never rend allowed, excep | THE SETT OF CHE | TL; WL: | n a different is then by the is | labrostion numb | MAX 6659 TP1 EF | - Barrer | 99.16 | | es at NEM s at s at ANTEED | °C Residence of Resistive °C Resistive COSSES | stives: Estives: EIENCY S: NO NO This transfor (Total or pise | NL: | Eddy:
Eddy:
Eddy:
Eddy: | of end they never rend officed, excep | Parasant os da
Caspressiy au
VALYST: | TL; WL: | n a different is then by the is | labrostion numb | MAX 6659 TP1 EF | F % [| 99.16 | | es at NEM s at s at ANTEED | °C Residence of Resistive °C Resistive COSSES | stives: Estives: EIENCY S: NO NO This transfor (Total or pise | NL: | Eddy:
Eddy:
Eddy:
Eddy: | of and they rever rend allowed, excep | VALYST: V. Kensing | TL; WL: | n a litterent in the north then by the statement of the STS David S | labrocation numb
losts chief of AB.
PROVED
6 CHIEF:
Vinson, P. | MAX 6659 TP1 EF L: [27] | F % [| 99.16 | | es at NEM s at s at ANTEED | °C Residence of Resistive °C Resistive COSSES | stives: Estives: EIENCY S: NO NO This transfor (Total or pise | NL: | Eddy:
Eddy:
Eddy:
Eddy: | of and they rever rend allowed, excep | VALYST: V. Kensing | TL; WL: | n a litterent in the north then by the statement of the STS David S | labrostion numb | MAX 6659 TP1 EF L: [27] | F % [| 99.16 | | es at NEM s at s at ANTEED | °C Residence of Resistive °C Resistive COSSES | stives: Estives: EIENCY S: NO NO This transfor (Total or pise | NL: | Eddy:
Eddy:
Eddy:
Eddy: | of and they rever rend ellowed excep | VALYST: V. Kensing | TL; WL: | n a litterent in the north then by the statement of the STS David S | labrocation numb
losts chief of AB.
PROVED
6 CHIEF:
Vinson, P. | MAX 6659 TP1 EF L: [27] | F % [| 99.16 | project (job): 90529001 date: 10/21/11 project (job): 90529001 date: 10/21/11 project (job): 90529001 date: 10/21/11 | Rev. 0 | Date: 08/27 CAN (2) 2.50 CBN (2) 2.50 T 10.250 J 9.009 W 36.750 Z 23.125 21 0.000 CWT 4055 | 7/2011 L
HV Bu:
ENCL
C Therma | V Bus fl
s (1) 0.
94 x
l Data:
Wdg
Sus
rminal
Total | 0.250 x
250 x 2.00
108 x 60
60 Hz
10
90.1
46.0
68.3
93.5
9 | 5.00 x
2 x 36
ETYP
4V
98.5
1.0 | 78 | actor
HV | |--|---|--|--|---|---|---|--| | Rev. 0 | Date: 08/27 CAN (2) 2.50 CBN (2) 2.50 T 10.250 J 9.009 W 36.750 Z 23.125 21 0.000 CWT 4055 | 7/2011 L
HV Bu:
ENCL
C Therma | V Bus fl
s (1) 0.
94 x
l Data:
Wdg
Sus
rminal
Total | 0.250 x
250 x 2.00
108 x 60
60 Hz
10
90.1
46.0
68.3
93.5
9 | 5.00 x
2 x 36
ETYP
4V
98.5
1.0 | 78 | actor
HV
98.5
1.0
97.3 | | NAMEPLATE RATINGS: K 1.00 ELEV 3300 FA 1.31 AMB 30.0 KVA 1500 MVV 12470 LVV 480 IZ 6.25 FC RSE 115 HVC D LVC Y HZ 60 FC CND C/C HVB 60 LVB 20 TYP VENT CN DESIGN RATINGS: RVA 150.00 LVE 20.00 Core: | T 10.250
J 9.009
W 36.750
Z 23.125
Z1 0.000
CWT 4055 | HV Ru:
ENCL | 94 x 11 Data: Wdg Sus Susininal Total | 250 x 2.00
108 x 60
60 Hz
LV 1
90.1
46.0
88.3
92.5 | 5.00 x
2 x 36
ETYP
4V
98.5
1.0 | 78 | actor
HV
98.5
1.0
97.3 | | NAMEPLATE RATINGS: K 1.00 ELEV 3300 FA 1.31 AMB 30.0 KVA 1500 MVV 12470 LVV 480 IZ 6.25 FC RSE 115 HVC D LVC Y HZ 60 FC CND C/C HVB 60 LVB 20 TYP VENT CN DESIGN RATINGS: RVA 150.00 LVE 20.00 Core: | T 10.250
J 9.009
W 36.750
Z 23.125
Z1 0.000
CWT 4055 | HV Ru:
ENCL | 94 x 11 Data: Wdg Sus Susininal Total | 250 x 2.00
108 x 60
60 Hz
LV 1
90.1
46.0
88.3
92.5 | 5.00 x
2 x 36
ETYP
4V
98.5
1.0 | 78 | actor
HV
98.5
1.0
97.3 | | KVA 1560 | T 10.250 J 9.009 W 16.750 Z 21.125 Z 10.000 CWT 4055 | C Therma | Wdg
Sus
Funinal
Total | 60 Hz 50 Hz 60 Hz 60 Hz 60 Hz 90.1 46.0 68.3 92.5 9 | ETYP
HV
38.5 | INDOOR K-F. LV 90.1 46.0 88.3 | actor
HV
98.5
1.0
97.3 | | NVA 1560 | T 10.250 J 9.009 W 16.750 Z 21.125 Z 10.000 CWT 4055 | C Therma | Wdg
Sus
Funinal
Total | 60 Hz 50 Hz 60 Hz 60 Hz 60 Hz 90.1 46.0 68.3 92.5 9 | ETYP
HV
38.5 | INDOOR K-F. LV 90.1 46.0 88.3 | actor
HV
98.5
1.0
97.3 | | CND C/C HVB 60 | CAN (2) 2.50 CAN (2) 2.50 Fig. (2) 2.50 T 10.250 J 9.009 W 36.750 Z 23.125 Z1 0.000 CWT 4055 | C Therma | l Data:
Wdg
Sus
rminal
Total | 60 Hz
LV 1
90.1 9
46.0
88.3 9
93.5 9 | HV
98.5 | K-P
LV
90,1
46.0
88.3 | actor
HV
98.5
1.0
97.3 | | DESIGN RATINGS: KVA 1500.0 RVB 60.00 LVB 20.00 | T 10.250
J 9.009
W 36.750
Z 23.125
Z1 0.000
CWT 4055 | Te | Wdg
Bus
rminal
Total | 1V 90.1 9 46.0 88.3 9 93.5 9 | HV
98.5 | K-P
LV
90.1
#6.0
88.3 | actor
HV
98.5
1.0
97.3 | | DESIGN RATINGS: KVA 1500.0 RVB 60.00 LVB 20.00 | T 10.250
J 9.009
W 36.750
Z 23.125
Z1 0.000
CWT 4055 | Te |
Wdg
Bus
rminal
Total | 1V 90.1 9 46.0 88.3 9 93.5 9 | 98.5
1.0 | 1.V
90.1
46.0
88.3 | HV
98.5
1.0
97.3 | | Core: T1 9.000 J1 4.312 Wt1 2293 Grade M4 T2 8.000 J2 1.694 Wt2 804 Duct 0.000 T4 4.000 J3 2.002 Wt3 719 Legs 3 T5 0.000 J5 0.000 Wt5 0 Cycles 7 T7 0.000 J6 0.000 Wt6 0 Cycles 7 T7 0.000 J7 0.000 Wt7 0 Cycles 7 T7 0.000 J7 0.000 Wt6 0 Lams 1 T8 0.000 J8 0.000 Wt6 0 Tube: TSCL 0.125 TSID 10.500 TSLDN 1 TSD TD 0.000 TSLDN 1 TSD TD 0.000 WT 4 30.000 WT 6 WT 4 30.000 WT 6 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | T 10.250
J 9.009
W 36.750
Z 23.125
21 0.000
CWT 4055 | Te | Sus
Fusinal
Fotal | 90.1 6
46.0 68.3 9
93.5 9 | 98.5
1.0 | 90.1
46.0
88.3 | 98.5
1.0
97.3 | | Core: T1 9.000 J1 4.312 Wt1 2293 Grade M4 T2 8.000 J2 1.694 Wt2 804 Duct 0.000 T4 4.000 J3 2.002 Wt3 719 Legs 3 T5 0.000 J5 0.000 Wt5 0 Cycles 7 T7 0.000 J6 0.000 Wt6 0 Cycles 7 T7 0.000 J7 0.000 Wt7 0 Cycles 7 T7 0.000 J7 0.000 Wt6 0 Lams 1 T8 0.000 J8 0.000 Wt6 0 Tube: TSCL 0.125 TSID 10.500 TSLDN 1 TSD TD 0.000 TSLDN 1 TSD TD 0.000 WT 4 30.000 WT 6 WT 4 30.000 WT 6 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | T 10.250
J 9.009
W 36.750
Z 23.125
21 0.000
CWT 4055 | Te | rminal
Total | 46.0
88.3 9
92.5 9 | 1.0 | 46.0
88.3 | 1.0 | | Core: | J 9.009
W 36.750
Z 23.125
Z1 0.000
CWT 4055 | | ******* | ¥3.5 9 | 7.3
7.9 | 88.3 | 97.3 | | Bills T2 8.000 J2 1.694 Wt1 2291 Grade M4 T2 6.000 J3 2.002 Wt3 719 Duct 0.000 T4 4.000 J4 1.001 Wt3 242 YokeTyp STD T6 0.000 J5 0.000 Wt5 0 Cycles 7 T7 0.000 J7 0.000 Wt7 0 Lams 1 T8 0.000 J8 0.000 Wt8 0 Lams 1 T8 0.000 J8 0.000 Wt7 0 Tube: TSCL 0.125 TSID 10.500 TSLDN 1 TSD TD 0.000 TSLD 0.124 LV Data; PV 277.1 SID 10.748 Ac 1. PI 1804.2 HT 30.000 WT 6 N 14 SB 1.713 LVCWT 2 Wire 0.040 x 30.000 SOD 14.174 STR 6.00 N-14 STR 6.00 CS 19 N-14 STR 6.00 CS 19 N-14 LV 0.250 CS 19 SD (2) 0.500 PGS STR P0 0.500 | J 9.009
W 36.750
Z 23.125
Z1 0.000
CWT 4055 | | | (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7.9 | 93.5 | 97.9 | | State M4 | J 9.009
W 36.750
Z 23.125
Z1 0.000
CWT 4055 | Tot: 182 | | | | | ****** | | Legs 3 T5 0.000 J5 0.000 Wt3 719 Legs 3 T5 0.000 J5 0.000 Wt5 0 Cycles 7 T7 0.000 J5 0.000 Wt5 0 Cycles 7 T7 0.000 J7 0.000 Wt6 0 Lams 1 T8 0.000 J8 0.000 Wt6 0 Tube: TSCL 0.125 TSID 10.500 TSLDN 1 TSD TD 0.000 TSLDN 1 TSD TD 0.000 TSLDN 1 TSD WT 0.000 W | J 9.009
W 36.750
Z 23.125
Z1 0.000
CWT 4055 | Tot: 182 | | | | | | | YokeTyp STD T6 0.000 J5 0.000 Wt5 0 Cycles 7 T7 0.000 J6 0.000 Wt6 0 Lams 1 T8 0.000 J7 0.000 Wt7 0 Lams 1 T8 0.000 J8 0.000 Wt8 0 Tube: TSCL 0.125 TSID 10.500 TSLDN 1 TSD TD 0.000 TSLDN 1 TSD LV Data: PV 277.1 SID 10.748 AD 1.24 LV Data: PV 277.1 SID 10.748 AD 1. PI 1804.2 HT 30.000 WT 4 FI 1804.2 HT 30.000 WT 4 Wire 0.040 x 30.000 SOD 14.174 STR 0.0 Wire 1.40 X 30.000 SOD 14.174 STR 0.0 N 14 LW 4.00 WSI 0.25 SD (2) 0.500 PGS STR PO 0.506 KWSI 0.25 | 2 23.125
21 0.000
CWT 4085 | Tot: 182 | | | | | | | Cycles 7 T7 5.000 J6 0.000 Wt6 0 Lams 1 T8 0.000 J7 0.000 Wt7 0 0 Lams 1 T8 0.000 J8 0.000 Wt7 0 0 Lams 1 T8 0.000 J8 0.000 Wt7 0 0 LT 0.000 TSLDN 1 TSD 0.000 TSLDN 1 TSD 0.000 WT 0.0 | 2 23.125
21 0.000
CWT 4085 | Tot: 182 | | | | | | | Lams 1 T8 0.000 J8 0.000 Wt7 0 Tube: TSCL 0.125 TSID 10.500 TSLDN 1 TSD TD 0.000 TSLD 0.124 LV Data; PV 277.1 SID 10.748 Ac 1. PI 1804.2 HT 30.000 WT 6 Wire 0.040 x 30.000 SOD 14.174 STR 6.00 N 14 SB 1.713 LVCWT 1 Wire 0.1040 x 30.000 SOD 14.174 STR 6.00 N 14 LV BRW 1 x 1 VD-T/L 1.0 IR 5 N-Lay 14 LW 4.00 WSI 0.20 SD (2) 0.500 PGS_STR P0 0.506 KWSI 0.20 | 41 0.000
CWT 4055 | Tot: IR2 | | | | | | | Tube: TSCL 0.125 TSID 10.500 TSLDN 1 TSD TD 0.000 TSLD 0.124 TSD 0.125 0 | 1111111111 | Tot: 182 | | | | | | | Tube: TSCL 0.125 TSID 10.500 TSLDN 1 TSD TD 0.000 TSLD 0.124 LV Data: PV 277.1 SID 10.748 Ac 1 PI 1804.2 HT 30.000 WT 4 SB 1.713 LVCWT 2 Wire 0.240 x 30.000 SOD 14.174 STR 6.0 TD 0.000 TSLDN 1 TSD WT 4 SD 1.713 LVCWT 2 Wire 0.240 x 30.000 SOD 14.174 STR 6.0 TD 0.250 CS 19 LL 48.00 WSI 0.25 SD (2) 0.500 PGS STR PO 0.506 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | Tot: 182 | | | | | | | PV 277.1 SID 10.748 AC 1 PI 1804.2 HT 30.000 WT 4 N 14 SB 1.713 LVCWT 1 Wire 0.240 x 30.000 SOD 14.174 STR 5.0 HXW 1 x 1 VD-T/L 1.0 IT 0.250 IR 5 NLig 14 LW 4.00 WSI 0.25 SD (2) 0.500 PGS_STR PO 0.506 KWSI 0.25 | 0.000 | Pot: IR2 | | | | | | | PV 277.1 SID 10.748 AC 1 PI 1804.2 HT 30.000 WT 4 N 14 SB 1.713 LVCWT 1 Wire 0.240 x 30.000 SOD 14.174 STR 5.0 HXW 1 x 1 VD-T/L 1.0 IT 0.250 IR 5 NLig 14 LW 4.00 WSI 0.25 SD (2) 0.500 PGS_STR PO 0.506 KWSI 0.25 | | | 0.90 | 1X4 6 1 | | * * * * * * * | | | PV 277.1 SID 10.748 AC 1 PI 1804.2 HT 30.000 WT 4 N 14 SB 1.713 LVCWT 1 Wire 0.240 x 30.000 SOD 14.174 STR 5.0 HXW 1 x 1 VD-T/L 1.0 IT 0.250 IR 5 NLig 14 LW 4.00 WSI 0.25 SD (2) 0.500 PGS_STR PO 0.506 KWSI 0.25 | | town to | | W. 31 | * 124 | 6.21 | X/R 6.8 | | Wire 0.040 x 30.000 MLT 39.15 S 1.5 Haw 1 x 1 ST 6.0 T/D-T/L 1.0 IT 0.250 CS 19 NLay 14 LW 4.00 WSI 0.3 SD (2) 0.500 PGS_STR P0 0.506 KWSI 0.3 | | Locate LL | TL | REE | EXC M | S. T. | | | Wire 0.040 x 30.000 MLT 39.15 S 1.5 Haw 1 x 1 ST 6.0 T/D-T/L 1.0 IT 0.250 CS 19 NLay 14 LW 4.00 WSI 0.3 SD (2) 0.500 PGS_STR P0 0.506 KWSI 0.3 | 2500 | 1 30 125 | 35 24455 | 98.71 | 1.1 439 | 91ex | pf %Reg | | Wire 0.040 x 30.000 MLT 39.15 S 1.5 Haw 1 x 1 ST 6.0 T/D-T/L 1.0 IT 0.250 CS 19 NLay 14 LW 4.00 WSI 0.3 SD (2) 0.500 PGS_STR P0 0.506 KWSI 0.3 | 535 | 0.75 767 | 20 16847 | 98.71
98.89
99.04 | 1.0 332 | 0 1 61 | 1.0 1.09 | | \(\text{YD-T/L} \) 1.0 \\ \text{IR} \) 5.250 \\ \text{R} \) 5.250 \\ \text{CB} \) 19 \\ \text{LW} \) 4.90 \\ \text{WSI} \) 0.35 \\ \text{SD} \(\text{2} \) 0.500 \\ \text{PGS} \) 57K \\ \text{PO} \) 0.506 \\ \text{KWSI} \) 0.25 | 259 | 0.50 330 | 17 2729 | 79.04 | 0.9 251 | 3 8 20 | V-7 1.61 | | N-Lay 14 LT 0.250 CS 19
WLI 0.209 LW 4.00 WSI 0.3:
SD (2) 0.500 PGS_STK PO 0.506 KWSI 0.2: | 3035 | 0.25 84 | 5 4148 | 99.11
98.95 | | | 0.8 4.50
0.7 5.08 | | N-Lay 14 LW 4.90 CS 19 NLI 0.009 LL 48.00 KWSI 0.2: SD (2) 0.500 PGS_STR PO 0.506 KWSI 0.2: | | | | 20,34 | Snd 64.00 | } | 0.6 5.49 | | SD (2) 0.500 PGS STR PO 0.500 WSI 0.3 | | C&C Wt & | 972 | | | | | | SD (2) 0.500 PGS STK PO 0.506 TRANS COM | 99 | Commission | | | | Sub | TOC 15792 | | TRANS COM | | Costs: Tap | De | Cor
Tub
LV Con | e sang | | | | DD: PCCrerent | * | Ī. | 19 | Tub | e 132 | | Encl 444 | | ESSINSTE A DAG | | 14 | V
IV | LV Con | d 3378 | | Base 382 | | DOSTYP MA | 9.000 | Cas | former and | III | 9 301 | AND DESCRIPTION OF THE PARTY NAMED IN | NAME AND ADDRESS OF THE PARTY O | | and the second s | | 1 01 | du . | Lead | 1 493 | ************************ | The second secon | | | 5 | Star. | k | ESS Ins | 621 | *** | Constitution and and areas | | | | | | ESS Cond | 0 | ** ** *** | The second secon | | Data: PV 12470.0 SID 16.676 AC 0.638 | | LV (| 3 | HL Ins | 820 | section you state of section | A Technology was Alexander of manager | | PI 42.2 HT 28.976 AC 0 325 | 54 | HV.E | 3 | HV Cond | 3771 | AMERICAN AND PROPERTY. | | | SB 1.921 HUCKER 247 | → | SM
Weld | *************************************** | Ins | Ü | | | | Wire 8,100 v c 255 ML/T 98.42 | 1 | | | Epoxy | 0 | Tor An | c's | | MxW 1 V , " 1208 SOD 20.518 | 0 | ** ** ** ** ** | | Lead | 4.3 | | - 3 | | -P/L 16.0 IR 71s | 8 | | | 2243 | 8.6 | | | | - far | | | | Sticks
Keyspacer | 106 | Mat 1] | | | W51 0 31A | | | | Standoff | 2.5 % | 4 KD C/C/I | | | | Au | | | Frame | 337 | | The state of s | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | Paint | of \$400 annual | rnasemar | 8.7 | Cost | Advance and parameters | | tants: LVSBF) oct | ž. | Test | | Sub Cost | 15792 | ERMAC | £ 1 | | 1.093 HVSBF 1.093 | 0.955 | Tor. His | | Ada passasangalasananya massasana ay as | non-sport proposition | Net sp | 1 | | | 9.255 | | | ************************************** | PROFESSION ASSESSMENT OF | Freight | V | | LUNCS LVABF 1.800 HVABF 1.030 NLCST (| 9.pea : | | | Total CaC | * * * * | | | | LVBEKI c coo LLCST A | 0.000 | | | | Adams at Man | Tot sp | | | IVWC S LVBRK2 0.000 HVBRK1 1.000 HVBRK1HT 0 | 7.000 man. | e. | ****** | ata: | * * * * | | | | W. WIZ | 1.000 66 | v. 0
51 ≈ | ! Test D | ata: | | ~ ~ ~ ~ ~ ~ | | | | | 16 6 | aa/fa | LV | | 1217 | , f | | | 63 | | | | | 11.0 | Iex ; | | | | | | | | *** *********************************** | d 9000000000000000000000000000000000000 | | EINTYP WA | 200 (59) | 6 0 | Toral | | *************************************** | | dw. | | YINTYD MAN. KVWREINTYD MA | i | , | | or produced a party produced and a see beauty of the | | | COA : | | HALTVAINLAD PY | 1 | | | | *************************************** | The same and the same and | * Albert producer sports a | | MOLD Palse LVINTMOLDI 4.000 LVINTMOLDI 6.00 | 1 | Ī | | | | | | | MOLD False HVINTMOLD: 0.300 HVINTMOLD: 0.30 | 0.0 | : | | | | | | EXPECTED 12: 6:21 x 1.608 = 6:26% (9:75 MTM) OTHER JOBS: DS90629