

Centrifugal Pump Selection and Sizing

2009 Calgary Pump Symposium Chris Gilmour, P.Eng.

Pump types being Considered

- One and two stage centrifugal pumps
 - OH2, OH3/4, BB1, BB2
 - most common pumps used
- Pumps not considered in this presentation:
 - OH5 close-coupled VIL
 - OH6 high-speed integral gear VIL
 - vertically-suspended pumps
 - multi-stage centrifugal pumps
 - low-flow pumps (Ns < 500)

Pump types – Vertical In-line Pump

3

Pump types – Horizontal Overhung

Pump types – Between-Bearing Pump (radially split)

5

Pump types – Between-Bearing Pump (axially split)

6

Pump Selection – Old School

Pump Selection

The Goal

- We want to select and purchase pumps that are:
 - Reliable
 - Reasonably priced
 - Efficient

What type of plant?

Class of Plant

- Class 1 : low first cost, lower on-stream factor
- Class 2: a Class 1 plant with selective upgrades
- Class 3: higher first cost, higher on-stream factor
- Construction (wrt pumps)
 - Modularized or not modularized

Pump Selection – order of preference

- 1. Vertical inline pump
- 2. Horizontal Overhung Pump
- 3. Between Bearing Pump

Pump Selection

- The smallest, least expensive, most efficient pump is an overhung pump (vertical inline, or horizontal overhung) running at 3600 rpm
 - higher speed = smaller diameter for same head
 - higher speed = higher Ns = higher efficiency
 - smaller diameter = smaller casing size = less \$

Relative Costs – example 1

- 200 m3/h @ 150 m w/ >7m NPSHa (880 gpm @490 ft w/ > 23 ft NPSHa)
 - 150 HP motor, single seal

Pum	size	rpm	eff	rel \$	+ Install \$
р					
OH3	4x6x13	3600	78%	1.00	base support
OH2	4x6x13	3600	78%	1.35	+ fdn, grouting
BB2	4x6x13	3600	70%	2.30	+fdn, grouting

Relative Costs – example 2

- 200 m3/h @ 150 m w/ <u>4m</u> NPSHa (880 gpm @490 ft w/ <u>13 ft</u> NPSHa)
 - 150 HP motor, single seal

Pum	size	rpm	eff	rel \$	+ Install \$
р					
OH3	6x8x23	1800	66%	1.00	base support
OH2	6x8x23	1800	66%	1.07	+ fdn, grouting
BB2	4x6x13	3600	70%	1.04	+fdn, grouting

Relative Costs – example 3

- 200 m3/h @ 150 m w/ 4m NPSHa (880 gpm @490 ft w/ 13 ft NPSHa)
 - 150 HP motor, dual seal w/ Plan 53a

Pum	size	rpm	eff	rel \$	+ Install \$
р					
OH3	6x8x23	1800	66%	1.00	base support
OH2	6x8x23	1800	66%	1.06	+ fdn, grouting
BB2	4x6x13	3600	70%	1.33	+fdn, grouting

Why not always buy a 3600 rpm O/H pump?

- An O/H pump is not always available in the size required
- An O/H pump is not always an appropriate selection
- 3600 rpm may not be an appropriate speed for the process conditions

Overhung Pumps – Typical Coverage

Pump			Imp	eller D	iamet	er (inc	hes)			
Size										
(Dis x Suc)	7	9	11	13	15	17	20	23	27	30 *
1-1/2x3	2									
2x3	2	2,4	2,4	2,4						
3x4	2	2,4	2,4	2,4	2,4					
4x6	2	2,4	2,4	2,4	2,4	4,6	4,6			
6x8		2,4	2,4	2,4	2,4	4,6	4,6	4,6	4,6	
8x10					4	4,6	4,6	4,6	4,6	
10x12						4,6	4,6	4,6	4,6	
12x16	3600) rpm (2	2-pole)				4,6	4,6	4,6	6
16x20 *	1800) rpm (4	1-pole)						4,6	6
20x24 *	1200) rpm (6	S-pole)							6
	* OF	l2 only								

Overhung Pumps – Typical Limits

- Tip Speed
 - u = RPM/60 x PI x Diameter , units m/s, m
 - Issue is vibration
 - Typical limit is 62 m/s (205 ft/s) for Class 3 plant
 - 13" diameter impeller at 3550 rpm
 - 27" diameter impeller at 1750 rpm
 - Consider increasing for Class 1 plant

VIL Pumps – Typical Limits

- Tip Speed: issue is vibration
 - Typical limit is 62 m/s (205 ft/s) for Class 3 plant
 - 13" diameter impeller at 3550 rpm
 - 27" diameter impeller at 1750 rpm
- Power: issue is vibration, reliability
 - Typical limits for Class 3 plant are:
 - 200HP at 3600 rpm
 - 400HP at 1800 rpm
 - 600HP at 1200 rpm
- Process Fluid Temperature: issues are shaft sealing, bearing cooling, and motor cooling
 - Typical upper limit is 200 C (400F) for Class 3 plant

VIL Pumps: Bearing-bracket (OH3) type – Other considerations

- How to lubricate the bearing bracket?
 - best is oil mist, if available
 - using oil in a vertical bearing bracket hasn't always worked well, depends on the arrangement
 - grease is an option for cooler services, but requires regular monitoring

VIL Pumps: Rigidly-coupled (OH4) type – Other considerations

- Fluid-lubricated radial bearing
 - need to consider the cleanliness and lubricating properties of the fluid
- Motor shaft runout
 - requires tight tolerance on motor shaft runout
- Reliability / seal life ?
 - some companies have had poor seal MTBR with these pumps
 - Shell Canada experience has been reasonably good

Pump Sizing

Specific Speed (Ns)

- a 'dimensionless' parameter describing geometric similarity
- evaluated at BEP, maximum diameter
- Ns = rpm x gpm^0.5 / ft^0.75 , use $\frac{1}{2}$ Q for double suction
- useful for sizing/selecting pumps

Specific Speed - Guidelines

- typical process pumps have Ns between 500 and 1,800
 - limited choices of supplier below 500
- pumps with Ns 1,800 2,400 are less desirable (reduced range of acceptable operation)
- Pumps with Ns > 2,400 should be avoided

Suction Specific Speed (Nss)

- a 'dimensionless' parameter describing impeller eye geometry
- evaluated at BEP, max diameter
- Nss = rpm x gpm^0.5 / NPSHr^0.75 , use ½ Q for double suction impeller
- consider this example: 500 gpm pump at 3550 rpm
 - Nss = 9,000 when NPSHr = 18.2 ft
 - Nss = 11,000 when NPSHr = 13.9 ft
 - Nss = 13,000 when NPSHr = 11.2 ft
- for the same pump, lower NPSHr achieved by one or more of:
 - sharpening the impeller inlet edges
 - increasing the impeller inlet area by: decreasing # of blades; and /or, increasing blade inlet angle; and /or, increasing inlet area

Suction Specific Speed (Nss) - Guidelines

- typical range is 7,000 to 16,000 (and higher)
- higher Nss results in restricted range of acceptable operation
- for pumps with Ns 500 –1800, max Nss up to 11,000 is acceptable
- for pumps with Ns 1,800 2,400, max acceptable Nss should be reduced to about 9,000
- pumps with Ns above 2,400 should be avoided

Minimum Flow

- Minimum flow issues:
 - temperature rise
 - internal recirculation
 - increased flow separation
 - increased pressure fluctuation
 - increased vibration levels (both radial and axial)

Avoiding these issues

 method from WH Fraser (ref: "Flow Recirculation in Centrifugal Pumps", 1981 Texas A&M Turbomachinery Symposium), ensure pump selection has acceptable range (ie. operation at flows above onset of recirculation)

Minimum Flow - Guidelines

- for Q<2500 gpm and Hd<150 ft, use 50% of curve for continuous and 25% for intermittent operation
- for HC service, use 60 % for continuous and 25% for intermittent operation

Limited Range at Higher Nss

Other Considerations

- Nozzle Velocities typical limits
 - suction < 20 ft/s
 - discharge < 40 ft/s
- Q-rated & Q-normal relative to BEP
 - typically Q-rated = Q-normal x 1.1, but sometimes (eg. reflux service) Q-rated = Q-normal x 1.25
 - best is to straddle BEP with Q-normal and Q-rated, especially if Q-rated >> Q-normal
 - need to consider: NPSHa, min flow

Lets Size some pumps!

Equations & Correlations

- Head, H = 2.31 x dP / SG , (ft, psi)
- Sp Speed, $Ns = N \times Q^{1/2} / H^{3/4}$, (rpm, gpm, ft)
- Suc Sp Speed, Nss = N x Q^1/2 / NPSHr^3/4 , (rpm, gpm, ft)
- Head Coefficient, $HC = H / (u^2 / 2g)$, (ft, ft/s, ft/s^2)
 - methodology in "The Pump Handbook",
- Tip Speed, u = (H x 2g / HC)^0.5 , (ft/s, ft, ft/s^2)
- Diameter, D = u x 12 / PI / (RPM/60) , (in, ft/s, rpm)
- Power, P = H x Q x SG / (3960 x n) , (hp, ft, gpm)
- From Curves: efficiency, expected nozzle size, min flow

Estimating the Head Coefficient

 using the correlations in "The Pump Handbook", 2nd edition, Karassik, et al, Ch 2.1

Required Information

- Require this info as a minimum:
 - flow, Q
 - head, H
 - NPSHa (or to know that it is ample)
- Also desirable to know:
 - SG (to calculate power; assume = 1 if not provided)
 - viscosity (to check if viscous corrections are reqd)
 - HC or non-HC (for minimum flow calculation)
 - continuous or intermittent service (for min flow calc)

Worked Example: H= 170 ft, Q= 2000gpm, NPSHa= 20 ft, water

rpm	1780	3550	3550 / dbl
Ns (=RPM x gpm^0.5 / ft^3/4)	1,876	3,742	2,646
Nss (=RPM x gpm^0.5/NPSH^3/4)	< 9,000	17,800	12,586
efficiency, from curve	0.84		0.83
Head Coeff, from curve	0.93		0.83
Tip Spd, fps, = (H x 2g /HC)^0.5	108.2		114.6
Dia, in, = u x 12 / PI / (RPM/60)	13.9		15.7
HP = H x Q x SG / (3960 x n)	102		103
Min Nozzle (suc 20 fps, dis 40 fps)	6 x 8		6 x 8
Min Flow (non-HC, continuous op)	58%		88%

Typical Casing Sizes

	Pump Spe		
Q (GPM)	1160	1780	3550
0	3 x 4	2 x 3	1.5 x 2
100	3 x 4	2 x 3	1.5 x 2
200	4 x 6	3 x 4	2 x 3
300	4 x 6	3 x 4	3 x 4
500	4 x 6	4 x 6	4 x 6
700	6 x 6	6 x 6	4 x 6
1000	6 x 8	6 x 6	6 x 6
1500	8 x 8	6 x 8	6 x 6
2000	8 x 8	8 x 10	6 x 8
2500	8 x 10	8 x 10	8 x 10
3500	10 x 12	10 x 12	
4500	12 x 14	10 x 12	
5500	14 x 16	12 x 14	
7000	16 x 20	12 x 14	
10000	16 x 20	14 x 16	

Overhung Pumps – Typical Coverage

Pump			Imp	eller D	iamet	er (inc	hes)			
Size										
(Dis x Suc)	7	9	11	13	15	17	20	23	27	30 *
1-1/2x3	2									
2x3	2	2,4	2,4	2,4						
3x4	2	2,4	2,4	2,4	2,4					
4x6	2	2,4	2,4	2,4	2,4	4,6	4,6			
6x8		2,4	2,4	2,4	2,4	4,6	4,6	4,6	4,6	
8x10					4	4,6	4,6	4,6	4,6	
10x12						4,6	4,6	4,6	4,6	
12x16	3600	rpm (2	2-pole)				4,6	4,6	4,6	6
16x20 *	1800	rpm (4	I-pole)						4,6	6
20x24 *	1200	rpm (6	S-pole)							6
	* OH	2 only								

Worked Example: H= 500 ft, Q= 4500 gpm, NPSHa= 20 ft, hydrocarbon

rpm	1160	1780	1780 / dbl
Ns (=RPM x gpm^0.5 / ft^3/4)	736	1,129	799
Nss (=RPM x gpm^0.5/NPSH^3/4)	< 9,000	12,622	< 9,000
efficiency, from curve	0.77	0.84	0.77
Head Coeff, from curve	1.09	1.04	1.09
Tip Spd, fps, = (H x 2g /HC)^0.5	171.5	175.8	171.7
Dia, in, = u x 12 / PI / (RPM/60)	33.9	22.6	22.1
HP = H x Q x SG / (3960 x n)	741	677	742
Min Nozzle (suc 20 fps, dis 40 fps)	8 x 10	8 x 10	8 x 10
Min Flow (non-HC, continuous op)	35%	49%	40%

Typical Casing Sizes

	Pump Spe		
Q (GPM)	1160	1780	3550
0	3 x 4	2 x 3	1.5 x 2
100	3 x 4	2 x 3	1.5 x 2
200	4 x 6	3 x 4	2 x 3
300	4 x 6	3 x 4	3 x 4
500	4 x 6	4 x 6	4 x 6
700	6 x 6	6 x 6	4 x 6
1000	6 x 8	6 x 6	6 x 6
1500	8 x 8	6 x 8	6 x 6
2000	8 x 8	8 x 10	6 x 8
2500	8 x 10	8 x 10	8 x 10
3500	10 x 12	10 x 12	
4500	12 x 14	10 x 12	
5500	14 x 16	12 x 14	
7000	16 x 20	12 x 14	
10000	16 x 20	14 x 16	

Overhung Pumps – Typical Coverage

Pump			Imp	eller D	iamet	er (inc	hes)			
Size										
(Dis x Suc)	7	9	11	13	15	17	20	23	27	30 *
1-1/2x3	2									
2x3	2	2,4	2,4	2,4						
3x4	2	2,4	2,4	2,4	2,4					
4x6	2	2,4	2,4	2,4	2,4	4,6	4,6			
6x8		2,4	2,4	2,4	2,4	4,6	4,6	4,6	4,6	
8x10					4	4,6	4,6	4,6	4,6	
10x12						4,6	4,6	4,6	4,6	
12x16	3600	rpm (2	2-pole)				4,6	4,6	4,6	6
16x20 *	1800	rpm (4	I-pole)						4,6	6
20x24 *	1200	rpm (6	S-pole)							6
	* OH	2 only								

Worked Example: H= 380 ft, Q= 1750 gpm, NPSHa= 8 ft, hydrocarbon

rpm	1160	1780	1780 / dbl
Ns (=RPM x gpm^0.5 / ft^3/4)	564	865	612
Nss (=RPM x gpm^0.5/NPSH^3/4)	< 10,168	15,602	< 11,032
efficiency, from curve	0.70		0.70
Head Coeff, from curve	1.0		1.02
Tip Spd, fps, = (H x 2g /HC)^0.5	156.4		155.0
Dia, in, = u x 12 / PI / (RPM/60)	30.9		20
HP = H x Q x SG / (3960 x n)	240		217
Min Nozzle (suc 20 fps, dis 40 fps)	6 x 6		6 x 6
Min Flow (non-HC, continuous op)	39%		49%

Worked Example: H= 380 ft, Q= 1750 gpm, <u>NPSHa= 13 ft</u>, hydrocarbon

rpm	1160	1780	1780 / dbl
Ns (=RPM x gpm^0.5 / ft^3/4)	564	865	612
Nss (=RPM x gpm^0.5/NPSH^3/4)	< 9,000	10,905	< 9,000
efficiency, from curve	0.70	0.77	0.70
Head Coeff, from curve	1.0	1.05	1.02
Tip Spd, fps, = (H x 2g /HC)^0.5	156.4	152.4	155.0
Dia, in, = u x 12 / PI / (RPM/60)	30.9	19.6	20
HP = H x Q x SG / (3960 x n)	240	217	217
Min Nozzle (suc 20 fps, dis 40 fps)	6 x 6	6 x 6	6 x 6
Min Flow (non-HC, continuous op)	39%	42%	49%

Sizing Spreadsheet

- Arrange the calculations in a spreadsheet
 - enter: Q, H, NPSHa, SG, viscosity
 - calculate all parameters for typical speeds (1150, 1750, 3550 rpm), and for single or double suction impellers
 - Ns, Nss, expected efficiency, diameter, expected nozzle sizes, power
 - if ambitious, could also calculate: minimum flow, suction energy, viscosity corrections, motor sizes, etc

Buying Pumps -Marrying the Hydraulic Selections with the Pump Standards

Pump Standards (North American)

- API 610 for heavy duty pumps
- ASME/ANSI B73.1 and B73.2 standards, essentially dimensional interchangeability standards for chemical process pumps
- Hydraulic Institute (HI) standards for general service pumps

Pump Standards - Applicability

	VIL	<u>Hor O/H</u>	<u>Btwn Brg</u>
API 610	Y	Y	Y
ANSI B73.1		Y	
ANSI B73.2	Y		
Hydr Inst (HI)	Y	Y	Y

General Info - API 610-10th

- Per (5.3.5) minimum casing pressure design conditions are 600 psig at 100 F (4000 kPag at 38 C), or at least a Class 300 flange rating per B16.5
- Per (5.3.9), radially split casings are required for:
 - T > 200C
 - flammable or hazardous fluid with SG < 0.7 at pumping temp
 - flammable or hazardous fluid at rated P-dis > 100 bar
- Per (5.3.11), centre-line mounting required, except that per (8.2.1.2) between-bearing pumps with T < 150C may be foot mounted
- Per (8.1.2.7), the bearing housing temp for grease lubricated OH3 pumps shall be <= 82C at T-amb of 43C

52

General Info – ANSI/ASME B73 pumps

- Casing pressure-temperature rating per B16.5 Class 150 flange rating
- Typical application limits (per API 610 8th ed)
 - service is non-flammable and non-toxic
 - P-dis <= 19 barg, P-suc <= 5 barg
 - T-max <= 150 C
 - Head <= 120 m
 - N <= 3600 rpm
 - diameter <= 330 mm (13 in) for overhung pumps
- Typical Company limits
 - Low process-fluid temperature limit
 - Driver size limit for Vertical inline pumps

ANSI B73.1 – Typical Coverage

ANSI									
Pump			Imp						
Size									
(Dis x Suc)		6	8	10	13	15	17		
1x1-1/2		2,4	2,4						
1-1/2x3		2,4	2,4	2,4	2,4				
2x3		2,4	2,4	2,4	2,4				
3x4			2,4	2,4	2,4				
4x6				2,4	4	4	4		
6x8					4	4	4		
8x10					4	4	4		
	VIL Pump Coverage								
	2	= 360	0 rpm	(2-pol					
	4 = 1800 rpm (4-pole)								
	ref: B73.1, Table 4 "Approximate Performance								
	Standards for Pumps (60 hz)"								

54

What type of plant?

Class of Plant

- Class 1 : low first cost, lower on-stream factor
- Class 2: a Class 1 plant with selective upgrades
- Class 3: higher first cost, higher on-stream factor
- Construction (wrt pumps)
 - Modularized or not modularized

Questions?

