Surface Roughness（JIS B 0601－2001）

Theoretical（Geometrical）Surface Roughness

Theoretical Surface Roughness at Turning indicates the minimum roughness value from the cutting conditions and it is shown by the formula as follows：

$$
R z(h)=\frac{f^{2}}{8 R(r \varepsilon)} \times 10^{3}
$$

Rz（h）：Theoretical Surface Roughness 〔 $\mu \mathrm{m}$ 〕 f ：Feed Rate［mm／rev〕 $R(\mathrm{r})$ ：Corner Radius of Insert 〔mm〕

How to Obtain Surface Roughness Values

Type	Symbol	How to Obtain	Explanation
	Rz	Ry is obtained from the distance in micron meter between the highest peak and the lowest valley in the range of sampled reference length (ℓ) to the direction of mean line of the roughness curve． $R z=R p+R v$	
	Rzuls	Rz is obtained from the total in micron meter of the mean value of the each distance between the mean line and 5 peaks（ $Y p$ ） from the highest one，and the mean value of the each distance between the mean line and the 5 valleys（ Yv ）from the lowest one， of the roughness curve in the range of sampled reference length＂ℓ＂． $R z u l s=\frac{\left(Y_{p 1}+Y_{p 2}+Y_{p 3}+Y_{p 4}+Y_{p 5}\right)+\left(Y_{11}+Y_{v 2}+Y_{v 3}+Y_{v 4}+Y_{v 5}\right)}{5}$	Yp1，Yp2，Yp3，Yp4，Yp5： Distance from the mean line to highest 5 peaks in the range of sampled reference length＂ℓ＂ Yv1，Yv2，Yv3，Yv4，Yv5： Distance from the mean line to the lowest 5 valleys in the range of sampled reference length＂＂
	Ra	Ra is obtained from the following formula in micron meter when the roughness curve is expressed by $y=f(x)$ ，taking X－axis to the mean line direction and Y－axis to the vertical magnification of the roughness curve in the range of sampled reference length＂ℓ＂． $\mathrm{Ra}=\frac{1}{\ell} \int_{0}^{\ell}\{\mathrm{f}(\mathrm{x})\} \mathrm{dx}$	

Relationship with Triangle Symbol

Arithmetical Mean Roughness $\mathrm{Ra}(\mu \mathrm{m})$	Max．Height Roughness $\mathrm{Rz}(\mu \mathrm{m})$	Ten PointsMean Roughness RzJIs $(\mu \mathrm{m})$	Note： （Relationship with Triangle $)$
0.025	0.1	0.1	
0.05	0.2	0.2	\checkmark
0.1	0.4	0.4	
0.2	0.8	0.8	
0.4	1.6	1.6	
0.8	3.2	3.2	∇
1.6	6.3	6.3	
3.2	12.5	12.5	∇
6.3	25	25	
12.5	50	50	∇
25	100	100	∇

Note：Finishing symbol（Triangle ∇ and wave～）was abolished from JIS standard from 1994 Revision．

－How to Indicate

Example

（1）When Ra is $1.6 \mu \mathrm{~m} \rightarrow 1.6 \mu \mathrm{mRa}$
（2）When Rz is $6.3 \mu \mathrm{~m} \rightarrow 6.3 \mu \mathrm{mRz}$
（3）When Rzuls is $6.3 \mu \mathrm{~m} \rightarrow 6.3 \mu \mathrm{mRz}$ uss

Indication in JIS Standard

Note：The indications of $R a$ and $R z$ are different．

Surface Roughness Symbol Caution

The above information is based on JIS B 0601－2001． However，some symbols were revised as shown in the right table in accordance with ISO Standard from JIS B 0601－2001 version．
Ten Points Mean Roughness（Rz）was eliminated from 2001 version but it still remains as RzJIS reference，since it was popular in Japan．

Type	Symbol of JIS B 0601－1994	Symbol of JIS B 0601－2001	
Max．Height Roughness	Ry	\rightarrow	Rz
Ten Points Mean Roughness	Rz	\rightarrow	（RzJIS）
Arithmetical Mean Roughness	Ra	\rightarrow	Ra

[Technical Data]
Surface Roughness
[Technical Data]
Drawing Indications of Surface Texture

xcerpts from

1. Varieties of Surface Roughness Indicators

Definitions and presentations of arithmetic average roughness(Ra), maximum height(Ryy), 10 spot average roughnes((Rz), average concave to convex distance(Sm), average distance between local peaks S and load length rate tp are given as parameters indicating the surface roughness of an industrial product. Surface roughness is the arithmetical average of values at randomly extracted spots on the surface of an object. [Centerline average roughness(Ra75)is defined in the supplements to JIS B 0031 and JIS B 0601.]

Typical calculations of surface roughness

Arithmetic Average Roughness Ra A portion stretching over a reference length in the direction in which the average line extends is cut out from the roughness curve. This portion is presented in a new graph with the X axis extending in the same direction as the average line and the Y axis representing the magnitude. Ra is represented by the equation shown at right, in microns(um).	
Maximum Height Ry A portion stretching over a reference length in the direction in which the average line extends is cut out from the roughness curve. The gap between the peak line and the trough line is measured in the direction in which the magnitude axis extends, in microns(um). Reference A portion without an abnormally high peak or abnormally low trough, which may be regarded as a flaw, is cut out over the reference length.	
Ten-spot Average Roughness Rz A portion stretching over a reference length in the direction in which the average line extends is cut out from the roughness curve. The average of the levels(Yp)of the highest peak to the fifth highest peak as measured from the average line and the average of the levels(Yp)of the lowest trough to the fifth lowest trough similarly measured in the said portion are added together. Rz is this sum, in microns $(\mu \mathrm{m})$.	$R z=\frac{\left\|Y_{p 1}+Y_{p 2}+Y_{p 3}+Y_{p 4}+Y_{p 5}\right\|+\left\|Y_{v 1}+Y_{v 2}+Y_{v 3}+Y_{v 4}+Y_{v 5}\right\|}{5}$ $Y_{p 1}, Y_{p 2}, Y_{p 3}, Y_{p 4}, Y_{p 5}$: Levels of the highest peak to the fifth highest peak in the said portion with the reference length ℓ. $\mathrm{Yvv}_{1}, \mathrm{Yv}$, Yv3, Yv4, Yv5: Levels of the lowest trough to the fifth lowest trough in the said portion with the reference length ℓ.

Reference Relation between Arithmetic Average Roughness(Ra)and Conventional Parameters

Arithmetic Average Roughness Ra		
Standard Series	$\xrightarrow{\text { cutoit Vilue }}$	Graphical Reperesentation of Surace Texture
0.012 a	0.08	$0.012 / \sim 0.2 /$
$\begin{aligned} & 0.025 \text { a } \\ & 0.05 \end{aligned}$	0.25	
0.2 a	0.8	
$\begin{array}{ll} 0.4 & a \\ 0.8 & a \\ 1.6 & a \end{array}$		$0.4 /$ ~ 1.6
$\begin{array}{ll} 3.2 & \mathrm{a} \\ 6.3 & \mathrm{a} \end{array}$	2.5	$\sqrt[3.2]{\sim} \sim 6.3$
$\begin{array}{ll} \hline 12.5 & \mathrm{a} \\ 25 & \mathrm{a} \end{array}$	8	$\sqrt[12.5]{ } \sim \sqrt[25]{ }$
$\begin{array}{rr} 50 & \mathrm{a} \\ 100 & \mathrm{a} \end{array}$		$50 / \sim 100 /$

[^0]
1. Positions of Auxiliary Symbols for Surface Symbol

A surface roughness value, cut-off value or reference length, machining method, grain direction, surface undulation, etc. are indicated around the surface symbol as shown in Fig. 1 below.
Fig. 1 Positions of Auxiliary Symbols

b : Machining Method
c : Cut-Off Value, Evaluation Length
c^{\prime} : Reference Length, Evaluation Length
d : Grain Direction
f : Parameter other than Ra(tp:Parameter/Cut-Off Level)
g : Surface Undulation(UIS B 0610)
Reference These symbols except a and f are provided when they are needed

Reference		
Under ISO 1302, a finish range should be indicated as e in Fig. 1.		
Code	Meaning	Illustration

Code	Meaning	The trace left by a cutting instrument is parallef to the projection plane in the drawing. Ex. Shaped Surface

Examples of Graphical Representation of Suracee Texture Surface Symbol

Removal of Material by Machining is required
位

Removal of Material is Prohibited

Grain Direction

Upper and Lower Limits of Ra

Machining Method

Arithmetical mean roughness Ra		0.025	0.05	0.1	0.2	0.4	0.8	1.6	3.2	6.3	12.5	25	50	100
Formerdesignationofsuffaceroughness	Maximum peak Ry	0.1	0.2	0.4	0.8	1.6	3.2	6.3	12.5	25	50	100	200	400
	Rmax.	-S												
	Standard values of standard lengt (mm)	0.25				0.8			2.5		8		25	
	Triangular indication	\%VV				V7V			$\nabla \nabla$		∇		-	
Working method	Forging								Precis	sion				
	Casting								Precis	sion				
	Die casting													
	Hot rolling													
	Cold rolling													
	Drawing													
	Extruding													
	Tumbling													
	Sandblasting													
	Rolling													
	Face cutter grinding						Prec	ion						
	Planing													
	$\begin{aligned} & \text { Caving } \\ & \text { (Slotting) } \end{aligned}$													
	Cutter grinding						. Precis	ion						
	Precision boring													
	Filing						. Precis	ion						
	Round grinding				recision		Fine		Med	ium		Rough		
	Boring						. Precis	ion						
	Drilling													
	Reaming					Prec	ision							
	Broach grinding					Prea	dision							
	Shaving													
	Grinding			Precison.	Fine		Medium			Rough				
	Hone finishing			$\xrightarrow{\text { Precision }}$										
	Super finishing	Precision												
	Buffing			Precision										
	Paper finishing			. Precision										
	Lapping	Precision												
	Liquid honing			$\xrightarrow{\text { Precision }}$										
	Burnishing													
	Surface rolling													
	Electic discharge caving													
	Wire cut electic spark													
	Chemical polishing					Precision								
	Electrolytic abrasion	Precision												

Kinds and Symbols of Geometrical Tolerances

Lines used in the drawingss in the column of" definition of tolerance eone" indicate the following meanings:
Thick solid line or broken line Feature on
Thin altermate long and short dash line Center line

[^0]:

