
MOTION ANALYSIS  FEB-2006 

MOMENTS OF INERTIA  1 

Calculating and Using Moments of Inertia 

New motion system designers often get confused when trying to deal with rotary moments of 

inertia (MOI). There are several pitfalls for the unwary. The first is simply the terminology. 

Often, “inertia” is used as shorthand for “moment of inertia”. Strictly speaking, this is incorrect, 

as “inertia” refers to mass, as resistance to linear acceleration, whereas “moment of inertia” refers 

to resistance to angular acceleration. However, this shorthand is very common, so you must judge 

by context what is really being discussed. 

Next, you cannot talk about a rotary moment of inertia without specifying the axis of rotation. In 

the context of motion system design, you will almost never see the axis of rotation explicitly 

specified. However, in virtually all cases, we are talking about cylindrically symmetrical objects, 

with the axis of rotation being the cylinder’s centerline, so this typically is not much of a 

problem. 

The biggest point of confusion for most novices has to do with the units of moment of inertia. 

This confusion stems from the difference between weight and mass. In common, non-technical 

usage, we use the two interchangeably, but in technical usage it is vital that we distinguish 

between the two. Weight is the force that a mass produces in a gravitational field and is 

proportional to the strength of that gravitational field; mass is independent of the strength of the 

gravitational field, and in our context, is a measure of resistance to linear acceleration. 

The confusion is compounded by the fact that the common units in the English system – pounds 

and ounces – are units of weight, but the common units in the metric (SI) system – grams and 

kilograms – are units of mass. Again, in common usage we treat these as equivalent: we may see 

the net weight of a loaf of bread in the grocery store listed as both 2.2 pounds and 1 kilogram. 

Strictly speaking, though, we are talking about the weight force created by a mass of 1 kilogram 

in normal earth gravity. 

The fundamental equation we deal with here is T=J·α; torque equals moment of inertia times 

angular acceleration. This is Newton’s Second Law in rotary form. Consistency of units is of 

course vital in using this equation. The units of angular acceleration are (1/time
2
), usually 

expressed as rad/sec
2
. Remember that a radian (rad), being the ratio of a length to a length 

(circumference to radius) is not a real unit; it is typically used as a “placeholder” unit which can 

be discarded when it no longer helps to explain what the calculations are doing. (In teaching 

college courses, I have seen many students very puzzled when they carried through the radian 

units to the end, wondering why they did not “cancel out”.) 

The units of moment of inertia are (mass·length
2
). In the metric system, you will usually see this 

expressed as kilogram-meters
2
 (kg-m

2
); sometimes as gram-centimeters

2
 (gm-cm

2
) for smaller 

parts. The units of torque are (force·length), typically expressed in the metric system as newton-

meters (N-m), where a newton (N) is the force required to accelerate 1 kilogram at one 

meter/second
2
. So 1 N is equal to 1 kg-m/sec

2
, and 1 N-m is equal to 1 kg-m

2
/sec

2
. So you can 

simply multiply your moment-of-inertia value in kg-m
2
 by your angular acceleration value in 

rad/sec
2
 and get your torque value in N-m. 

In the English system, moments of inertia are usually expressed in units of (force·length·time
2
), 

either pound-feet-seconds
2
 (lb-ft-sec

2
), pound-inch-seconds

2
 (lb-in-sec

2
), or ounce-inch-seconds

2
 

(oz-in-sec
2
). Since force can be expressed as mass times acceleration (mass·length/time

2
), these 

units for moment of inertia can be seen to be equivalent to units of (mass·length
2
).  
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Computing torque in the English system with the equation T=J·α is straightforward, as well. 

Torque, expressed in pound-feet (lb-ft), pound-inches (lb-in), or ounce-inches (oz-in), can be 

obtained by multiplying the moment-of-inertia value expressed in one of the above units by the 

acceleration in rad/sec
2
 without further unit conversions. 

Now, where the confusion really gets going is in the attempts by some to express MOI in English 

units that look familiar to metric users, or metric units that look familiar to English users. So we 

may see MOI expressed in “English” units of pound-feet
2
 (lb-ft

2
), pound-inches

2
 (lb-in

2
), or 

ounce-inches
2
 (oz-in

2
), or in “metric” units of kilogram-meter-seconds

2
 (kg-m-sec

2
) or gram-

centimeter-seconds
2
 (g-cm-sec

2
). In addition to being inconvenient – you cannot simply multiply 

this value by the angular acceleration in rad/sec
2
 and get torque in any reasonable units – it seems 

to be technically incorrect. What is going on here? 

When the English units of pounds and ounces are used here, they are actually being used as units 

of mass. Strictly speaking, these are pounds-mass (lbm) and ounces-mass (ozm). That is, these are 

expressions of the mass required to produce a weight of a pound-force (lbf) or an ounce-force 

(ozf), respectively, in normal earth gravity. Conversely, when the metric units of grams and 

kilograms are used in this manner, they are really used as units of weight: grams-force (gf) and 

kilograms-force (kgf), the weight produced by a gram-mass (gm) and a kilogram-mass (kgm), 

respectively, in normal earth gravity. However, you will seldom see the units explicitly 

distinguished as units of mass or force, requiring you to figure out which is being specified. 

So if one pound-mass produces one pound-force, and one kilogram-mass produces one kilogram-

force, is a moment of inertia of one pound-foot
2
 equal to one pound-foot-sec

2
, or one kilogram-

meter
2
 equal to one kilogram-meter-second

2
? No! There is a missing factor of “g”, the 

acceleration of earth’s gravity (even if your system will be operating on the moon!): 9.8 m/sec
2
, 

32.2 ft/sec
2
, or 386 in/sec

2
. 

So, 1 lbf-ft-sec
2
 is equal to 32.2 lbm-ft

2
; 1 lbf-in-sec

2
 is equal to 386 lbm-in

2
; 1 kgf-m-sec

2
 is equal to 

9.8 kgm-m
2
. This means that you must use this factor of g in the equation T=J·α when you employ 

these “alternate” MOI units. If you are using the alternate English units, you must divide by g in 

the equation; if you use the alternate metric units, you must multiply by g. 

 



MOTION ANALYSIS  FEB-2006 

MOMENTS OF INERTIA  3 

Derivation of Moment-of-Inertia Values 

It is worthwhile to understand how moment-of-inertia values are derived, even if you typically 

only pull values and formulas from tables in catalogs. Having a fundamental understanding of the 

basic principles can allow you to catch mistakes (which are common) and to prevent you from 

making your own. 

Start with a particle of infinitesimal mass dm that you are trying to rotate about a center point C 

that is a distance r away with an infinitesimal unit of torque dT. 

 

The force dF on the unit of mass is related to this torque by: 

r

dT
dF   

We can relate this force to the acceleration of the particle using Newton’s Second Law: 

admdF   

We relate this linear acceleration a to the angular acceleration α with: 

ra   

Substituting both of these relationships back into the first equation, we get: 

dmr
r

dT
   

dmrdT  2  

But by the definition of moment of inertia as “resistance” to angular acceleration from applied 

torque, we have for the infinitesimal case: 

 dJdT  

This means that infinitesimal moment of inertia of the particle can be expressed as: 

dmrdJ  2
 

Next, using simple integration, we can derive the expression for the moment of inertia of a hollow 

circular cylinder of outer radius Ro, inner radius Ri, and length L, with material mass density ρ, 

about its center axis. For a solid cylinder, we simply set Ri to 0. Starting from the infinitesimal: 

dT α 
a 

dm 

dF 
r 

C 
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We integrate this over the volume V of the cylinder: 

dldrdrJ
L R

R

o
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If, instead of the mass density ρ of the cylinder material, we know the mass m of the entire 

cylinder, we can calculate: 

 LRRVm io

22    

Then we can separate out the mass terms in the expression for J with: 

   2222

2

1
ioio RRLRRJ    

 22

2

1
io RRmJ   

Note that you will sometimes see this formula erroneously given with a minus sign instead of a 

plus sign! If the hollow cylinder has a wall thin enough that it can reasonably be approximated as 

having a single radius R, the moment of inertia can be estimated as: 

2mRJ   

In the English system, you may have the weight density, which we will call ρw, of the material 

(e.g. lb/in
3
) or the weight W of the cylinder. In these cases, you must divide by g, the acceleration 

of earth’s gravity, in the appropriate equations. In terms of density: 

 LRR
g

J io

w 44

2



 

In terms of cylinder weight: 

 22

2

1
io RR

g

W
J   
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Reflected Inertia 

In designing motion systems, it is essential to understand the concept of “reflected inertia”. Any 

time there is a power transmission device, such as a gear train, a set of pulley wheels connected 

by belts, or a screw, one must consider how the inertia on one side of the device appears, or 

“reflects” to the other side. The reflected inertia is the amount of the equivalent inertia (or 

usually, moment of inertia) that would be directly coupled to the other side. Almost always, we 

will look at the system from the motor’s side of the transmission device, considering what the 

reflected inertia of the load side is to the motor. 

Consider the simplified diagram of a motor coupled to a load. Here they are coupled through 

simple friction wheels, but the same relationships would apply to gears, or to pulleys connected 

by a belt. The motor, on the left, has a wheel of radius r. The load has a wheel of radius n·r. The 

value n is the gear ratio – note that the higher the gear ratio, the lower the “gear”, as we are used 

to thinking of it in our cars and bikes. 

 

The motor is applying a torque T1, which creates a force F=T1/r, at the contact between gears. 

(By Newton’s Third Law, the same force is applied back to the motor’s wheel by the load wheel.) 

This force in turn produces a torque T2=F·n·r=(T1/r)·n·r=T1·n on the load. 

Also at the contact point, both wheels have the same surface linear velocities (assuming no 

slipping). Therefore, the angular velocities of the motor and load are related by their radii: 

v=·r=ωL·n·r, or ωL=/n. Differentiating with respect to time to get angular accelerations, we 

see that L =/n. 

If the gear ratio n were 1, in order to create unit acceleration in the load, the motor would have to 

create a torque T2=JL·1 to the load by applying a force F=JL/r at the contact point. (At this time, 

we are not considering the torque that the motor must use to accelerate its own inertia.) The motor 

does this by creating a torque T1=F·r=JL·1 about its own axis. As the load accelerates at L, so 

does the motor. 

If the gear ratio n were 1, in order for the motor to achieve acceleration M, the load would have 

to achieve the same acceleration.  The motor would therefore have to apply a torque T2=JLM to 

the load by applying a force F=JLM/r at the contact point.  This would require a torque 

T1=Fr=JLM about its own axis, above and beyond the torque necessary to accelerate its own 

inertia. 

  JL 

  n·r 

r 
 ωM, T1   ωL, T2 

F, v 
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With a gear ratio of n, the motor must still create a torque T2=JL·1 at the load to cause a unit 

acceleration in it, but it does this by applying a force F=JL/(n·r) at the contact point, creating a 

torque about its own axis of T1=F·r=JL/n.  As the load accelerates at L, the motor accelerates at 

n·L. From the motor’s point of view, an applied torque 1/n times as big produces an acceleration 

n times as big.  Therefore, the apparent inertia of the load, as reflected to the motor, has been 

reduced by a factor of n
2
.  The “equivalent”, or reflected, inertia of the load, JL(eq), is therefore 

JL/n
2
. 

 

 

With a gear ratio of n, the load acceleration for a given motor acceleration is M/n, requiring an 

applied torque of T2=JLM/n through a transfer force at the contact point of F=(JLM/n)/nr.  The 

motor would create the force by generating a torque T1=Fr=JLM/n2.  So from the motor's point 

of view, the load inertia has been reduced by a factor of n2; the reflected inertia of the load is 

 J
T J

n
L ref

M

L
( )  1

2
 

Similar calculations can be done for other drive systems.  For a linear load of mass mL driven by a 

capstan, rack and pinion, or belt and pulley of radius r, as in Figure 2, the applied force required 

for acceleration aL is F=mLaL.  The motor must generate a torque T=Fr=mLaLr to apply this 

force, and its angular acceleration is M=aL/r.  The equivalent inertia of the load is  

 J
T m a r

a r
m rL ref

M

L L

L

L( )
/

  


2
 

For a linear load driven by a leadscrew with lead s (linear units per revolution), the necessary 

force is also F=mLaL.  The torque required from the motor for this force is T=F(s/2).  The motor 

acceleration is M=aL/(s/2), so the equivalent inertia of the load is  

 J
T m a s

a s
m

s
L ref

M

L L

L

L( )

/

/
  




 

2

2 4

2

2
 

If you are used to thinking of screws by their pitch p (revolutions per linear unit), which is equal 

to 1/s, the reflected inertia of the load can be expressed as 

 J
m

p
L ref

L
( ) 

4 2 2
 

 


