Determination of the maximum skin temperature of a reformer tube as per API 530

Required Parameters:

Reformer Radiant Box Parameters:

Design Temperature of Tubes $T_{des} := 1675 \, ^{\circ}F$

Average Operating Pressure of Tubes $P := 575 \cdot psi = 39.645 \cdot bar$

Centre-to-Centre Distance Between Tubes $TS := 203.2 \cdot mm$

Outer Tube Diameter $D_0 := 132.08 \cdot mm$

Inner Tube Diameter $D_i := 107.2 \cdot mm$

Number of tubes N := 280

Thermal Conductivty of tube metal $\lambda_{tm} \coloneqq 42.2 \cdot \frac{W}{m \cdot K}$

Average radiant heat flux density for outside surface $q_{Rave} := 12500 \cdot \frac{W}{m^2}$

Thickness of coke $\delta_{coke} \coloneqq 0 \cdot mm$

Thickness of tube $\delta_{tav} := 12.5 \cdot mm$

Thermal conductivity of coke/scale $\lambda_{coke} \coloneqq 10 \cdot \frac{W}{m \cdot K}$

Length of reformer tube $L := 42 \cdot ft = 12.802 \text{ m}$

Reformed Gas Process Parameters:

Temperature of vapor leaving reformer $T := 800 \,^{\circ}\text{C}$

Flow rate of steam+feed gas (total) $m_{tot} := 3.841 \cdot 10^5 \cdot \frac{lb}{hr} = 48.396 \cdot \frac{kg}{s}$

Absolute viscosity of vapor at bulk temp $\mu := 0.0186 \cdot Pa \cdot s$

Thermal conductivity of vapor $\lambda := 0.1805 \cdot \frac{W}{m \cdot K}$

Specific heat capacity of vapor $c := 2283 \cdot 10^3 \cdot \frac{J}{kg \cdot K}$

Calculations:

Mass flow per tube is given by:

$$m := \frac{m_{tot}}{N} = 0.173 \, \frac{kg}{s}$$

Flow area within tube is given by:

$$A_i := \frac{\pi}{4} \cdot D_i^2 = 9.026 \times 10^{-3} \text{ m}^2$$

$$q_{mA} := \frac{m}{A_i} = 19.15 \frac{kg}{m^2 \cdot s}$$

Areic flow is then calculated:

Reynold's Number:

$$Re := \frac{D_i \cdot q_{mA}}{\mu} = 110.37$$

Prandtl's Number:

$$Pr := \frac{c \cdot \mu}{\lambda} = 2.353 \times 10^5$$

Heat Transfer Coefficient Adjustment Factor:

$$C_1 := 1.2$$

Heat transfer cofficient of gas can now be calculated as follows

$$K := \frac{\lambda}{D_{i}} \cdot \begin{bmatrix} 3.65 + \frac{0.0668 \cdot \text{Re} \cdot \text{Pr} \cdot \frac{D_{i}}{L}}{2} \\ 1 + 0.04 \cdot \left(\text{Re} \cdot \text{Pr} \cdot \frac{D_{i}}{L} \right)^{3} \end{bmatrix} \cdot C_{1}^{0.14} = 178.571 \cdot \frac{W}{\text{m}^{2} \cdot \text{K}}$$

Factor accounting for longitudinal heat-flux density variations

$$F_{L} := 1.05$$

Factor accounting for effect of tube metal temp. on radiant heat flux density

$$F_T := 1$$

Factor accounting for circumferential heat flux density based on TS/D_o

$$F_{circ} := 1.28$$

Convective heat flux around tubes

$$q_{conv} := 0 \cdot \frac{W}{m^2}$$

Based on the above factors, the maximum heat flux density at any point within a row of tubes can be estimated as follows:

$$q_{Rmax} := F_{circ} \cdot F_L \cdot F_T \cdot q_{Rave} + q_{conv} = 1.68 \times 10^4 \cdot \frac{W}{m^2}$$

Tempterature difference across the fluid film ΔT_{ff}

$$\Delta T_{\text{ff}} := \frac{q_{\text{Rmax}}}{K} \cdot \left(\frac{D_{\text{o}}}{D_{\text{i}} - 2 \cdot \delta_{\text{coke}}}\right) = 115.915 \cdot K$$

Tempterature difference across coke/scale ΔT_{coke}

$$\Delta T_{coke} := \frac{q_{Rmax} \cdot \delta_{coke}}{\lambda_{coke}} \cdot \left(\frac{D_o}{D_i - \delta_{coke}}\right) = 0$$

Tempterature difference across tube wall ΔT_{tw}

$$\Delta T_{tw} := \frac{q_{Rmax} \cdot \delta_{tav}}{\lambda_{tm}} \left(\frac{D_o}{D_o - \delta_{tav}} \right) = 5.496 \cdot K$$

Maximum tube metal temperature T_{max}

$$T_{max} := T + \Delta T_{ff} + \Delta T_{coke} + \Delta T_{tw} = 1194.562 \, K$$

$$T_{max} = 1690.541 \cdot {}^{\circ}F$$