Description:

Provide a continuous torsional brace per AISC Appendix 6. Provide shear studs connection the beam to the concrete slab Find the required strength and stiffness of the slab to bracing the beam

Material properties:

Concrete at 28 days: $f_c := 3000 \cdot psi$ $E := E_c(f_c, 0)$ $E = 3155.92 \, ksi$ Reinforcing Steel Yield Stress: $f_y := 60 \cdot ksi$ ASTM A992 Steel rolled shapes: $F_y := 50 \cdot ksi$

Code Parameters:

Safety Factor per 6.2.a: $\Omega := 3$

Geometry:

Assumed Beam Spacing: Spacing:= 30ft

For an interior beam, the slab stiffness and strength comes from two adjacent spans, one each side of the beam: N := 2

By trial and error, find the unbraced length that gives the design moment: $L_q := 10.25 \cdot ft$

Loading: Assumed moment diagram:

Use Beam Size: Depth = 30 in Wt = 116 plf Distance between the flanges: $h_0 := d - 2t_f$ $h_0 = 28.31$ in $t_w = 0.57$ in

By trial and error, find the unbraced length that gives the design moment: $L_q = 10.25 \, \text{ft}$

Torsional Bracing between the supports:

The distortional stiffness for an unstiffened web (A-6-13):
$$\beta_{sec} := \frac{3.3 \cdot E_s \cdot t_w^3}{12 \cdot h_o}$$
 $\beta_{sec} = 50.8 \frac{\text{kip} \cdot \text{in}}{\text{in}}$

$$C_{b} := \min \left(\frac{12.5 \cdot M_{max}}{2.5 M_{max} + 3 \cdot M_{A} + 4 \cdot M_{B} + 3 M_{C}}, 3 \right) \qquad C_{b} = 2.07$$

The required bracing moment: $M_{br} := \frac{.024 \cdot M_r}{C_b \cdot L_q}$ $M_{br} = 1.02 \frac{k'}{ft}$

Required brace stiffness excluding web distortion:
$$\beta_T := \Omega \cdot \frac{2.4 \cdot M_{max}^2}{E_s \cdot I_y \cdot C_b^2} \qquad \beta_T = 33.8 \frac{k'}{ft}$$

$$if(\beta_T \leq \beta_{sec}, OK, NG) = "O.K."$$

The required slab torsional bracing stiffness $\beta_{Tb} \coloneqq \frac{\beta_T}{1 - (\beta_T \div \beta_{sec})}$ $\beta_{Tb} = 100.6 \frac{\text{kip} \cdot \text{in}}{\text{in}}$

$$N \cdot \frac{2 \cdot E \cdot \left(t^3 \div 12\right)}{\text{Spacing}} = \beta_{\text{Tb}} \qquad t_{\text{req}} \coloneqq \text{Find}(t)$$

Solve for slab thickness. assuming single curvature of the slab: Given

Uncracked slab thickness required:
$$t_{req} = 3.25$$
 in

Solve for the cracked slab moment of inertia:
$$I_{cr} \coloneqq \frac{\beta_{Tb} \cdot \text{Spacing}}{N \cdot 2 \cdot E}$$
 $I_{cr} = 34.4 \frac{\text{in}^4}{\text{ft}}$