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1 

1. INTRODUCTION 

One of the advantages of aluminum alloys as structural materials is that they 

can be extruded. Through extrusion, structural members made of aluminum alloys 

have a wide variety of cross-sectional shapes, from a simple shape composed of just 

flat flanges and webs to a complex one that may include edge-stiffeners and 

intermediate stiffeners. In addition, aluminum alloys have a wide range of material 

properties through chemical composition and tempering. However, the current 

specification approaches do not take into account these defining characteristics of 

aluminum extrusions. 

Complex aluminum extrusions may contain additional component elements 

besides the flanges and webs. The additional component elements are usually intended 

for non-structural functions such as screw chases and grooves. However, these 

elements usually contribute to the member strength. In Aluminum Association 

Specifications for Aluminum Structures (2000a), hereafter referred to as the AA 

Specification, boundaries between component elements are idealized as simply-

supported, for which plate buckling coefficients are generally known. However, the 

boundary idealization may not be applicable or appropriate for all complex extrusions. 

For this reason, the specification covers only a limited range of geometric shapes. 

Extrusion is presently an economical way to produce aluminum members. 

However, due to practical limitations in the extrusion process, extruded sections 

usually are composed of relatively thicker elements, as opposed to slender cold-

formed sections. For this reason, a significant proportion of extruded sections have 

capacities beyond the yield strength. From the first edition of the AA Specification 

published in 1967, the possibility of using a capacity beyond the yield strength has 

been overlooked regardless of material properties or geometric shapes: a uniform 

factor of safety on yield strength is maintained in the specification. There are more 
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than a thousand materials listed in the Aluminum Standards and Data by the 

Aluminum Association (2000c) according to types of alloys, tempers, dimensions, 

orientations, and products. The ratios of the ultimate to yield stresses of these 

materials range approximately from 1.07 to over 3.6. For example, stress-strain curves 

of two alloy-temper combinations are compared in Figure 1.1. It would seem not to be 

reasonable to apply a uniform factor of safety on yield strength regardless of the wide 

variety of the margins between the ultimate and yield stresses. 

0 5 10 15 20
0

1

2

3

f  /  F y

5454-H112

6070-T6

 

ε /εy 

Note: The material properties used in this figure are obtained from AA (2000a 
and 2000b) with an assumption that the strain at the ultimate stress is 
approximately half of the minimum percent elongation. The points 
corresponding to the yield and ultimate stresses are shown with solid circles. Fy 
denotes the yield stress and εy denotes the strain corresponding to the yield 
stress. 

Figure 1.1 Normalized uniaxial tensile stress-strain curves of extruded aluminum 
alloys generated by Ramberg-Osgood equation 

 One type of the standard extruded shapes available in the Aluminum Design 

Manual by the Aluminum Association (2000b) is cross-sections with tapered 

thickness, which were to facilitate the rolling process when the extrusion process was 

not common or available. This type of section is also common in steel. The buckling 

behavior of tapered thickness component elements is quite different from that of 
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uniform thickness elements. However, neither the Steel Specification by the American 

Institute of Steel Construction (AISC, 1998) nor the AA Specification (2000a) 

provides a way to account for the slope of tapered thickness elements. Instead, 

treatment of a tapered component element as a uniform element using an averaged 

thickness is implied.  

The study presented in this report is aimed at improving the current AA 

Specification (2000a) so that the aforementioned problems can be properly resolved. 

All the investigations in this study are based on laterally supported members or 

members that do not buckle laterally under flexural loading. 

In Chapter 2, the ultimate-plastic capacity is studied. To begin with, important 

terminologies used in this study are defined. An analytical closed-form equation of the 

ultimate shape factor is derived for rectangular web elements. Using this equation, the 

ultimate shape factor implicit in the AA Specification (2000a) is examined for almost 

a thousand available alloy-temper combinations. In addition, a parametric study is 

conducted to account for the inelastic buckling behavior of component elements in 

compression. Additional studies are conducted on the approaches in the AA 

Specification (2000a) that cover the limit state stresses for all component elements to 

compute the member moment capacity. These will be referred to as the “moment 

capacity evaluation approaches”. In addition, a more general approach than those in 

the present specification is developed. Parametric studies using finite element analyses 

as well as physical tests are conducted to validate the proposed approaches in this 

chapter. Finally, to maintain a certain factor of safety on yield strength, the use of a 

specified percentage of the ultimate strength of a member with two safeguards is 

suggested. 

In Chapter 3, the behavior of sections with tapered thickness is investigated. 

To understand the buckling behavior of a tapered thickness plate, stiffness matrices 

are derived for use in an available finite strip program. Using the program, the 
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buckling coefficients for tapered plates are computed. Based on the plate buckling 

coefficients, the current specification equations are modified for the tapered thickness 

component element. To validate the modified equations, a parametric study of I-

sections with tapered flanges with a wide variety of slenderness is performed and 

physical flexural tests are conducted.  

In Chapter 4, a general design approach is developed for complex extrusions, 

for which simply-supported boundary idealization is not applicable or appropriate. 

This approach relies on a numerical buckling analysis tool. In addition, the rigorous 

analytic expression of the ultimate shape factor developed for symmetric sections in 

Chapter 2 is extended to the ultimate shape factor for unsymmetric sections. 

Additional moment capacity evaluation approaches are developed for cross-sections 

with a neutral axis that is not at mid-depth. Parametric studies of five different kinds 

of cross-sections are conducted using finite element analysis to validate the 

approaches developed in this chapter. Some additional physical tests are also 

conducted for further validation. 

In Chapter 5, major conclusions of the study are provided. In the Appendix, 

step-by-step design examples are provided. In addition, detailed cross-sectional 

dimensions and numerical results of most of the parametric studies are tabulated for 

future reference. Moreover, uniaxial tension test results and initial geometric 

imperfection measurements conducted in this study are summarized. 

The studies in this report refer to valuable studies by a number of researchers. 

First, for understanding the behavior of aluminum structures, textbooks by Kissell and 

Ferry (1995), Sharp (1993), Mazzolani (1985) and Mazzolani (1995) have been very 

useful. The first two are based on the AA Specification (2000a); the others are related 

to the European specifications, such as Eurocode 9 (1997). Templin et al. (1938), 

Stowell (1948), Stowell (1950), Bleich (1952), Hill and Clark (1955), Anderson and 

Anderson (1956), Alcoa (1958), Clark and Rolf (1966), Sharp (1966), Jombock and 
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Clark (1968) and Sooi and Peköz (1993) have provided a significant portion of bases 

for the AA Specification (2000a) with respect to the compressive strength of 

component elements. Plecher (2000) has concentrated on evaluating existing 

aluminum bridges in the United States. 

The ultimate-plastic capacity of aluminum structures studied in Chapter 2 has 

also been studied by Sharp (in Gaylord and Gaylord, 1979), Mazzolani (1985), 

Mazzolani and Piluso (1997), Faella et al. (2000), De Matteis et al. (2001), and a 

number of other researchers. For the development of the stiffness matrices for the 

tapered thickness plate element in Chapter 3, the studies by Kobayashi et al. (1990), 

Mizusawa (1993), Ohga et al. (1995), Cheung (1976), McGuire et al. (2000), Schafer 

(1997), and Huebner et al. (1995) have been investigated. Attempts to incorporate 

numerical buckling analyses into the specification approaches, as is done in Chapter 4, 

have also been made by Schafer and Peköz (1998), and Mennink (2002). 



 

6 

2. SYMMETRIC CROSS-SECTIONS WITH UNIFORM 

THICKNESS COMPONENT ELEMENTS 

 

Most standard cross-sections listed in AA (2000b) are symmetric with respect 

to at least one principal bending axis without any edge or intermediate stiffeners. The 

cross-sectional shapes that fall into this category are exemplified in Figure 2.1.  The 

shapes are composed of equal flanges at the extreme fibers and of one or more web 

elements.  

 

Figure 2.1 Examples of standard simple extrusions 

Once such a member is supported against lateral movement, the moment 

capacity of the member mainly depends on the component elements. Specifications 

customarily assume junctions between the component elements as simply supported 

hinges, e.g., the American Institute of Steel Construction (AISC, 1998), American 

Iron and Steel Institute (AISI, 1996), and Aluminum Association (AA, 2000a). As 

such, each component element can be treated as an independent plate element under 

corresponding boundary and loading conditions, of which the buckling behavior has 

been shown, e.g., see Gerard and Becker (1957). Such cross-sections are referred to as 

“simple extrusions” hereafter. Although extensive studies have been performed to 

evaluate the precise flexural capacity of aluminum simple extrusions, there is still 

room for improvement as shown in this study.  
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2.1  Introduction to Shape Factor and Limit State 

For a steel member, the ratio of the plastic moment capacity (Mp, Figure 2.2d) 

to the yield moment capacity (My = FyS, Figure 2.2b) is generally called “the shape 

factor.” The computation of the shape factor is straightforward, since the stress 

distribution is assumed to be rigid-plastic for the plastic moment capacity and linear-

elastic for the yield moment capacity. Since the stress distributions are linear, the 

shape factor is dependent on the geometric shape and not the material properties. For 

example, the shape factor for a solid rectangular cross-section is 1.5, regardless of the 

material properties. 

On the other hand, the shape factor of an aluminum member is more 

complicated: the stress distribution cannot be assumed to be rigid-plastic because the 

stress-strain curve for aluminum does not have a constant yielding range, and strain 

hardening occurs without a clearly defined yield point. So for aluminum, when the 

stresses at both extreme fibers are at the ultimate stress, as shown in Figure 2.2e, this 

stress distribution is defined as the limit state of the ultimate stress, and hereafter will 

be referred to as the ultimate limit state.  

 
Figure 2.2 Stress distributions of a rectangular aluminum section 

The corresponding moment capacity is obtained through the integration of the non-

linear stress distribution, which is defined as the moment capacity at the ultimate limit 

state and hereafter will be referred to as the ultimate moment capacity (Mu): 

/ 2

/ 2

h

u h
M b f y dy

−
= ∫   (1) 
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The ratio of the ultimate moment capacity (Mu) to the yield moment (My) is defined as 

the shape factor for the ultimate limit state and will be referred to as the ultimate shape 

factor (αu). This ultimate shape factor is dependent on the geometric shape and 

material properties including strain hardening. 

In addition to the ultimate shape factor, another shape factor is used for 

aluminum members. When the stresses at both extreme fibers are at the yield stress as 

shown in Figure 2.2c, the moment capacity calculated through integration of the stress 

distribution is defined as the moment capacity at the yield limit state. The moment 

capacity at this state is significantly larger than the yield moment capacity (My), 

because the proportional limit of the stress-strain curve is appreciably smaller than the 

yield stress based on the 0.2% offset method. The ratio of the moment capacity at the 

yield limit state to the yield moment capacity (My) is defined as the shape factor for 

the yield limit state and will be referred to as the yield shape factor (αy). 

The shape factors for both the ultimate and yield limit states can be simplified 

into Equation (2): 

y

M
M

α =   (2) 

where M is the moment capacity obtained from integrating the stress distribution at 

either the yield or ultimate limit state. The shape factors can also be expressed in 

terms of the stresses: the combination of Equation (2) and Fp ≡ M/S  results in 

p

y

F
F

α =   (3) 

where Fp denotes the limit state stress. The limit state stress is a convenient measure 

of the capacity of a component element, since the corresponding moment capacity is 

simply obtained from the multiplication of the limit state stress by the elastic section 

modulus. As a result of this process, the non-linear stress distribution of an aluminum 

alloy is linearized as shown by the dashed lines in Figure 2.2c and Figure 2.2e. For a 
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component element under compression, the limit state stress varies according to the 

width-to-thickness ratio of the cross-section. However, for a component element under 

tension, the limit state stress is constant for each limit state. Details regarding the limit 

state stress can be found in Section 2.2.  

The results of numerical analysis and experimental studies shown in Table 2.1 

present a value of 1.3 for the yield shape factor (αy) of solid rectangular aluminum 

flexural members. However, it is noted that the ultimate shape factor (αu) proposed by 

Sharp (1993) is considerably larger than the yield shape factor because the ultimate 

stress, Fu, is always larger than the yield stress, Fy. 

Table 2.1 Shape factors for solid rectangular aluminum flexural members 

yield shape factor 
by 

Clark and Rolf (1966)  
and Sharp (1993) 

ultimate shape factor  
by 

Sharp (1993) 

αy = 1.3 1.4 u
u

y

F
F

α =  

Note: The ultimate shape factor shown here is modified from its 
original form to correspond with Equation (3). 

 
Figure 2.3 Limit states for fully compact symmetric cross-sections 

The web elements of symmetric cross-sections such as those seen in Figure 

2.3a can be simplified into a solid rectangular element under bending as shown in 

Figure 2.2a with simply-supported boundary conditions at web-flange junctions. Since 

the stress magnitude at the web-flange junction is not significantly different from that 



 

 

           10

at the extreme fiber, the former is assumed to be the same as the latter. This is based 

on the assumption that the element thickness is sufficient to prevent buckling.  

The shape factor defined in Equation (2) is the ultimate load carrying capacity 

divided by the idealized yield capacity (My = FyS). Hence, the term “shape factor” can 

also be used for members under other types of loading such as uniform compression. 

Examples include the flange elements of sections such as those shown in Figure 2.3a 

under bending with respect to the strong axis, assuming buckling is not a problem. 

Disregarding the stress variation on flanges, the ratio of the ultimate stress to the yield 

stress is the ultimate shape factor for the flange, 

u
u

y

F
F

α =   (4) 

while the yield shape factor for the flange is obviously unity. 

2.2 Limit State Stresses of Component Elements in the AA Specification 

Limit state stress is defined as the estimated actual strength of a component 

element based on selection of governing limit state, either yielding, fracture (ultimate), 

or buckling, obtained from theoretical and/or experimental studies. As mentioned in 

Section 2.1, by simply multiplying the limit state stress with a fixed section property, 

either the section modulus or area of the cross-section, the moment capacity or axial 

load capacity can be calculated.  

Due to uncertainties such as over-loading, construction flaws, and variations of 

material properties, in Allowable Stress Design the limit state stress is divided by a 

safety factor to obtain the Allowable Stress. In Load and Resistance Factor Design 

(LRFD), the limit state stress is multiplied by a resistance factor (φ) to obtain the 

Factored Limit State Stress. The resistance factor φ accounts for the uncertainties 

related to strength. Although this study is based on the Allowable Stress Design, the 
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term “allowable stress” can be replaced with the “factored limit state stress” for the 

Load and Resistance Factor Design. 

As summarized in Table 2.2 for the Allowable Stress Design, the AA 

Specification (2000a) provides two different limit state stress expressions for tensile 

stresses in component elements depending on the limit state that may be yield or 

ultimate. The minimum of the two allowable stresses is used in design. In Load and 

Resistance Factor Design, the minimum of the two factored limit state stresses is used. 

The allowable stresses shown in Table 2.2 incorporate the shape factors for 

component elements discussed in Section 2.1. The safety factors on yield and ultimate 

strength are denoted by ny and nu, respectively, while the coefficient kt is an additional 

safety factor on ultimate strength due to the notch sensitivity of some alloy-temper 

combinations, e.g., 2014-T6, 6066-T6, and 6070-T6. Details of the notch sensitivity 

are given in the AA Specification (2000a). As seen in Table 2.2, allowable tensile 

stress for each component element is constant for a given limit state. 

Table 2.2 Options to compute tension allowable stresses of a flexural member by 
AA Specification 

component element allowable stress based on 
yield limit state  

allowable stress based on 
ultimate limit state 

tension flange of 
structural shapes Fty/ny Ftu/ktnu 

tension web of 
structural shapes 1.30Fty/ny 1.42Ftu/ktnu

 

Note: Fty = tensile yield stress 
Ftu = tensile ultimate stress 

Allowable compressive stress or factored limit state compressive stress varies 

according to the equivalent slenderness ratio (λp), which falls into one of three ranges, 

the yielding, inelastic buckling, and post buckling ranges, as shown in Figure 2.4.  



 

 

           12

 

Figure 2.4 Limit state stress for a component element from the AA Specification 

The equivalent slenderness ratio is defined in Equation (5), which is derived from 

Equation (6): 

( )212 1
, where p

p

b
t k

ν
λ κ κ

− = = 
 

   (5) 

( )

2 2

2 2212(1 ) /
cr p

p

E EF k
b t

π π
λν

= ≡
−

   (6) 

where kp = the plate buckling coefficient depending on the edge conditions and aspect 

ratio of the plate, ν = Poisson’s ratio, E = Young’s modulus, b = plate width, t = plate 

thickness, and Fcr = buckling stress. For flange and web component elements with 

simply-supported boundary conditions at the web-flange junctions, examples of the 

equivalent slenderness ratios are shown in Table 2.3.  

Table 2.3 Equivalent slenderness ratios in the AA Specification (2000a) 
  boundary and loading   b 

conditions 
equivalent 

slenderness ratio 
plate buckling 
coefficient (kp) 

 
1.6p

b
t

λ  =  
 

 4.00 

 
5.1p

b
t

λ  =  
 

 a 

0.405 

 
0.67p

b
t

λ  =  
 

 23.9 

Note: a. 0.405 is back calculated from the equivalent slenderness ratio listed in 
Alcoa (1958): λp = 5.13(b/t) 

b. S.S denotes a simply-supported boundary condition. 
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The post-buckling range equation illustrated in Figure 2.4 proposed by 

Jombock and Clark (1968) takes into account the non-linear stress distribution of a 

buckled plate. The inelastic buckling range equation proposed by Clark and Rolf 

(1966) is a linear equation composed of B and D factors, which is a simplification of 

the original inelastic plate buckling equation based on experimental studies by Stowell 

(1948). Further details are summarized in Kim (2000). The cut-off in the yielding 

range is equal to the yield shape factor multiplied by the yield stress, which is based 

on the yield limit state. However, experimental studies, such as DOD (1994), show 

that the uniaxial stress-strain relationship of aluminum alloys under compression is 

very similar to that of tension up to the tension fracture point. Because the uniaxial 

stress-strain relationship under compression progresses beyond the equivalent tension 

fracture point, it is generally conservative to assume that the ultimate stress and strain 

for compression are the same for tension. For these reasons, this study suggests 

including the use of a cut-off that is calculated according to the ultimate limit state, in 

addition to the yield limit state. In other words, the cut-off should increase to a level 

similar to the ultimate limit state of tension elements as shown in Table 2.2. Before 

applying the implied tension shape factors in this table to compression, the ultimate 

shape factor for web elements will be examined in the following section. 

2.3 Rigorous Equation of Ultimate Shape Factor for Rectangular Web Elements 

Numerical integration of the non-linear stress distribution when the stresses at 

both extreme fibers are at the ultimate stress, as shown in Figure 2.2e, is the most 

common approach to obtaining the ultimate shape factor. In this approach, the stress-

strain relationship is approximated by the modified Ramberg-Osgood equation, as 

shown in Equation (7): 

0.002
n

y

f f
E F

ε
 

= +   
 

  (7) 
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where E = Young’s modulus, Fy = yield stress, ε = variable strain, f = variable stress 

and n = exponent. The original equation is given in Ramberg and Osgood (1943). In 

order to use Equation (7), the exponent, n, must be determined. However, although the 

AA Specification gives the yield stress, Young’s modulus, and the ultimate stress, the 

strain at the ultimate stress (will be referred to as the ultimate strain hereafter, εu) is 

still needed to determine the exponent, n: 

( )log 500 logu u

y

F F
u E F

n ε
 
 
 
 

 = −   (8) 

Although statistical data for the ultimate strain is not available, the minimum 

percent elongation is available in the Aluminum Standards and Data (AA, 2000c). 

Since generally the percent elongation is somewhat larger than the ultimate strain, the 

ultimate strain may be estimated from the percent elongation, and hence the exponent, 

n, can be determined.  

It is a cumbersome task to compute the shape factor using the numerical 

integration method due to the iterative nature of the method itself and the high non-

linearity of the modified Ramberg-Osgood equation. For this reason, an analytical 

integration is used to derive the closed-form shape factor equation in this study. As 

shown by Eberwien and Valtinat (2001), the moment capacity for a rectangular solid 

member with a non-linear stress distribution expressed by the modified Ramberg-

Osgood equation can be obtained through the Bernoulli hypothesis.   

 
Figure 2.5 Strain and stress distributions for a rectangular aluminum section 
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With the hypothesis, a linear strain distribution can be assumed, as shown in 

Figure 2.5b. Using the stress-strain relationship given in Equation (7), 

2 2 0.002
n

u u y

h h f fy
E F

ε
ε ε

   = = +       
  (9) 

and the derivative of Equation (9) is 

12 2 1
500

n

n
u u y

h h n fdy d df
E F

ε
ε ε

−  = = + 
  

  (10) 

The ultimate moment capacity expression is derived by introducing Equations (9) and 

(10) into the following integral expression using notations from Figure 2.5. Since a 

typical stress-strain relationship from uniaxial tension tests is quite similar to that from 

compression tests as shown in DOD (1994), the integral for the upper region is 

doubled to obtain the complete ultimate moment capacity: 

/ 2

0
2

h

uM b f y dy= ∫   (11) 

In this integral, the h/2 limit is replaced with Fu due to a change in variable from y to f. 

The final closed-form ultimate moment capacity is shown in Equation (12). 

222

2 2

1 1 1 1
2 3 500 2 1 500 2

n n

u u u u u
u

u y y

bh F F F F Fn nM
E n F n F Eε

    +       = + +            + +           
       (12) 

2

6
y

y

bh F
M =   (13) 

The closed-form ultimate shape factor for a rectangular aluminum solid section 

is obtained by normalizing the ultimate moment capacity of Equation (12) using the 

yield moment capacity of Equation (13): 

22

2 2

3 1 1 1 1
3 500 2 1 500 2

n n

u u u u u u
u wo

y u y y y

M F F F F Fn n
M F E n F n F E

α α
ε

      +       = = = + +                + +             

 (14) 
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where αwo is an alternative denotation for emphasizing that the shape factor is limited 

to a symmetric section. For an unsymmetric section, another denotation is used, αw, as 

shown in Equation (50). 

As seen in DOD (1994) and uniaxial tension tests performed in this study, the 

typical values of the ultimate strain (εu) for 6061-T6 are between approximately 6 and 

8%. For the same material, the typical value of percent elongation is 12% as tabulated 

in AA (2000b). Similarly, since the minimum value of the percent elongation is 8% 

for 6061-T6 as shown in AA (2000c), it is reasonable to predict that the minimum 

value of the ultimate strain be in the range of 4 to 6%. To evaluate the effect of a 

variation in the ultimate strain, shape factors are computed based on various ultimate 

strain values using Equation (14), with results shown in Figure 2.6. The shape factor 

variation is less than 1% for ultimate strain values that are within 50% larger or 

smaller than the minimum percent elongation.  

 
Note: αu8% is αu when εu = 8%. 

Figure 2.6 Variation of the ultimate shape factor for a rectangular web element 
with respect to the ultimate strain (6061-T6) 

Thus, the aforementioned assumption that the ultimate strain may be estimated 

from the percent elongation is reasonable. In this study, the recommended value for 

the ultimate strain is between half and equal to the minimum percent elongation. The 

ultimate shape factors are computed using Equation (14) for some 6000 series alloys 
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in Table 2.4, which are more frequently used for building construction than any other 

alloys.  

Table 2.4 Material properties and ultimate shape factors for solid rectangular 
sections for some 6000 series alloys (extrusions) 

Alloy-temper 
a

Fy
 

(MPa) 

b
E 

(MPa)

a
Fu

 

(MPa) 

c 
εu 

 

d 
n 

 

e 
αu = αwo 
 

f

1.42
u

tu tyF F
α

6005-T5, 6105-T5, 6351-T5 
& 6061-T6, -T6510, -T6511 241.15 68900 261.82 0.04 35.214 1.5975 1.0362 

                 6063-T5               g 110.24 68900 151.58 0.04 9.2295 1.9467 0.9970 

                 6063-T5               h 103.35 68900 144.69 0.04 8.7431 1.9766 0.9943 

6063-T6, T62 & 6463-T6 172.25 68900 206.70 0.04 16.003 1.7361 1.0188 

6066-T6, -T6510, -T6511 310.05 68900 344.50 0.04 27.166 1.6224 1.0283 

6070-T6, -T62 310.05 68900 330.72 0.03 39.259 1.5617 1.0311 
 Note: a. Minimum values from AA (2000c). 

b. These are average values, which are 689 MPa (100 ksi) lower than compression. 
c. εu is assumed to be half of the minimum percent elongation listed in AA (2000c). 
d. See Equation (8). 
e. See Equation (14). 
f. 1.42Ftu/Fy = Equation (15). 
g. Test coupon diameter or thickness up through 12.7mm. 
h. Test coupon diameter or thickness between 12.7 and 25.4mm. 

The yield stress times the obtained shape factors (αu) in Table 2.4 can be 

directly used as the cut-off at the ultimate limit state. Since the compressive stress 

distribution is approximately the same as that for tension, the shape factors (αu) in this 

study are also compared to that implied in Table 2.2 for the tension web, which is 

available in the AA Specification (2000a). For the comparison, the ultimate limit state 

stress expression for the web without safety factors shown in Table 2.2 is multiplied 

by the section modulus and then introduced into Equation (2): 

1.42 tu
u wo

ty

F
F

α α= =   (15) 

The last column of Table 2.4 is the ratio of the shape factor obtained from the rigorous 

equation proposed in this study, Equation (14) to the shape factor in the specification, 
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Equation (15). From the small variation in these values, it can be concluded that for 

6000 series alloys, the two give quite similar results.  

2.4 Simplified Ultimate Shape Factor for Rectangular Web Elements 

The rigorous analytic expression for the ultimate shape factor of a rectangular 

web element in Equation (14) is too complicated for practical design purposes. Thus, a 

simplified expression is necessary, such as the one used for tension component 

elements in the AA Specification (2000a): Equation (15). 

Although the performance of Equation (15) is found to be satisfactory for the 

6000 series alloys in Table 2.4, it has never been investigated for a wide variety of 

alloy-temper combinations. In AA (2000c), more than a thousand materials are listed 

according to alloy type, temper type, the dimensions of the tested coupons, the 

orientation of the tested coupons, and the type of product from which the tested 

coupons are obtained, such as plate, pipe, or extruded shape. From this data, 986 

alloy-temper combinations have been chosen for this investigation. The basis for 

choosing the data is as follows. First, the minimum values of the material properties 

required for Equation (14) should be available. Second, the ultimate strain should 

exceed 1.5% when it is assumed to be half of the minimum percent elongation. Third, 

the orientation of the tested coupons should not be in the transverse direction.  

For the selected alloy-temper combinations, the shape factors have been 

computed using Equation (14) and plotted with respect to the Ftu/Fty ratio in Figure 

2.7. It is clear that Equation (15) becomes more unconservative as the Ftu/Fty ratio 

increases. Thus, a more precise curve-fit can be proposed for the ultimate shape factor: 

1.25 0.2tu
u wo

ty

F
F

α α= = +  (16) 

For practical design purposes, Equation (16) could be used instead of Equation (14) 

for the ultimate shape factor of rectangular web elements under bending. 
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alloy-temper = no transverse direction,     > 1.5%

 

Figure 2.7 Comparison of the ultimate shape factor approximations using 
Equations (15) and (16) for rectangular web elements under bending 

 

2.5 Parametric Study for Component Elements and Proposed Limit State Stress 

Equations for Ultimate Limit State 

From the results in the previous sections, it can be seen that the cut-off can be 

raised to the yield stress times the ultimate shape factor for component elements. 

However, the raised cut-off should be limited to component elements with very low 

width-to-thickness ratios to eliminate possible buckling. A parametric study for 

component elements of doubly symmetric I-shaped sections was conducted in Kim 

(2000) using the finite element method to investigate the following: (1) the maximum 

possible width-to-thickness ratio for the raised cut-off that buckling will not occur and 

(2) the transition range resulting from the difference in the raised (ultimate limit state) 

and current (yield limit state) cut-off values. The following is a summary of this study. 

The finite element program, ABAQUS developed by Hibbitt, Karlsson and 

Sorensen, Inc. (1998), was used for the analyses. Four-noded general-purpose shell 

Equation (16) 

 

(proposed) 

Equation (15)

 

(current AA) 

uα

uε

1.25 0.2tu
u

ty

F
F

α = +

1.42 tu
u

ty

F
F

α =

uε

     Equation (14)

tu tyF F
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elements with 4 integration points are used to take into account a large variation of 

thickness. The alloy-temper is assumed to be extruded 6061-T6 with the minimum 

material properties given in Table 2.4 except for the ultimate strain. The two 

recommended ultimate strain values, 4% and 8%, which are half and equal to the 

percent elongation, respectively, are used to observe their effect on the limit state 

stress. As previously stated, the ultimate strain variation affects the Ramberg-Osgood 

exponent (n), which in turn affects the ultimate shape factor for the web (αu). 

Since this study deals with monotonic loading, the isotropic hardening model 

is used. In this case, once a stress reaches the ultimate stress, the stress remains 

constant as the plastic strain exceeds the ultimate strain. Due to uncertainty after this 

stage, it is assumed that a whole member reaches failure when the Von Mises stress at 

a single point of the member reaches the ultimate stress. This occurs when a member 

is too compact to buckle.  

On the other hand, the failure of a member can also be initiated by buckling 

when the member is less compact. In this case, the peak load of the member is 

obtained before any point of the member reaches the ultimate stress. In this study, 

these two possibilities of failure are considered simultaneously so as to find an 

ultimate load factor. 

The boundary conditions for component elements of doubly symmetric I-

shaped sections are idealized as shown in Figure 2.8. To avoid singularity of the 

stiffness matrix, one longitudinal degree of freedom is restrained at the span center. 

Equal and opposite loadings are applied at the loaded edges, where rigid beam 

elements are attached. Elastic eigen-value analyses to generate initial geometric 

imperfections precede the non-linear analyses. The maximum imperfection amplitude 

is determined based on the standard flatness tolerance provided by AA (2000c). 
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Figure 2.8 Boundary and loading conditions for finite element analyses 

 
Figure 2.9 Parametric study results for component elements (a) web (b) flange 

From the results of the parametric study for component elements shown in 

Figure 2.9, the following modifications of the limit state stress equations are made for 

the ultimate limit state. For a very low width-to-thickness range, the yield stress times 

the ultimate shape factor is employed for the raised cut-off. For the transition range 

between the raised and current cut-off values, the equation line of the inelastic 

buckling range (S1 ≤ width/thickness ≤ S2) is extended to the raised cut-off value with 

the same slope.  

For the material used in this parametric study, the ultimate shape factor is 

1.598 for the web element using Equation (14) (εu = 4%) and 1.086 for the flange 
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element using Equation (4). These modifications work well with both series of finite 

element analyses based on the two ultimate strain values, 4% and 8%. This parametric 

study confirms that the ultimate limit state can be considered for compressive 

component elements. The results of Kim (2000) are reevaluated in the present work 

and the equations of Kim (2000) are modified to what is shown in Table 2.5. 

Table 2.5 (a) Limit state stress equations and limits and (b) shape factors 
(a) 

limit state stress 

1
b S
t
≤  

limit 
S1 

limit state stress  

1 2
bS S
t

≤ ≤  
limit 

S2 

limit state stress  

2
bS
t

≤  

Fp = α Fcy cyB F
D
α
κ
−

p
bF B D
t

κ= −  1k B
Dκ

 
2

p
k BEF b

t
κ

=  

(b) 

component element yield limit state (α = αy) ultimate limit state (α = αu)

Flange 1.0 tu cyF F  

Web 1.3 1.25 0.2tu cyF F +  

     Note. a. Fp = flange limit state stress (Ff ) or web limit state stress (Fw). 
b. B,D, k1 and k2 are factors provided in the AA Specification (2000a). The factors for a 

flange differ from those for a web.  
c. See Equation (5) for κ  (Table 2.3). 
d. αu = Equation (4) for flange and Equation (16) for web 
e. Fcy = compressive yield stress 

2.6 Moment Capacity Evaluation Approaches  

2.6.1 Minimum Moment Capacity Approach (MMCA) 

In AA (2000b), to compute the allowable moment capacity of a member, the 

allowable stress (or factored limit state stress) of each component element is first 

computed. Then from the calculated allowable stresses (or factored limit state 

stresses), the minimum is selected and multiplied by the elastic section modulus of the 

entire cross-section (S). For the section given in Figure 2.10, 
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Mu = min(Ff, Fw) S  (17) 

where Ff and Fw = allowable stress (or factored limit state stress) for the flange and 

web, respectively. However, instead of the use of the allowable stresses (or factored 

limit state stresses) for Ff and Fw, limit state stress values have been employed in the 

parametric study that follows in Section 2.7. This approach is demonstrated by AA 

(2000b) through the Illustrative Examples of Design (Part VIII, Example 21) for 

symmetric sections with respect to the bending axis. 

This approach is denoted by the Minimum Moment Capacity Approach or 

MMCA hereafter. Since possible interactions and stress redistributions between 

component elements are disregarded, this approach is expected to be rather 

conservative.  

2.6.2 Weighted Average Stress Approach (WASA and WASA2) 

Another method is given in the AA Specification (2000a), where the limit state 

stresses obtained from all component elements in each of the compression and tension 

sides can be averaged according to contributory area. The averaged stress is multiplied 

by the section modulus to compute the moment capacity. This is called the Weighted 

Average Stress Approach or WASA in this study. The weighted average stress 

equation was first introduced by Jombock and Clark (1968) to compute the crippling 

strength of aluminum trapezoidal formed sheet members:  

1
3

1
3

f f w w
WT

f w

F A F A
F

A A
+

=
+

  (18) 

where Af and Aw = flange and web area for either compression or tension (indicated in 

Figure 2.10). Sooi and Peköz (1993) extended the WASA to sections with edge-

stiffened and intermediately-stiffened elements by adding further terms for stiffeners 

to Equation (18). See Table 4.3 for details. Although the WASA was verified through 

experiments in the aforementioned studies, a theoretical basis for the approach has 
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never been investigated. Thus, the accuracy of this method is questionable for 

geometric shapes other than tested. 

 
Figure 2.10 Contributions of element groups to the entire moment capacity  

The theoretical basis of the WASA is investigated in this study for a doubly 

symmetric I-section shown in Figure 2.10. Multiplication of both the denominator and 

numerator of Equation (18) by hc
2/2 and subsequent simplification of this equation 

through an assumption that the flange thickness is relatively small result in Equation 

(19): 

2 2
f w c u c

WT
f w

M M h M hF
I I I
+    ≅ =   +    

  (19) 

where Mf, Mw, Mu = moment capacity of the (top and bottom) flanges, web, and entire 

cross-section respectively, If, Iw, I = moment of inertia with respect to the neutral axis 

of the entire cross-section of the (top and bottom) flanges, web, and entire cross-

section, respectively. For the section in Figure 2.10, Iw = twho
3/12 and If = I − Iw. 

Equation (19) implies that the weighted average stress is an approximately linearized 

bending stress measured at the mid-thickness of the flange. Therefore, to obtain an 

accurate total moment capacity, the correction shown in Table 2.6 should be made:  
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Table 2.6 Correction in the current WASA 

current WASA  
(WASA) 

proposed WASA 
(WASA2) 

Mu = (FWT)(S) Mu = (FWT)
c

h
h

 
 
 

(S)  

Note: S = section modulus = I /(h/2) 

The correction in Table 2.6 is insignificant when the flange thickness is 

relatively small, such as those of the thin-walled cold-formed sheet members used by 

Jombock and Clark (1968) and Sooi and Peköz (1993). Sections consisting of 

component elements with large width-to-thickness ratios are not suitable for extrusion 

due to production limits (for details, see Kissell and Ferry, 1995). For this reason, 

most standard sections listed in AA (2000b) are made of relatively thick component 

elements, falling into the yielding or, at least, inelastic buckling ranges. Thus, the 

modifications shown in Table 2.5 as well as Table 2.6 are significant for common 

aluminum extrusions. 

2.6.3 Total Moment Capacity Approach (TMCA) 

As an alternative to the WASA2, the Total Moment Capacity Approach 

(TMCA) is also proposed in this study. In this approach, the actual non-linear stress 

distribution is artificially divided into two linear stress distributions, as shown in 

Figure 2.10. Such approximation is consistent with the current AA Specification 

(2000a), which is implicit in the WASA. In this figure, the web area and the flange 

area are assigned separate linear stress distributions so that no overlap can occur. For 

more complicated cross-sections, the cross-sectional area is divided into a web group 

and a flange group (for details, see Section 4.4.3). The section modulus of each group 

is computed with respect to the neutral axis of the entire cross-section, which is at 

mid-depth for the example I-section. The limit state stress computed for each group is 

multiplied by the corresponding section modulus to compute the moment capacity. 



 

 

           26

Afterwards, the moment capacities from all groups are added to obtain a member 

moment capacity.  

For example, the moment capacity of the example I-shaped section can be 

expressed as Equation (20) based on the TMCA. 

2 2
f f w w

u f w f f w w
c o

F I F IM M M F S F S
h h

= + = + = +   (20) 

where Sf, Sw = the elastic section modulus with respect to the neutral axis of the entire 

cross-section of the flange and web groups, respectively. For purposes of comparison 

with the weighted average stress equation of Equation (18), another weighted average 

stress equation can be defined using the TMCA: 

f f w w
TM

F S F S
F

S
+

=   (21) 

where FTM denotes the weighted average stress based on the contributory section 

moduli according to the TMCA. Since all of the component elements contribute to the 

moment capacity in both the WASA2 and TMCA, these two methods are expected to 

be more accurate than the MMCA. In addition, the expression for the TMCA 

resembles that for the WASA, which implies that the WASA is a special case of the 

TMCA. 

Table 2.7 Member allowable stress (or factored member limit state stress) for 
simple sections 

approach member allowable (or factored member limit state) stress moment capacity

MMCA ( )min ,MIN f wF F F=  M = FMIN S 

WASA 
1
3

1
3

f f w w
WT

f w

F A F A
F

A A
+

=
+

 M = FWT S 

WASA2 
1
3

2 1
3

f f w w
WT

f w c

F A F A hF
A A h

+  
=  +  

 M = FWT2 S 

TMCA f f w w
TM

F S F S
F

S
+

=  M = FTM S 
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The member allowable (or factored member limit state) stress is defined as the 

combination of each component element allowable (or factored limit state) stress, and 

is expressed based on the approaches described in this section, which is summarized 

in Table 2.7. Based on the selected member allowable stress (or factored member limit 

state stress) expression, the moment capacities are computed for both the compression 

and tension sides. The minimum of the two moment capacities of the two sides is 

determined as the moment capacity of the member. When compressive component 

elements are in the yielding range, the WASA2 and TMCA can result in both of the 

extreme fiber flange stresses being larger than the maximum limit state stress, for the 

limit state stress is assumed to occur at mid-thickness of the flange and not the 

extreme fiber. Though this assumption does not concede to the initial assumptions 

made concerning the yield and ultimate limit states shown in Figure 2.3, this should 

not be a problem for simple symmetric sections such as those in Figure 2.1. This is 

because the actual non-linear stress distribution on the flange is almost uniform as 

seen in Figure 2.10.  

Instead of the use of the allowable stresses (or factored limit state stresses) in 

Table 2.7, limit state stress values have been employed in the parametric study that 

follows in Section 2.7. 

2.7 Parametric Study of I-Shaped Sections 

To validate the improvements made in Sections 2.3 to 2.6, a parametric study 

is conducted for doubly symmetric I-shaped sections, which includes the results of the 

finite element analyses conducted in Kim (2000). The width of the entire flange (“w” 

in Figure 2.10) and the depth between the center-lines of flanges (“hc” in Figure 2.10) 

are both held constant at 254 mm (10 in.), while the uniform component element 

thicknesses are varied to allow a wide range of width-to-thickness ratios, so that most 

of the standard sections listed in AA (2000b) can be covered. The length of the 
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members is fixed at 2540 mm (100 in.). The boundary conditions are determined as 

shown in Figure 2.11. Other details regarding the finite element model are the same as 

for the parametric study for component elements performed in Section 2.5. 

 

Figure 2.11 Model geometry of an I-shaped section for parametric study 

The analysis is comprised of three steps. The first step investigates the effect 

of the use of the ultimate limit state rather than the yield limit state that is used in the 

AA Specification (2000a), as shown in Figure 2.12. The approach abbreviations used 

in Figure 2.12 to Figure 2.14 are as follows. The first two categories, AA-Y and AA-

U, refer to the AA Specification equations based on either the Yield or Ultimate limit 

state specified in the yielding range (b/t ≤ S1) as shown in Table 2.5. The two limit 

states are distinguished by whether or not the raised cut-off and the extended inelastic 

buckling range equations are used. The remaining category indicates the moment 

capacity evaluation approach selected, as defined in Section 2.6.  

The horizontal axis of Figure 2.12 to Figure 2.14 is the slenderness factor,  

y crF Fλ =   (22) 

which indicates a general sense of the slenderness of the component plate elements of 

a cross-section. The slenderness factor is not used in design procedures, but for visual 

convenience. Fcr denotes the minimum local buckling stress from numerical buckling 

analysis for the entire cross-section. The vertical axis is the moment capacity obtained 
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from the finite element analysis divided by the moment capacity obtained with each 

approach specified in the graph. As seen in this figure, an approximately 7% 

difference in the member capacity is observed due to consideration of the ultimate 

limit state. The data variation also decreases when the ultimate limit state is 

considered. 

0.3 0.4 0.5 0.6 0.7 0.8

0.8

0.9

1

1.1

1.2

1.3

M
FE

M
 / 

M
ap

pr
oa

ch
es

MFEM / Mapproaches mean c.o.v
MFEM / MAA-Y-WASA
MFEM / MAA-U-WASA

1.209 0.056

1.141 0.029

 
λ = y crF F  

Figure 2.12 Effect of the use of the ultimate limit state (εu = 4%) 
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λ = y crF F  

Figure 2.13 Effect of the modification of WASA (εu = 4%) 

The second step investigates the effect of the modification of WASA in the 

AA Specification (2000a), as shown in Figure 2.13. The difference from the finite 
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element analysis is significantly decreased by approximately 10% due to the 

modification in WASA. 

The third and final step compares the two currently available approaches (MAA-

Y-MMCA and MAA-Y-WASA) in the AA Specification (2000a) and those developed in this 

study (MAA-U-WASA2 and MAA-U-TMCA). As seen in Figure 2.14, the approaches 

developed in this study predict the ultimate-plastic capacity more precisely than the 

current approaches in the AA Specification (2000a) for varied slenderness.  

Since the difference between the WASA2 and TMCA is insignificant, either 

approach can be employed for the type of cross-sections considered in this chapter. 

The moment capacities obtained from all four approaches, as well as from the finite 

element analyses are listed in Table 2.8. All of the finite element computations shown 

in Figure 2.12 to Figure 2.14 are made at an ultimate strain (εu) of 4%. The 

percentages indicated in the subscripts of the FEM analyses in Table 2.8, 4% and 8%, 

represent the ultimate strain values used. When the ultimate strain is 8%, results do 

not change significantly from that of 4% as seen in this table. This is consistent with 

the conclusion made from Figure 2.6. 
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Figure 2.14 Comparison between the current and proposed approaches (εu = 4%) 
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Table 2.8 Parametric study results 

tw 
(mm) 

tf  
(mm) 

AA-Y-MMCA

y

M
M

AA-Y-WASA

y

M
M

AA-U-WASA2

y

M
M

AA-U-TMCA

y

M
M

FEM-4%

y

M
M

FEM-8%

y

M
M

y

cr

F
λ =

F
 

25.4 42.3 1.000 1.023 1.309 1.316 1.375 1.378 0.233 
25.4 31.8 1.000 1.031 1.277 1.285 1.347 1.340 0.289 
25.4 21.2 1.000 1.047 1.223 1.231 1.290 1.280 0.384 
25.4 15.9 0.971 1.037 1.157 1.164 1.240 1.230 0.473 
25.4 12.7 0.892 0.990 1.105 1.111 1.200 1.190 0.566 
12.7 42.3 1.000 1.012 1.289 1.292 1.314 1.305 0.259 
12.7 31.8 1.000 1.017 1.251 1.255 1.280 1.270 0.335 
12.7 21.2 1.000 1.025 1.171 1.175 1.210 1.200 0.469 
12.7 15.9 0.954 0.992 1.085 1.088 1.150 1.140 0.581 
12.7 12.7 0.871 0.929 1.013 1.015 1.090 1.090 0.679 
8.46 42.3 1.000 1.008 1.282 1.284 1.290 1.275 0.268 
8.46 31.8 1.000 1.011 1.241 1.244 1.256 1.240 0.351 
8.46 21.2 1.000 1.017 1.151 1.154 1.180 1.170 0.506 
8.46 15.9 0.948 0.975 1.056 1.058 1.100 1.100 0.644 
8.46 12.7 0.863 0.905 0.975 0.976 1.020 1.030 0.767 
6.35 42.3 1.000 1.006 1.276 1.278 1.276 1.260 0.349 
6.35 31.8 1.000 1.009 1.233 1.236 1.240 1.220 0.358 
6.35 21.2 1.000 1.013 1.136 1.138 1.170 1.150 0.524 
6.35 15.9 0.945 0.966 1.034 1.036 1.080 1.080 0.677 
6.35 12.7 0.860 0.892 0.946 0.947 0.998 1.000 0.817 

2.8 Experiments and FEM Simulation 

To support the approaches developed in this study, physical tests have been 

conducted for three doubly symmetric Aluminum Association Standard I-Beams in 

AA (2000b): I-3x1.64. The alloy-temper of the specimens is 6063-T6, of which the 

minimum material properties are listed in Table 2.4. Since the study is based on the 

strength of component elements, continuous lateral supports are required. However, 

such supports are practically impossible to construct in physical tests.  

 
 Note: All dimensions are in mm and not to scale 

Figure 2.15 (a) Dimensions of section Ι-3x1.64 (b) schematic test setup  
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(a) 

 
(b) 

 
        (c)       (d) 

       Note: all dimensions are in mm and not to scale 

Figure 2.16 Test setup (a) plan view (b) longitudinal section (c) cross-section  (d) 
Detail “A” 
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For this reason, a parametric study has been conducted using the finite element 

method to find appropriate lateral support spacing so that the ultimate load factor and 

the corresponding displacement can be similar to those of the continuous lateral 

support case. The study results show 304.8 mm (12 in.) is adequate for the lateral 

support spacing. The test setup is determined as shown in Figure 2.15, including 

dimensions for the tested specimens. Details of the test setup are shown in Figure 

2.16. 

All finite element modeling issues covered are similar to those for the 

parametric study in Section 2.7 except for the following. First, applied load is not pure 

bending but two-point bending as shown in Figure 2.15b. Second, the lateral support 

spacing is not continuous. Third, bi-linear spring elements are attached between the 

spreader plates and the specimen, so that only compression can be transferred. This is 

to simulate the contact behavior of the actual test setup, in which the spreaders were 

simply placed on the specimen without any moment connections such as welding or 

bolting. Fourth, the median of five uniaxial tension test results (Table 6.27a in the 

Appendix) obtained from one of the specimens is introduced into the finite element 

analyses. Fifth, different finite element models are used. The model using four-noded 

linear shell elements with reduced integration is denoted by SHELL; and the model 

using twenty-noded quadratic hexahedral solid elements with reduced integration is 

denoted by SOLID. The SOLID model uses two layers of solid elements in the 

thickness direction. Sixth, initial geometric imperfections are generated using elastic 

eigen-value analyses with a maximum amplitude based on either the maximum value 

from the actual measurements in this study (0.048 mm, model FEM 1) or the standard 

flatness tolerance (0.127 mm, model FEM 2 to 3) according to AA (2000c). The actual 

measurements for geometric imperfections are shown in Figure 6.6 in the Appendix. 
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When specimens are removed from the test frame, residual deformation 

remains, as shown in Figure 2.17. A single wave is formed near the span center in 

each specimen. The deformed shape near failure from one of the finite element 

simulations, as shown in Figure 2.18, is similar to those from the physical tests in 

Figure 2.17.  

  
(a) 

 
(b) 

Figure 2.17 Residual deformation of tested specimens (I-3x1.64) (a) side (b) plan 

 
Figure 2.18 Deformed shape near failure using finite element method (SOLID) 
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As plotted in Figure 2.19, the load factor-displacement curves obtained from 

both the physical tests and the finite element simulations show close agreement with 

each other. The variation in the test results are most likely due to the variations in the 

material properties, as shown in Table 6.27a and Table 6.27b in the Appendix. The 

average of the maximum load factors from the physical tests is compared to the 

current specification approaches and those developed in this study within the dashed-

line oval of Figure 2.14. The test results follow the trend of the parametric study, 

which further validates the two proposed approaches in this study. The proposed 

approaches are based on the ultimate limit state using the WASA2 or TMCA to 

integrate the moment capacities from individual component elements. 

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

DESCRIPTION  IMP       MAX-LF     DISP-XL    MODEL      
TEST 1
TEST 2
TEST 3
 FEM 1
 FEM 2
 FEM 3

     
     
     
0.048
0.127
0.127

  1.2
1.275
1.301
1.238
1.218
1.204

109.2
120.7
127.7
121.2
101.9
131.1

       
       
       
 SHELL 
 SHELL 
 SOLID 

DISP-XL = Displacement at the maximum LF

SCVD (Span Center Vertical Displacement, mm)

LF
 =  M

u 
/M

y

 
Figure 2.19 Comparison of load factor-displacement results for Ι-3x1.64 sections 

2.9 Application to the AA Specification 

This study shows that the proposed approaches based on the ultimate limit 

state are in good agreement with both the finite element simulations and physical tests. 

However, it is desirable to maintain a certain factor of safety on yield strength in 

actual designs. As summarized in Table 2.9, the AA Specification (2000a) requires 

choosing the minimum for the allowable stresses (or factored limit state stresses) 

based on the yield and ultimate limit states for each tension component element. 
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However, there is only one allowable stress (or factored limit state stress), which is 

based on the yield limit state, for compression component elements.  

Procedure I, which is one of the proposed approaches shown in Table 2.9, is 

almost the same as the current AA Specification, except that allowable stresses (or 

factored limit state stresses) for both limit states are given not only for the tension but 

also for the compression component elements as a result of the development in this 

study. The allowable stress (or factored limit state stress) based on the yield limit state 

is referred to as the yield allowable stress (or yield factored limit state stress) (Fay), 

and the allowable stress (or factored limit state stress) based on the ultimate limit state 

is referred to as the ultimate allowable stress (or ultimate factored limit state stress) 

(Fau) hereafter. In this approach, the same factor of safety on yield strength (ny) is 

maintained as in the AA Specification (2000a), with a value of 1.65 for building and 

similar type structures.  

Although Table 2.9 and Table 2.10 are based on the Allowable Stress Design, 

these tables can also be applied to the Load and Resistance Factor Design by replacing 

the reciprocal of each safety factor with the corresponding resistance factor. 

However, it does not seem reasonable to employ a uniform safety factor on 

yield strength regardless of the margin between the yield and ultimate stresses for a 

wide variety of alloy-temper combinations. As seen in Figure 2.7, the ratio of the 

ultimate to yield stress varies from 1.07 to 3.67. The materials with larger margins 

should be safer than those with smaller margins, e.g., see Figure 1.1. Thus, an 

alternative approach to computing the allowable stress is proposed in Table 2.9, and is 

named Procedure II. In this approach, 25% of the margin between the yield and 

ultimate allowable stresses is added to the yield allowable stress. Thus, the allowable 

stress increases as the ratio of the ultimate to yield stress increases, which results in a 

varying safety factor on yield strength. 
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Table 2.9 Governing allowable stresses 

approaches governing allowable stress for 
tension 

governing allowable stress for 
compression  

current AA 
Specification ( )min ,a ay auF F F=  Fa = Fay 

Procedure I 

( )min ,a ay auF F F=             (23) proposed 
approaches Procedure II 

( ) ( )0.25 min 1.25 ,a ay au ay ay auF F F F F F= + − ≤         (24)  

    Note: Fa = the governing allowable stress 
Fay = the member allowable stress based on the yield limit state. See Table 2.7. 
Fau = the member allowable stress based on the ultimate limit state. See Table 2.7. 

Table 2.10 Allowable stress equations for (a) tension component element, 
(b) compression component element, and (c) shape factors  

(a) 

AA Section allowable stresses 

ay y ty yF F nα=  3.4.2 
3.4.4 ( )au u ty t uF F k nα=  

(b) 

AA  
Section 

allowable stresses in 
yielding range 

b/t  ≤ S1 

limit 
S1 

allowable stresses in 
inelastic buckling range

S1 ≤ b/t  ≤ S2 

limit 
S2 

allowable stresses in 
post buckling range 

S2  ≤ b/t  

y cy
ay

y

F
F

n
α

=  y cyB F
D
α
κ
−

 3.4.15 
3.4.16 
3.4.18 u cy
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u

F
F

n
α

=  
y

u

n
u cynB F

D

α

κ

−
1
ay au

y

F F

bB D
n t

κ

= =

 − 
 

 
1k B
Dκ
 

2
ay au

y

k BEF F bn
t

κ
= =

(c) 

AA Section yield shape factor ultimate shape factor 

3.4.2 1.0yα =  u tu tyF Fα =  

3.4.4 1.3yα =  1.25 0.2u tu tyF Fα = +   a

3.4.15, 3.4.16 1.0yα =  u tu cyF Fα =   b 

3.4.18 1.3yα =  1.25 0.2u tu cyF Fα = +   c

Note: a, c. This is for a symmetric section. See Table 4.8c for an unsymmetric section.  
 a. In the AA Specification, αu = 1.42Ftu/Fty .  
 b, c. Not available in the AA Specification. 
 For other coefficients, see the AA Specification. Each allowable stress in this table is 

introduced into equations in Table 2.7 to compute the member allowable stress. 
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The safety factor on ultimate strength (nu = 1.95 for building and similar type 

structures) given in the AA Specification (2000a) is maintained, since only the 

specified percentage of the ultimate allowable stress is used. Since the safety factor on 

yield strength is defined as the ratio of the yield limit state stress to the allowable 

stress, the following expression characterizes the varying safety factor on yield 

strength for a tension side component element: 

y y y an F Fα=   (25) 
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Figure 2.20 Safety factor on yield strength of the tensile allowable stress 
(AA Section 3.4.4) for a plate under bending based on Procedure II 

In Figure 2.20a, using Equation (25) based on Procedure II, the varying safety 

factors on yield strength of a rectangular web element under bending are plotted with 

solid circles for the 986 alloy-temper combinations selected in Section 2.4. It is seen 

that the average of the varying safety factor on yield strength (1.54) is only 6.7% 

smaller than the current fixed safety factor on yield strength (1.65). The solid and 

dashed curves represent the analytic expressions of the varying safety factors for the 

materials with different notch sensitivities (kt). Note that the majority of the alloy-

temper combinations are concentrated near the average, as shown in Figure 2.20b. In 

yn

tu tyF F numbers of alloy-temper 
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addition, the minimum of the varying safety factor on yield strength is set to 1.32 due 

to the first safeguard in Equation (24). The second safeguard in this equation is for the 

case that the yield allowable stress is larger than the ultimate allowable stress.  

Similarly, varying safety factors on yield strength are computed for I-shaped 

sections used in Section 2.7, as seen in Figure 2.21. The varying safety factor on yield 

strength for an entire cross-section is defined as follows: 

moment capacity based on yield limit state stresses and TMCA 
moment capacity based on allowable stresses and given approachesyn =      (26) 

This definition of the varying safety factor for a cross-section composed of web and 

flange elements is consistent with that for a rectangular web element in Equation (25). 

The only difference is that the moment capacity evaluation approaches in Section 2.6 

are incorporated to combine limit state stresses for all component elements. The 

numerator is the moment capacity computed by the TMCA when each component 

element reaches the yield limit state stress implied in Table 2.2 for the tension side 

and defined in Table 2.5 for the compression side. The moment capacity in the 

denominator of Equation (26) is calculated as follows; the member allowable stress is 

calculated from Table 2.7, which is then used to calculate the governing allowable 

stress in Table 2.9, and this is then multiplied by the section modulus. The 

abbreviations used in Figure 2.21 are based on the approach combinations used in the 

denominator. SFAA, SFP1 and SFP2 are the varying safety factor on yield strength 

computed when the allowable moment capacity is based on the current AA 

Specification (2000a) and Procedures I and II in Table 2.9, respectively. The last 

category in these abbreviations represents one of the moment capacity evaluation 

approaches in Table 2.7. In Figure 2.21, WASA2 is not shown because it is almost 

identical to TMCA. 
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Figure 2.21 Comparison of safety factor on yield strength between current and 
proposed approaches for I-sections of Section 2.7 

Two types of materials are used in Figure 2.21. In Figure 2.21a, the first group 

(6005-T5, 6105-T5, 6351-T5, 6061-T6, 6061-T6510, and 6061-T6511) from among 

the 6000 series alloy-temper combinations in Table 2.4 is used. When the width-to-

thickness ratio (b/t) of a compression flange falls into the yielding range as specified 

alloy-temper 

6005-T5, 6105-T5, 6351-T5 
& 6061-T6, -T6510, -T6511 

λ = y crF F

alloy-temper 

6063-T5 

λ = y crF F
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in Table 2.10b, the ultimate limit state will govern for this material, since the ultimate 

to yield stress ratio of this material group (Ftu /Fcy = 1.086) is smaller than the ratio of 

the safety factor on ultimate strength to the safety factor on yield strength (nu/ny = 1.18 

for building type structures). Further details are as follows: a compression flange has 

two allowable stresses as shown in the yielding range of Table 2.10b, Fay = Fcy/ny and 

Fau = Ftu/nu. If the ultimate limit state governs, then Fau ≤ Fay. Thus, Ftu/nu ≤ Fcy/ny, 

and then, Ftu/Fcy ≤ nu/ny. In this computation, all stresses are positive. However, if the 

width-to-thickness ratio (b/t) falls outside of the yielding range, the yield limit state 

may govern, since the two allowable stresses for a compression flange become closer 

as shown in the inelastic buckling range of Table 2.10b. For this reason, regardless of 

the slenderness factor, the varying safety factor on yield strength is larger than or 

equal to 1.65, as in the AA Specification. So for this group there is no difference 

between Procedures I and II.  

In Figure 2.21b the third alloy-temper combination (6063-T5) in Table 2.4 is 

used. Similarly, since the ultimate to yield stress ratio (Ftu /Fcy = 1.4) is larger than the 

ratio of the safety factors (nu/ny = 1.18), the yield limit state governs for a compression 

flange. Thus, regardless of the slenderness factor, the safety factor on yield strength is 

a constant, 1.65 if Procedure I is used. When Procedure II is used, the safety factor 

varies, as expected. 

In the aforementioned discussion, the governing limit state should also be 

examined with respect to a compressive web component element. However, with these 

types of cross-sections and material properties, it is found that the effect of the web 

element is insignificant, as shown in computational examples provided in the 

Appendix. 

In Figure 2.21, it is found that the calculated member moment capacity by 

Procedure I is 9 to 13% more than that can be computed by the current AA 
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Specification. A constant safety factor on yield strength of 1.65 is maintained. 

Procedure II further increases the calculated member moment capacity for materials 

with a larger margin between the ultimate and yield stresses. Although this will result 

in a variation in the safety factor on yield strength, it should not cause any significant 

problem for maintaining a desirable strength margin for safety. Step-by-step 

computation procedures for the allowable moment capacity and the safety factor are 

provided in the Appendix for a sample cross-section. 

2.10 Conclusions 

For tension component elements, the AA Specification provides two different 

allowable stress (or factored limit state stress) expressions at the yield and ultimate 

limit states. However, for compression component elements, the allowable stress (or 

factored limit state stress) is provided only for the yield limit state. In this study, the 

limit state stress at the ultimate limit state is developed for compression component 

elements to take advantage of the ultimate-plastic capacity of compact aluminum 

members in bending.  

An expression for the ultimate limit state stress for compression component 

elements is obtained from rigorous closed-form expressions derived for the ultimate 

shape factor for rectangular web elements integrating the stresses across the cross-

section. The rigorous expression thus obtained is simplified for practical design 

purposes. A parametric study for component elements is conducted using the finite 

element method. Based on the above studies, the ultimate limit state stress equations 

are proposed for compression component elements. In addition, the empirically 

developed weighted average stress approach (WASA) is investigated, and a simple 

modification is proposed. Moreover, a more general approach denoted by the Total 

Moment Capacity Approach (TMCA) is developed. 
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The proposed approaches are more accurate for calculating the moment 

capacities of laterally supported flexural members. This is validated through a 

parametric study of I-shaped sections with a wide range of slenderness, using the 

finite element method. The proposed approaches are further supported by the flexural 

tests of standard sections.  

For design purposes, two procedures are suggested. In Procedure I, the factor 

of safety on yield strength used in the current specification is maintained. In Procedure 

II, the safety factor is applied to the additional inelastic capacity. Procedure II is more 

reasonable in that the safety factor varies depending on the margin between the 

ultimate and yield stresses. 
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3. SYMMETRIC CROSS-SECTIONS WITH TAPERED THICKNESS 

COMPONENT ELEMENTS 

 

Some standard sections listed in AA (2000b) have tapered thickness plate 

flanges, as shown in Figure 3.1a. Also custom shapes with tapered thickness flanges 

may be extruded as shown in Figure 3.1b.   

    

   (a)              (b) 

Figure 3.1 Examples of sections with tapered elements (a) standard extruded 
shapes (b) custom extruded shapes 

The behavior of a component element with tapered thickness has been investigated for 

aircraft and structural member analysis by Pines et al. (1947), Wittrick et al. (1962), 

Chehil et al. (1973), Kobayashi et al. (1990), Mizusawa (1993) and Ohga et al. (1995). 

However, The behavior of tapered thickness elements has not been fully incorporated 

in both AISC (1998) and the AA Specification (2000a). Instead, an average thickness 

is used in design. 

In this study, stiffness matrices for plates with tapered thickness are derived for 

use in the framework of an available finite strip analysis program. Using the program, 

plate buckling coefficients can be calculated taking into account thickness variation 

and boundary conditions. The plate buckling coefficients obtained are introduced into 

the current specification approach for aluminum structures to calculate more precise 

limit state stresses. 
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3.1 Introduction 

Sections with tapered plate thickness shown in Figure 3.1a are commonly used 

sections made of steel or aluminum. However, the design equations for the behavior of 

such tapered plate elements have not been fully developed in specifications. In both 

AISC (1998) and the AA Specification (2000a), the treatment of a tapered component 

element as a uniform one using an average thickness is implied. 

The buckling behavior of a plate element with tapered thickness has been 

studied primarily for aircraft design by Pines et al. (1947), Wittrick et al. (1962), and 

Chehil et al. (1973). The main focus has been on the buckling of a plate with a 

thickness variation in the same direction as the loading. However, since a plate 

element that is a component of a structural member is tapered in the direction 

perpendicular to loading as shown in Figure 3.2, these studies do not apply to the type 

of problem covered in this study.  

 

Figure 3.2 A tapered element separated from an I-section under bending 

More recently, Kobayashi et al. (1990), Mizusawa (1993) and Ohga et al. 

(1995) have studied the behavior of plate elements tapered in the direction 

perpendicular to loading which is the same case as the problem in Figure 3.2. 
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However, the studies have focused on demonstrating theoretical approaches without 

any application to structural design codes.  

In this study, stiffness matrices are derived for a plate element with tapered 

thickness based on the finite strip method. The derived stiffness matrices are 

incorporated into the CUFSM program developed by Schafer (1997) to compute the 

elastic buckling stress of arbitrary shapes containing tapered thickness component 

elements such as those in Figure 3.1. The program is also used to compute the plate 

buckling coefficients of an individual tapered thickness plate element with idealized 

boundary conditions. The plate buckling coefficients determined in this way are 

incorporated in the AA Specification (2000a) so that the limit state stresses of tapered 

plate elements are obtained rigorously instead of treating such elements as having a 

uniform thickness.  

A parametric study of a wide variety of I-shaped sections with tapered 

thickness is conducted using non-linear inelastic finite element analyses to validate the 

limit state stress expressions based on the rigorously obtained plate buckling 

coefficients. Physical tests further support this approach. Allowable stress design 

equations are also suggested for application to the AA Specification (2000a) based on 

the proposed limit state stress equations. The framework for uniform thickness 

sections is maintained in the proposed approach for tapered thickness sections. 

3.2 Stiffness Matrices for a Tapered Finite Strip Element 

The CUFSM program computes the elastic buckling load factor and 

corresponding mode shapes using the finite strip method. However, since CUSFM is 

based on the uniform plate theory, a thickness variation cannot be considered directly. 

This study derives stiffness matrices for tapered finite strip elements.  



 

 

           47

The shape function used in CUFSM is based on Cheung (1976). The shape 

function is the multiplication of a width-direction shape function X(x) and a 

longitudinal-direction shape function Y(y). 

N(x,y) = X(x)Y(y)  (27) 

For the plane stress part of the stiffness matrix, the width-direction shape function 

X(x) is linear, which is the same as a truss element. For the plate bending part of the 

matrix, the width-direction shape function X(x) is cubic, which is the same as a beam 

element. The longitudinal-direction shape function Y(y) is a sine function, since the 

boundary condition at the loaded edges of the CUFSM program is limited to the 

simply-supported case. Only the width-direction shape functions are modified, since 

the thickness varies only in that direction. The exact shape functions for tapered truss 

and beam elements are based on McGuire et al. (2000).  

 
Figure 3.3 A tapered truss or beam element with unit width or a cross-section of 

a tapered plate element 

 
Figure 3.4 Degrees of freedom for a finite strip 
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For the axially loaded linearly tapered truss element shown in Figure 3.3, the 

equilibrium of an infinitesimal segment in the x-direction yields the following 

displacement field:  

1 2( ) ( ) T
tu x N x u u=           (28) 

1 1( ) 1 ( ) ( )tN x f x f x= −          (29) 

where 
( )
( )1

ln 1
( )

ln 1

x
bf x

δ

δ

+
≡

+
, 2 1

1

t t
t

δ −
=  and ( )tN x   = the shape function for a tapered 

truss element. 

Using Equation (29), the shape function for the plane stress is expressed in the 

form of Equation (27) within the displacement field: 

 [ ]1 1 1 2 2( , ) ( , ) ( , )T Tu x y v x y N x y u v u v=                   (30) 

[ ]
( )

( )
1 1

1
1 1

1 ( ) ( ) 0 ( ) ( ) 0
( , ) ( ) ( )0 1 ( ) 0 ( )

m m

m m

m m

f x Y y f x Y y
N x y Y y Y yf x f x

k k

 −
 = ′ ′ −
  

     (31) 

where Ym(y) = sin(kmy), km = mπ /a, m = number of half-waviness, and a = longitudinal 

length of the strip element (y-direction in Figure 3.4). The degrees of freedom in 

Equation (30) are defined in Figure 3.4. 

The strain field is derived from the displacement field: 

[ ]1 1 1 2 2( , )
T

T T
x y xy

u v u v B x y u v u v
x y y x

ε ε γ
    ∂ ∂ ∂ ∂   = + =           ∂ ∂ ∂ ∂      

   (32) 

[ ] ( )

( )

1 1

1 1 1

1 1 1 1

( ) ( ) 0 ( ) ( ) 0
( , ) 0 ( ) 1 ( ) 0 ( ) ( )

( ) ( )1 ( ) ( ) ( ) ( ) ( ) ( )

m m

m m m m

m m
m m

m m

f x Y y f x Y y
B x y f x k Y y f x k Y y

Y y Y yf x Y y f x f x Y y f x
k k

 
 ′ ′− 

= − − 
 ′ ′ ′ ′ ′ ′− −
  

  (33) 
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The initial stiffness matrix of the plane stress part is derived from the 

minimum potential energy: 

[kplane-stress] = 1 1
0 0

( )[ ] [ ][ ]
b a

T
pt x B E B dydx∫ ∫   (34) 

where [Ep] =
1 2

2 2

0
0

0 0

x

x

E E
E E

G

ν
ν
 
 
 
  

, 1 1
x

x y

EE
ν ν

=
−

, 2 1
y

x y

E
E

ν ν
=

−
, ( ) 1 1 xt x t

b
δ = + 

 
, Ex, 

Ey = Young’s moduli, G = shear modulus, and νx, νy = Poisson’s ratios. 

For the linearly tapered beam element shown in Figure 3.3, the force 

equilibrium of an infinitesimal segment in the vertical direction (z) and the moment 

equilibrium with respect to the axis perpendicular to the cross-section (y) yield the 

following displacement field:  

1 1 2 2( ) ( ) T
bw x N x w wθ θ=           (35) 

where ( )bN x   = the shape function for a tapered beam element 
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 
  

 (36) 

where ( ) ( )2 2 ln 1C δ δ δ= − + + + , and 2 ( ) 1 xf x
b

δ= +  

Using Equation (36), the shape function for plate bending is expressed in the 

form of Equation (27) within the displacement field for a finite strip element: 

2 1 1 2 2( , ) ( , ) Tw x y N x y w wθ θ=           (37) 
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2 ( , ) ( ) ( )b mN x y N x Y y=           (38) 

The degrees of freedom in Equation (37) are defined in Figure 3.4. 

Using the displacement field in Equation (37), the strain field is computed: 

2 2 2

2 1 1 2 22 2 2 [ ( , )]
T

T T
x y xy

w w w B x y w w
x y x y

ε ε γ θ θ
 ∂ ∂ ∂  = − − =      ∂ ∂ ∂ ∂ 

 (39) 

where [ ] 2
2 ( , ) [ ( )] ( ) [ ( )] ( ) 2[ ( )] ( )

T

b m b m m b mB x y N x Y y N x k Y y N x Y y′′ ′ ′ = −  . 

The initial stiffness matrix of the plate bending part is also derived from the 

minimum potential energy: 

[kplate-bending] = 2 2
0 0

[ ] [ ][ ]
b a

T
bB E B dydx∫ ∫   (40) 

where [Eb] =
3( )
12 p

t x E   . 

The complete initial stiffness matrix is a combination of Equations (34) and (40): 

( )
( )

4 4
[ ]

4 4

plane stress

e

plate bending

k zeros
k

zeros k

−

−

   ×  =
  ×   

  (41) 

The derivation of the geometric stiffness matrix follows Schafer (1997). The 

thickness variation is also incorporated in the geometric stiffness matrix. For a linearly 

varying applied stress, 

( ) [ ] [ ]1 1 2
0 0

( )
a b

T
g

xk f f f t x G G dxdy
b

   = − −    ∫ ∫   (42) 

where [ ]{ } ( , ) ( , ) ( , )
T

u x y v x y w x yG d
y y y

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

, f1 and f2 = stresses at the nodes of 

an element, {d}= u1  v1  u2  v2  w1  θ1  w2  θ2T, u(x,y)  v(x,y)T= Equation (30), and 

w(x,y) = Equation (37). The stiffness matrices derived in this manner are introduced 

into the CUFSM program.  
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In this program, after the initial stiffness matrix of Equation (41) is computed 

for each element, each stiffness matrix is transformed into a global coordinate system. 

The transformed stiffness matrices from all elements are assembled according to the 

global degrees of freedom. The same procedure is repeated for the geometric stiffness 

matrix of Equation (42). By solving the eigen-value problem of Equation (43), elastic 

buckling load factors (β) and corresponding mode shapes {∆} are obtained for a given 

cross-section: 

{ } { }0e gK Kβ + ∆ =    (43) 

where Ke, Kg = the assembled initial and geometric stiffness matrices in a global 

coordinate system, respectively. 

Due to the singularity of the width-direction shape functions in Equations (29) 

and (36) as the thickness variation ratio (δ) approaches zero, the stiffness matrices for 

a plate with tapered thickness are used only when the thickness variation ratio is larger 

than or equal to 5%. For a thickness variation ratio less than 5%, stiffness matrices for 

uniform thickness are used with an average thickness. 

A version of the CUFSM program has been developed to accommodate the 

effect of tapered thickness based upon the theory developed in this study. This version 

of the program is called CUFSM-tap hereafter. 

3.3 The Plate Buckling Coefficient for a Tapered Thickness Plate Element and 

Application to the AA Specification 

In the AA Specification (2000a), the compressive limit state stress varies 

according to the equivalent slenderness ratio (λp), which falls into one of three ranges, 

the yielding, inelastic buckling, and post buckling ranges, as shown in Figure 2.4. The 

equivalent slenderness ratio (λp) is defined in Equation (5). 
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( )212 1
, where p

p

b
t k

ν
λ κ κ

− = = 
 

   (5) 

As seen in this equation, the equivalent slenderness ratio of each component element 

is dependent on the plate buckling coefficient (kp). 

However, for a plate element with tapered thickness, the equivalent slenderness 

is not provided in the current AA Specification (2000a), since the plate buckling 

coefficient is unknown. Examples of sections with tapered thickness are shown in 

Table 3.1. The shaded flange area of each cross-section is considered as an individual 

plate element under uniform compression with idealized boundary conditions.  

Table 3.1 Idealization of sections with tapered elements 

Flexural member – idealized 
tapered element under uniform 

compression is shaded 

idealized boundary 
condition (IBC) IBC designation 

 

 
SSSS 

 

 
SSFS 

 
SSSF 

Since the thickness varies at the loaded edges, the distributed force per unit 

length shown in this table, which is the multiplication of the uniform compressive 

stress by the thickness, is not uniform. Using the CUFSM-tap program, the plate 

buckling coefficient is computed for each idealized plate element shown in Table 3.1. 

The computation is based on a given thickness variation ratio (δ), which is defined in 

Equation (44), and repeated for different ratios. The thickness variation ratio (δ) is an 

additional variable needed to evaluate a plate with tapered thickness:  

( )2 1 1t t tδ = −     (44) 
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The plate buckling coefficient ( 1
pk ) is computed based on the smallest thickness (t1). 

( ) ( )22
11

2

12(1 ) / cr
p

b t F
k

E
ν

δ
π

−
=          (45) 

The computed plate buckling coefficients are plotted in Figure 3.5. In the analysis, the 

plate is discretized into eight equally spaced strips. 
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(c) 
Note: b/t1 = 1000 in Mizusawa (1993) 

Figure 3.5 Plate buckling coefficient of tapered thickness plates for boundary 
condition (a) SSSS (b) SSFS (c) SSSF 
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The plate buckling coefficients calculated in this study are compared to 

Mizusawa (1993) as shown in Figure 3.5. Since the available data from Mizusawa 

(1993) is limited to the case where the width (b) is the same as the length (a), initial 

comparisons are made from buckling coefficients calculated for the same case. 

However, since the plate buckling coefficient decreases as the length-to-width ratio 

(a/b) increases under SSFS and SSSF boundary conditions, the results for a large 

length-to-width ratio (a/b) of 200 are also given. The plate buckling coefficient 

obtained from CUFSM by using this length-to-width ratio for a plate with uniform 

thickness is 0.405. This number is rather small compared to 0.425 or 0.43, which is 

found in other specifications. However, 0.405 is more consistent with the current AA 

Specification (2000a), since the equivalent slenderness of a uniform thickness plate 

under the SSFS (or SSSF) boundary condition is 5.13(b/t) according to the Aluminum 

Company of America (1958), from which the basis for the AA Specification (2000a) is 

obtained. See Equation (5) to obtain λp = 5.13(b/t) from kp = 0.405 when ν = 1/3. 

As the thickness variation ratio (δ) increases, the plate buckling coefficient (kp
1) 

increases monotonically as seen in Figure 3.5. For this reason, quadratic equations are 

used for curve-fitting the relationship between the plate buckling coefficient and the 

thickness variation ratio. The error average between the computed and curve-fitted 

data is less than 0.1%, with a standard deviation of less than 0.5% for all cases.  

The curve-fitted plate buckling coefficients in Figure 3.5 are based on the 

minimum thickness (t1) as shown in Equation (45). However, it would be more useful 

for practical design purposes if the plate buckling coefficients were expressed in terms 

of the average thickness, as the current AA Specification is based on the average 

thickness. The relationship between the plate buckling coefficients based on the 

minimum and average thicknesses is obtained as follows: 

( )214 2p pk k δ= +   (46) 
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where kp = the plate buckling coefficient based on the average thickness (tavg).  

Equation (46) is derived from the following relationships: 

( )( ) ( )( )

2 1 2

2 222
112 112 1

p p
cr

avg

k E k E
F

b tb t

π π

νν
= =

−−
 and  1 2 2 1

1 1

1 2
2 2 2

avgt t t t t
t t

δ+ + +
= = = . 

A comparison between the plate buckling coefficients of a uniform thickness plate and 

a tapered thickness plate using Equation (46) is shown in Figure 3.6. 
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(b) 

Figure 3.6 Rigorous plate buckling coefficient comparisons between tapered and 
uniform thickness plates based on average thickness with (a) SSSS (b) SSFS and 

SSSF boundary conditions 
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The rigorous plate buckling coefficient for tapered thickness plates increases 

as the thickness variation ratio (δ) increases in the SSFS boundary condition case, 

which implies that the current AA Specification is conservative. However, for other 

cases, the current AA Specification is not conservative. 

The equivalent slenderness ratios of tapered thickness plate elements are 

obtained by introducing the rigorous plate buckling coefficients in Figure 3.6 into 

Equation (5), as shown in Table 3.2. The rigorous equivalent slenderness ratios are 

also linearly approximated in the table for design purposes. The errors due to linear 

approximations of the rigorous equivalent slenderness ratios are within ±2%. It is 

noted that since the curve-fitted equations are for a limited range, the range of the 

thickness variation ratio (δ) is limited as well. However, the thickness variation ratios 

of all standard I-shaped sections with tapered thickness in AA (2000b) fall within this 

range. 

Table 3.2 Linear approximation of the equivalent slenderness ratio (λp) for 
tapered thickness elements under uniform compression (0 < δ ≤ 2.0) 

type of 
member 

rigorous expression ( )pλ  linear approx. ( )L
pλ  AA Spec. ( )AA

pλ

[SSSS] 
 

( )
( )2

1.633 2

0.739 4 1 avg

b
t

δ

δ δ

 +
  + +  

 ( )1.63 0.03
avg

b
t

δ
 

+   
 

 1.6
avg

b
t

 
  
 

 

[SSFS] 
 
 

( )
2

1.633 2

0.335 0.480 0.405 avg

b
t

δ

δ δ

 +
  + +  

( )5.1 0.6
avg

b
t

δ
 

−   
 

 5.1
avg

b
t

 
  
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[SSSF] 
 
 

( )
2

1.633 2

0.146 0.317 0.405 avg

b
t

δ

δ δ

 +
  + +  

5.2
avg

b
t

 
  
 

 5.1
avg

b
t

 
  
 

 

The limit state stress for a tapered flange element is determined by introducing 

the linearly approximated equivalent slenderness ratios in Table 3.2 into the equations 

in Table 3.3. The shape factors (α) in this table under the yield and ultimate limit 

states are provided in Table 2.5b. 
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Table 3.3 Limit state stress equations for a tapered flange element  

approaches 
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          b. See Table 2.5b for α. 
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Figure 3.7 (a) The proposed limit state stress ( )L
pF and current limit state 

stress ( )AA
pF  for linearly tapered elements under uniform compression and 
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For a given material (extruded 6061-T6) and geometry (δ = 1), limit state 

stresses (Fp) from both approaches in Table 3.3 are plotted in Figure 3.7a for the SSFS 

boundary condition. They confirm that the current AA Specification (2000a) is 

conservative for the SSFS boundary condition. The errors between both approaches 

are plotted in Figure 3.7b for all three boundary condition cases. The current AA 

Specification (2000a) is unconservative for the SSSS and SSSF boundary conditions, 

but the calculated errors for these boundary conditions are smaller than those for the 

SSFS boundary condition. 

3.4 The Moment Capacity Evaluation Approaches 

The moment capacity evaluation approaches shown in Section 2.6 can be used 

for the symmetric tapered thickness sections in Figure 3.1. However, the definition of 

hc used in this section should be changed from the distance between centerlines to the 

distance between centroids of the flange areas (Af) as shown in Figure 3.8. 

 
Figure 3.8 Contributions of component elements to the entire moment capacity of 

an I-shaped section with tapered thickness 

3.5 Parametric Study of I-Shaped Sections with Tapered Thickness 

The moment capacities are computed for all 36 standard I-shaped sections with 

tapered thickness listed in AA (2000b) using the approaches developed for the tapered 
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thickness element. Subsequently the same sections are analyzed using the finite 

element method. These sections are denoted by Series 1 in this parametric study. Since 

the slenderness factors, defined in Equation (22), of all Series 1 sections are in the 

stocky range (λ < 0.673) based on AISI (1996), additional series sections are created 

through reduction of the thickness of the standard sections by 60%. These sections are 

denoted by Series 2. Details of the dimensions for Series 1 and 2 sections are given in 

Section 6.4 of the Appendix. 

The finite element model used for the parametric study is quite similar to that 

of Section 2.7 except for the following. Each member length is at least four times the 

member depth so that the end effects disappear at the middle of the member. The 

length is also set to 3 to 8 times the critical local buckling length, which results in the 

minimum buckling load. Twenty-noded quadratic hexahedral solid elements with 

reduced integration are used to fully take into account the thickness variation in the 

finite element model. The cross-sections used in the parametric study are extrusions of 

6061-T6 with the minimum material properties in Table 2.4. Since the moment 

capacity variation resulting from the ultimate strain variation is not significant, as 

shown in Table 2.8, the ultimate strain is set to 8%, which is the same as the minimum 

percent elongation in AA (2000c). 

The influence of employing the rigorous plate buckling coefficient for a 

tapered thickness plate is investigated, as shown in Figure 3.9. The abbreviations used 

in Figure 3.9 and Figure 3.10 are as follows. In the first category, MAA-UNI and MAA-

TAP denote the moment capacities when the limit state stresses are computed by the 

specification approach based on the uniform average thickness (Fp
AA in Table 3.3) and 

the proposed approach based on the tapered thickness (Fp
L in Table 3.3), respectively. 

The second category is the limit state, either yield (-Y) or ultimate (-U), as given in 

Table 2.5 and Table 3.3 for the compression side. The third category indicates the 

moment capacity evaluation approach in Table 2.7 with a correction for hc as 
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described in Section 3.4. On the vertical axis, the moment capacity from each finite 

element analysis is divided by the capacity obtained from the approach specified in the 

figure. As seen in Figure 3.9, considering the tapered thickness plate buckling 

coefficient significantly improves the member capacity for rather slender sections 

(Series 2 sections). This is because most Series 2 sections fall into the inelastic or post 

buckling range, in which the limit state stress is considerably affected by the 

equivalent slenderness ratio.  
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(b) 
Figure 3.9 Influence of employing the plate buckling coefficient for a tapered 

thickness plate (a) Series 1 (b) Series 2  
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TAP-U-WASA2 and MAA-TAP-U-TMCA). The comparison is shown in Figure 3.10. The two 

proposed approaches predict the ultimate-plastic capacities of the cross-sections used 

in the parametric study more accurately than the two currently available approaches 

across a wide range of slenderness. In addition, the two proposed approaches show 

similar results. The moment capacities obtained with all four approaches and the finite 

element analyses normalized by the yield moment capacity are listed in Section 6.4. 
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Figure 3.10 Comparison between current and proposed approaches (a) Series 1 

(b) Series 2 
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3.6 Experiments and FEM Simulation 

Flexural tests for three American Standard I-Beams with tapered thickness, I-

3x1.96, listed in AA (2000b), have been conducted to further support the approaches 

proposed in this study. The dimensions of the section are shown in Section 6.4 of the 

Appendix. The test setup is quite similar to that used for the uniform thickness 

sections in Figure 2.16. It is simulated using the finite element method. All modeling 

issues are similar to those of the SOLID model in Section 2.8 except for different 

lateral support spacing, as shown in Figure 3.11, and different material properties, as 

shown in Table 6.27c in the Appendix.  

 
   Note: all dimensions are in mm and not to scale 

Figure 3.11 Schematic test setup (I-3x1.96) 

In contrast to the uniform thickness sections of Section 2.8, almost no ripples 

were formed during the tests, as shown in Figure 3.12. The beam does not seem to be 

sensitive to such local deformations. The first test performed was unsuccessful due to 

a lack of stiffness at the lateral supports; large lateral S-shaped deformations occurred, 

as shown in Figure 3.12b. For this reason, the first tested beam reached the peak too 

early, as seen in Figure 3.13. The test setup was reinforced against lateral movements 

for the following tests, resolving the problem with the first test. However, the last two 

tests were discontinued at a vertical displacement between approximately 150mm and 

170mm at the span center, due to the limitation of the test setup. Up to this stage, load 

factor continually increases as displacement increases, as observed in Figure 3.13. 
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(a) 

 
(b) 

Figure 3.12 Residual deformation of tested specimens (I-3x1.96) (a) side (b) plan 
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Figure 3.13 Load factor-displacement result comparison for Ι-3x1.96 
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The load factor-displacement curves obtained from the last two physical tests 

are closely matched by the finite element analysis, as shown in Figure 3.13. In the 

analysis, the Von Mises stress reaches the ultimate stress failure criteria without 

stability problems. At this stage, the peak load factor is determined, although the load 

factor is still increasing. 

In Table 3.4, the average of the maximum moment capacities from the last two 

physical tests is compared with those from the approaches available in the current AA 

Specification (2000a) and those from the approaches developed in this study. The 

proposed approaches show closer agreement with the tests than the current 

approaches. Thus, in addition to the parametric study, the test results further validate 

the proposed approaches. The moment ratios from the tests in Table 3.4 are slightly 

smaller than from the finite element analyses in Figure 3.10 and Table 3.5, which may 

be due to the early discontinuation of the tests. Since the material properties used for 

the finite element analyses are not from the minimum values in AA (2000c) but from 

tensile tests in this study, the moment capacities based on the approaches in these 

tables are recalculated. 

Table 3.4 Comparison of test results to the available approaches 

current approaches proposed approaches 

TESTS

AA-UNI-Y-MMCA

M
M

 TESTS

AA-UNI-Y-WASA

M
M

 TESTS

AA-TAP-U-WASA2

M
M

 TESTS

AA-TAP-U-TMCA

M
M

 

1.174 1.141 0.967 0.960 

Table 3.5 Comparison of finite element simulation to the available approaches 

current approaches proposed approaches 

FEM-SIMULATION

AA-UNI-Y-MMCA

M
M

 FEM-SIMULATION

AA-UNI-Y-WASA

M
M

 FEM-SIMULATION

AA-TAP-U-WASA2

M
M

 FEM-SIMULATION

AA-TAP-U-TMCA

M
M

 

1.198 1.164 0.986 0.979 
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3.7 Application to the AA Specification 

The allowable stress equations based on the yield and ultimate limit states are 

summarized for tapered thickness elements in Table 3.6. The equations given in this 

table are consistent with those proposed in Section 2.9 for uniform thickness elements. 

In addition, the governing allowable stress for sections with tapered thickness can also 

be determined by either Procedure I or Procedure II given in Table 2.9. Although 

Table 2.9 and Table 3.6 are based on the Allowable Stress Design, these tables can 

also be applied to the Load and Resistance Factor Design by replacing the reciprocal 

of each safety factor with the corresponding resistance factor. 

Table 3.6 Proposed allowable stress equations for tapered thickness elements 
under uniform compression (0 < δ ≤ 2.0) when sections are under bending 
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Note. See Section 2.9 for details. 
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3.8 Conclusions 

Initial and geometric stiffness matrices for a plate with tapered thickness are 

derived for the finite strip analysis program, CUFSM. Using the CUFSM program 

with the derived stiffness matrices, parametric studies are conducted to find the 

relationship between the plate buckling coefficient and the thickness variation ratio. 

Using the relationship thus obtained, limit state stress equations are proposed for 

tapered thickness elements, while the framework of the AA Specification (2000a) is 

maintained. 

Another parametric study is conducted for I-sections with tapered thickness for 

the verification of the proposed limit state stress equations. The moment capacity 

evaluation approaches that are developed for uniform thickness sections are also 

employed for the sections used in the parametric study. From the comparisons with the 

finite element analyses, it has been found that the proposed approaches work much 

better than the current specification approaches. Experimental study additionally 

supports the proposed approaches.  

The limit state stress equations developed for tapered thickness elements are 

improved primarily within the inelastic and post buckling ranges. For this reason, the 

proposed approaches could also be used to develop more slender cross-sections with 

tapered thickness than the current standard cross-sections, which mostly fall within the 

yielding range.  
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4. NUMERICAL SLENDERNESS APPROACH FOR COMPLEX 

ALUMINUM EXTRUSIONS UNDER FLEXURAL LOADING 

 

One of the most attractive aspects of aluminum as a structural material is that it 

can be extruded. Through extrusion, the cross-section can be a wide range of shapes, 

and combination of shapes. For example, extrusion is the best process for producing 

the geometric shape shown in Figure 4.1b, in which additional component elements 

are attached to the flanges of a simple I-shaped section. Sections containing such 

component elements are common among extruded aluminum shapes and provide 

additional functions such as screw chases and grooves. 

    
      (a)           (b) 

Note: All dimensions are in inches and not to scale. 

Figure 4.1 (a) Simple I-shaped section (b) complex extrusion 
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Figure 4.2 Buckling analyses by CUFSM for simple and complex extrusions 
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As shown in Figure 4.2, the local buckling capacity of a complex extrusion 

(Figure 4.1b) is usually much larger than a simple extrusion (Figure 4.1a) due to the 

additional component elements. However, the advantage of increased member 

capacity is usually disregarded due to the difficulty of considering all possible 

geometric variations in the specifications. For example, in order to calculate the 

compressive allowable stress (or factored limit state stress) of the complex extrusion 

in Figure 4.1b using the AA Specification (2000a), the geometry should be simplified 

to the one shown in Figure 4.1a. 

To consider all possible geometric variations of aluminum extrusions, a 

numerical analysis is desirable. Thus, a new design approach based on a numerical 

analysis is developed. In this approach, the framework of the current specification is 

maintained, with only the equivalent slenderness ratio being determined by local 

buckling analysis. Since the geometric shape does not limit the numerical buckling 

analysis, practically all aluminum extrusions can be evaluated. In this approach, 

rigorously obtained plate buckling stress values are used instead of the minimum plate 

buckling coefficients implicit in the AA Specification (2000a).  

In addition, since the current methodologies to compute moment capacities 

based on the determined limit state stresses are over-simplified for unsymmetric 

sections, more precise approaches are formulated. A shape factor for a rectangular 

web element is also developed for unsymmetric sections. Results of physical tests and 

non-linear finite element analyses are compared to the approaches developed in this 

study.  
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4.1 Numerical Slenderness Approach for Component Elements 

In the AA Specification (2000a), the limit state (or allowable) stress for a 

compressive component element varies according to the equivalent slenderness ratio 

(λp), which falls into one of three ranges, the yielding, inelastic buckling, and post 

buckling ranges, as shown in Figure 2.4. The equivalent slenderness ratio is defined in 

Equation (5). 

( )212 1
, where p

p

b
t k

ν
λ κ κ

− = = 
 

  (5) 

In the AA Specification (2000a), boundaries between component elements are 

idealized as simply-supported, for which plate buckling coefficients (kp) are generally 

known. It has been shown in Chapters 2 and 3 that this idealization is satisfactory for 

sections with simple geometry such as in Figure 2.1 and Figure 3.1. Although the AA 

Specification (2000a) provides limit state stress equations for additional types of 

cross-sections, they are insufficient to cover the wide range of possible geometric 

shapes through extrusion.  

The Numerical Slenderness Approach (abbreviated as NSA hereafter) is 

developed to provide a design approach for complex extrusions, in which the 

aforementioned boundary idealization is not applicable or appropriate. In this 

approach the equivalent slenderness ratio is determined using a numerical buckling 

analysis tool such as CUFSM. The CUFSM program developed by Schafer (1997) is 

designed to determine the minimum elastic buckling stress and a corresponding mode 

shape for a given length of a member. By varying the member length, several mode 

shapes such as local, distortional, and lateral buckling can be detected. Examples of 

the buckling analysis results are shown in Figure 4.2. A complete manual for CUFSM 

can be found in Schafer (1997), although the name of the program has changed since 

then from CUSTRIP to CUFSM. 
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An alternative form of the equation for the equivalent slenderness ratio based 

on the numerically determined minimum buckling stress Fcr is derived from the 

relationship given in Equation (6): 

p
cr

E
F

λ π=   (47) 

Since the geometric shape is not limited to simple cases when performing a numerical 

analysis, the equivalent slenderness ratio can be obtained for a wide range of possible 

geometries. There is only one unique minimum buckling stress corresponding to a 

given cross-section, as shown in Figure 4.2. Thus, the equivalent slenderness ratios for 

all component elements are equal. In addition, in the use of the NSA there is no need 

to idealize boundaries between component elements as simply-supported, which is 

necessary in the AA Specification (2000a). Using Equation (47), the limit state stress 

equations are provided in Table 4.1. The equations in this table are identical to those 

in Figure 2.4 for the AA Specification (2000a), except for the expression for the 

equivalent slenderness ratio. 

Table 4.1 Limit state stress equations for a component element  

Limit state stress for 
λp ≤ S1 

S1 
Limit state stress for

S1 ≤ λp ≤ S2 
S2 

Limit state stress for
S2 ≤ λp 

Fp = α Fcy cyB F
D
α−

Fp = B – Dλp 1k B
D

 2
p

p

k BEF
λ

=  

Note: B, D, k1 and k2 are the factors provided in the AA Specification (2000a). These factors differ 
for flanges and webs. Fp = limit state stress for flange (Ff) or web (Fw).  See Table 2.5b for shape 
factors (α) of symmetric cross-sections. For unsymmetric sections, see Table 4.8c. 

4.2 Rigorous Ultimate Shape Factor for Rectangular Web Elements with Neutral 

Axis Not at Mid-Depth 

As shown in Section 2.5, the cut-off of the AA Specification (2000a) seen in 

Figure 2.4 can be raised up to the ultimate shape factor (αu) times the yield stress to 
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take into account the ultimate limit state of bending members. In this study, the closed 

form solution of the ultimate shape factor for rectangular web elements when the 

neutral axis is located at mid-depth is obtained using analytic integration of the stress 

distribution. 

However, when the neutral axis is not at mid-depth, as is the case where the 

section is not symmetric with respect to the bending axis, the shape factor for the web 

element given in Equation (14) is not appropriate.  

 
Figure 4.3 Stress distributions corresponding to yield and ultimate moment 

capacities when neutral axis (N.A.) is not located at mid-depth  

Figure 4.3 shows the strain and stress distributions of a rectangular web 

element, of which the neutral axis is not at mid-depth. Based on Figure 4.3, the closed-

form ultimate moment capacity and shape factor of a rectangular section with an 

arbitrary neutral axis is derived using an analytical approach similar to the one for 

symmetric sections in Section 2.3: 
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where yNA is the distance from the neutral axis to the mid-depth. αw denotes the 

ultimate shape factor of a rectangular web element with a neutral axis not at mid-depth 

(for an unsymmetric section). For a symmetric section, another denotation (αwo) has 

been used, as shown in Equation (14). 

In Equation (50), either the compression or tension extreme fiber stress (fc, ft) 

should be the ultimate stress. If the compressive extreme fiber stress and strain (fc, εc) 

are the ultimate stress and strain (Fu, εu), respectively, the tension side extreme fiber 

stress (ft) must also be determined to use this equation. This can be done by the 

following procedure. After the tension side extreme fiber strain (εt) is computed by 

similar triangles, the strain is introduced into the Ramberg-Osgood equation, Equation 

(7), to determine the tension side extreme fiber stress (ft) using increasing trial values. 

It should be noted that Equation (14) is a special case (yNA = 0, εc = εt = εu and fc = ft = 

Fu) of Equation (50).  

4.3 Simplified Ultimate Shape Factor for Rectangular Web Elements with Neutral 

Axis Not at Mid-Depth 

Since Equation (50) requires the aforementioned additional iterative steps to 

find the tension side extreme fiber stress, a simplification of this process is necessary 

for application to practical design. Thus, using Equation (50), the shape factors are 

computed and curve-fitted with respect to the location of the neutral axis, as shown in 

Figure 4.4, for 6061-T6 alloy and temper. The curve-fitted expression in the figure, 

shown again in Equation (51), is simple and accurate for any alloy and temper if the 

two coefficients a and m are known. In Equation (51), αwo can be determined from 

Equation (14).  
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α α α    = = − + ≤ ≤    
    

  (51) 
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Figure 4.4 Ultimate shape factor for web with neutral axis not at mid-depth 
(Individual Curve-Fitting) 

Table 4.2 Material properties and coefficients of individual curve-fitting for 
ultimate shape factor of solid rectangular sections for some 6000 series alloys  

alloy-temper 
a

Fy
 

(MPa) 

b
E 

(MPa) 

a
Fu

 

(MPa) 

c 
εu 

 

e 
a 

 

d 
αwo 

 

e 
m 
 

6005-T5, 6105-T5, 6351-T5 & 
6061-T6, -T6510, & -T6511 241.15 68900 261.82 0.04 27.094 1.5975 3.00 

                 6063-T5               f 110.24 68900 151.58 0.04 30.563 1.9467 3.03 
                 6063-T5               g 103.35 68900 144.69 0.04 31.087 1.9766 3.04 

6063-T6, T62 & 6463-T6 172.25 68900 206.70 0.04 28.423 1.7361 3.01 
6066-T6, -T6510, & -T6511 310.05 68900 344.50 0.04 28.167 1.6224 3.05 

6070-T6, -T62 310.05 68900 330.72 0.03 28.232 1.5617 3.09 
 Note: a. Minimum values from AA (2000c). 

b. These are average values, which are 689 MPa (100 ksi) lower than compression. 
c. εu is assumed to be half of the minimum percent elongation listed in AA (2000c). 
d. See Equation (14). 
e. Coefficients obtained for Equation (51) using Individual Curve-Fitting. 
f. Test coupon diameter or thickness up through 12.7mm. 
g. Test coupon diameter or thickness between 12.7 and 25.4mm. 

To determine the two coefficients in Equation (51), an iterative procedure is 

employed until the best curve-fitting is obtained. This procedure is denoted by 

“Individual Curve-Fitting” hereafter. For each 6000 series alloy listed in Table 4.2, the 

coefficients are computed individually through this procedure. It is possible to tabulate 

these coefficients for use in design. However, because of the continued increase in the 

α α  = − +  
  

0.5
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NA NA
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y ya
h h
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h/2
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curve-fitted shape factor

αw 

yNA/h 

6061-T6 
a = 27.09 
αwo = 1.598 
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variety of alloy-temper combinations, a simpler method is desired. Thus, an 

alternative approach is proposed, using the results from the Individual Curve-Fitting 

method. The two coefficients are first determined for the same 986 alloy-temper 

combinations in AA (2000c) used to obtain Equation (16). The results are plotted in 

Figure 4.5 with respect to the ultimate stress to yield stress ratio. The results are 

curve-fitted with rounded numbers for practical design purposes. This approach is 

denoted by “Unified Curve-Fitting” hereafter. 

14 13tu
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= +   (52) 

m = 3  (53) 
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Figure 4.5 Unified Curve-Fitting parameters a and m 

Introducing Equations (16), (52), and (53) into Equation (51), the final form of 

the shape factor is obtained using the Unified Curve-Fitting: 

3

14 13 0.5 1.25 0.2 , 0 0.5tu NA NA tu NA
u w

ty ty

F y y F y
F h h F h

α α
       = = + − + + ≤ ≤                 

     (54) 

In Figure 4.6, the shape factor obtained from the Individual Curve-Fitting for each 

material is divided by that from the Unified Curve-Fitting to investigate the accuracy 

a 

14 13tu
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Unified Curve-Fitting
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Individual Curve-Fitting 

m

Unified Curve-Fitting
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of the latter. Since the shape factor changes as the location of the neutral axis changes, 

the range of the neutral axis variation (0 ≤ yNA/h ≤ 0.5) is divided into 20 equal 

intervals. In this figure, the two solid dots connected by a solid line represent the 

maximum and minimum ratios for each alloy-temper combination. Most of the shape 

factors obtained from the Unified Curve-Fitting approximate those from the Individual 

Curve-Fitting reasonably well. Thus, Equation (54) based on the Unified Curve-

Fitting is suggested for the AA Specification (2000a). For the complete NSA limit 

state stress equations, the ultimate shape factor for a web element (αu) implicit in 

Table 4.1, which is Equation (16), should be replaced with that represented by 

Equation (54). 
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Figure 4.6 Comparison between shape factors from Individual Curve-Fitting and 

Unified Curve-Fitting  

4.4 Moment Capacity Evaluation Approaches 

Once the allowable stresses (or factored limit state stresses) for component 

elements are obtained in actual design, the moment capacity can be computed using 

one of the following approaches. However, instead of the allowable stresses (or 

=
ICF (Individual Curve-Fitting) Eqn.(51)
UCF (Unified Curve-Fitting) Eqn.(54)

Note: 
a. Orientation of specimen: no transverse direction 
b. εu > 1.5% (εu ≅ 0.5 × percent elongation) 
c. Total number of alloy-temper combinations = 986 
d. Mean = 0.995, standard dev. = 0.018, min.=0.907 

tu tyF F

ICF
UCF
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factored limit state stresses), limit state stress values have been used in the parametric 

study that follows in Section 4.5. 

4.4.1 Minimum Moment Capacity Approach (MMCA) 

The MMCA is one approach described in AA (2000b), as explained in Section 

2.6. However, for sections unsymmetric with respect to the bending axis, the 

calculation sequence is slightly different from the symmetric case. First, the allowable 

stress (or factored limit state stress) from each component element is multiplied by the 

elastic section modulus of the entire cross-section to compute the moment capacity. 

Among the obtained moment capacities, the minimum value is chosen as the 

allowable moment capacity of the member. In this computation, the section modulus 

of the entire cross-section is not uniform among component elements. This is because 

the section modulus is the moment of inertia of the entire cross-section (I) divided by 

the distance from the neutral axis to the location where the allowable stress (or 

factored limit state stress) of each component element is evaluated. For the cross-

section given in Figure 4.7, the allowable moment capacity is 

Mu = min(Fcf I/ccf, F′tf I/ctf, FcwI/ccw, FtwI/ctw, FcsI/ccs)  (55) 

where Fcf, F′tf, Fcw, Ftw, and Fcs are the limit state (or allowable) stress of compression 

flange, tension flange, compression web, tension web, and compression edge-stiffener, 

respectively. Other notations are given in Figure 4.7. This approach is demonstrated in 

AA (2000b) through the Illustrative Examples of Design (Part VIII, Example 22) for a 

similar type of unsymmetric cross-section. 

4.4.2 Weighted Average Stress Approach (WASA) 

The WASA is an alternative approach in the AA Specification (2000a) to 

compute the moment capacity, as explained in Section 2.6. For symmetric sections 

with edge-stiffeners such as C or Z-sections (Figure 4.10c), additional terms for the 
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edge-stiffener are added, as shown in Table 4.3. The modification factor (h/hc) is also 

recommended for this type of cross-section as is done in Section 2.6.  

Table 4.3 Correction in WASA for symmetric edge-stiffened C or Z sections 
current WASA (WASA) proposed WASA (WASA2) 

1
3

1
3

f f w w s s
u

f w s

F A F A F A
M S

A A A
+ +

=
+ +

1
3

1
3

f f w w s s
u

f w s c

F A F A F A hM S
A A A h
+ +  

=  + +  
 

where Ff, Fw, Fs = limit state (allowable) stress for flange, web, and stiffener, 
respectively; Af = entire compression side flange area, Aw = half of web area, 
As = entire compression side stiffener area, S = section modulus = I /(h/2),     
h = entire depth of a section, and hc = depth of a section measured between 
the centroids of compression and tension flanges.  

However, for sections with a neutral axis not at the mid-depth (or unsymmetric 

sections), this approach is not applicable because the simplification procedure used in 

Equation (19) is based on the assumption that the cross-section is symmetric so the 

weighted average stress cannot be calculated using Equation (18).  

4.4.3 Total Moment Capacity Approach (TMCA) 

The TMCA introduced in Section 2.6 can be extended to most possible cross-

sectional geometries. For example, the sections shown in Figure 4.10 can be divided 

into the web group (shaded area) and the flange group (unshaded area). The first three 

cross-sections have the elastic neutral axis at the mid-depth, while the remaining two 

cross-sections do not.  

For cross-sections with a neutral axis located far from mid-depth, the use of a 

single linear stress distribution for both tension and compression flanges would not be 

realistic. For example, in Figure 4.7 the tension limit state stress (F′tf ) obtained from a 

linear stress distribution based on the compression limit state stress (Fcf) could cause a 

significant difference from the actual tension limit state stress (Ftf ). For this reason, 

the flange group may be subdivided into two groups, resulting in a total of three 

groups in an entire cross-section, i.e., the compression flange group, tension flange 

group, and web group. This approach is denoted by TMCA2. The moment capacity 
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based on TMCA2 is expressed in Equation (56) using the notations given in Figure 

4.7. 

Mu = Mcf + Mtf + Mw = Fcf Scf + Ftf Stf + Fcw Sw = cf cf tf tf cw w

cf tf cw

F I F I F I
c c c

+ +   (56) 

When calculating the moment of inertia for each group, it is recommended that 

the simple groups be computed first, e.g., Icf and Iw in Figure 4.7. Then the remaining 

moment of inertia for the complicated group (Itf in this figure) can be obtained by 

subtracting the sum of the previously calculated groups from the moment of inertia of 

the entire cross-section (I), which is generally provided by the manufacturer:  

Itf = I − (Icf + Iw) (57) 

 

Figure 4.7 Linear approximations of an actual non-linear stress distribution of a 
mullion section 

In this example the moment capacity could not have been computed properly 

with the WASA2, due to the complex tension flange and the location of the neutral 

axis. In contrast, Equations (56) and (57) show the versatility of the TMCA2 in 

tackling complex cross-sections, although the following additional steps are required 

to compute the limit state stress of the tension flange. First, the stain corresponding to 
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the compressive limit state stress is computed using the Ramberg-Osgood equation 

shown in Equation (7). A linear strain distribution is then drawn from the calculated 

strain through the neutral axis to the tension extreme fiber. The strain thus determined 

at the tension extreme fiber is introduced into the Ramberg-Osgood equation to obtain 

the limit state stress for the tension flange (extreme fiber) by an iterative process. For 

either the flange or web stress distribution, the tension side extreme fiber stress 

(tension limit state stress) must be limited to a maximum value of the corresponding 

shape factor times the yield stress. This limitation of the maximum extreme fiber 

stress is not necessary for the case of symmetric sections because the symmetry itself 

imposes limitations.  

TMCA2 becomes the same as TMCA when the cross-section is symmetric 

with respect to the bending axis. In addition, TMCA2 becomes TMCA as the 

slenderness increases, because the non-linear stress distribution becomes linear due to 

a loss of the inelastic reserve capacity. In the use of TMCA2, the stress of each 

component element given in Equation (56) (Fcf, Ftf, and Fcw) should not be the 

allowable stress (or factored limit state stress) but the limit state stress, for the 

following reason. If each limit state stress is first divided by the safety factor (or 

multiplied by the resistance factor), the non-linearity of the stress distribution 

decreases, resulting in almost no difference between TMCA and TMCA2. Therefore, 

the moment capacity is computed using the limit state stresses after which the entire 

moment capacity should be divided by the safety factor (or multiplied by the 

resistance factor). See Table 6.19 in the Appendix for a step-by-step procedure. 

4.4.4 Moment Capacity Based on Elasto-Plastic Stress Distribution (EPMC) 

An approach to computing the moment capacity using the elasto-plastic stress 

distribution is available in AISI (1996). In AISI (1996), the ultimate compressive 
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strain is calculated with a factor proposed by Reck, Peköz, and Winter (1975) based 

on the slenderness of the compression flange. 

However, the use of this factor in calculating the ultimate compressive strain is 

not necessary in the present study. Instead, the ultimate compressive strain can be 

directly determined from the Ramberg-Osgood equation, Equation (7), since the 

compressive limit state stress for the flange element is known based on either the NSA 

or the AA Specification (2000a). The strain distribution is determined based on the 

compressive limit state strain and an assumed neutral axis location, which is set as an 

unknown variable. The stress distribution is determined from the linear stress-strain 

relationship, unless the strain is larger than the yield strain, in which case it is assumed 

to be equal to the yield stress. The neutral axis location is computed from the force 

equilibrium with respect to the longitudinal direction. The moment capacity is then 

computed on an element-by-element basis. Since this approach uses the elasto-plastic 

stress distribution without strain hardening, it is expected to be somewhat conservative 

for some compact sections. 

Although this approach seems straightforward, it becomes complicated when 

there are additional elements between compression and tension flanges, such as edge-

stiffeners. This is because depending on the location of the neutral axis the stress 

distribution at the edge-stiffener changes. For each possible case, equilibrium of the 

stress distribution is used to determine the neutral axis, which is then compared with 

the initially assumed location. For the edge-stiffened singly-symmetric section shown 

in Figure 4.10d, a total of seven cases must be evaluated to find the neutral axis 

location, as shown in Figure 4.8. However, for different cross-sections, different cases 

must be evaluated, limiting the practicality of this approach.  
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Note: strain zone that is not yielded is shaded. 

Figure 4.8 Possible cases using EPMC  

4.4.5 Moment Capacity Based on Ramberg-Osgood Stress Distribution 

(ROMC) 

The ROMC uses the Ramberg-Osgood equation, Equation (7), to determine the 

stress distribution from the strain distribution. The stress distribution obtained is 

analytically integrated to compute the moment capacity. In the sense that the approach 

computes the location of the neutral axis from the equilibrium and relies on a linear 

strain distribution, it is similar to the EPMC. The following describes the overall 

procedure of this approach, based on an example given in Figure 4.9.  

Depending on whether the tension or compression yields first, two possible 

stress distribution cases are considered, as shown in Figure 4.9. For either stress 

distribution case, the compression limit state stress (fc) is computed first. Using the 

Ramberg-Osgood equation, the corresponding compression strain (εc) is obtained from 

Equation (60). Based on the strain and the unknown distance between the mid-depth 

and the neutral axis (yNA), a linear strain distribution is assumed. The tension side strain 

(εt) is determined from the strain distribution. Using the Ramberg-Osgood equation, a 
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relationship between the tension side strain (εt) and the tension limit state stress (ft) is 

obtained:  

0.002
n

t t
t

y

f f
E F

ε
 

= +   
 

  (58) 

 
             (a)        (b)    (c) 

Figure 4.9 Notations for edge-stiffened singly symmetric section (a) cross-section 
(b) compression yield first (c) tension yield first 

The assumed stress distribution needs to satisfy the force equilibrium with respect to 

the longitudinal direction: 

0
A

f dA =∫    (59) 

Since there are two unknowns, ft and yNA, and two equations, Equations (58) and (59), 

the unknowns can be solved. However, due to the highly non-linear nature of the 

equations, the procedure for obtaining solutions is iterative. 

In some cases of Figure 4.9c, the computed tension limit state stress (ft) could 

be larger than the ultimate stress. In this case, the tension limit state stress (ft) should 

be reduced to the ultimate stress. According to the reduced tension limit state stress 

(ft), the entire strain stress distribution is reduced. The compression limit state stress is 

then back calculated from this reduced strain distribution with the Ramberg-Osgood 

equation: 

 0.002
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  (60) 
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In this case, the unknowns are fc and yNA, which can be solved by two equations: 

Equations (59) and (60). 

After the stress distributions and the location of the neutral axis are 

determined, a rather rigorous moment capacity can be obtained using classical beam 

theory: 

u
A

M f y dA= ⋅∫    (61)  

or using the notations given in Figure 4.9, 
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  (62) 

where z1 is the distance from the neutral axis to the centroid of the stress distribution 

on the stiffener, which is assumed to be linear. 

The ROMC should be the most accurate approach among those developed in 

this study, since a non-linear stress distribution is used to compute the neutral axis, 

rather than a linear elastic stress distribution. However, this approach is rather 

complicated due to the iterative nature of the procedure. In addition, the equations for 

finding the neutral axis location and moment capacity, Equation (62), need to be re-

derived for different types of cross-sections. Thus, this approach is not appropriate for 

practical design.  
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4.5 Parametric Studies 

4.5.1 Types of Analyses Used 

The approaches to computing the moment capacity of an aluminum member 

proposed in this study and presented in the AA Specification (2000a) are summarized 

in Table 4.4.  

Table 4.4 Types of analysis approaches (a) specification applicable (b) 
specification non-applicable 

(a) 
AA Specification proposed design approaches 

design categories 
MAA-Y-MMCA MAA-Y-WASA MNSA-U-WASA2 MNSA-U-TMCA MNSA-U-TMCA2 

limit state yielding yielding ultimate ultimate ultimate 
equivalent 

slenderness ratio AA AA NSA NSA NSA 

neutral axis LENA LENA LENA LENA LENA 

moment capacity MMCA WASA WASA2 TMCA TMCA2 
recommended 
cross-section 

symmetric or 
unsymmetric symmetric symmetric symmetric or 

unsymmetric 
symmetric or 
unsymmetric

(b) 
proposed design approaches design categories 

MNSA-U-EPMC MNSA-U-ROMC 
limit state elasto-plastic ultimate 
equivalent 

slenderness ratio NSA NSA 

neutral axis computed from equilibrium computed from equilibrium 
moment capacity EPMC (element-by-element basis) ROMC (Equation (62)) 

recommended 
cross-section symmetric or unsymmetric symmetric or unsymmetric 

Note: LENA = a neutral axis determined from a linear elastic stress distribution.  
MMCA = Minimum moment capacity approach in Section 4.4.1. 
WASA = Weighted average stress approach in Section 4.4.2. 
WASA2 = Modified weighted average stress approach in Section 4.4.2. 
TMCA = Total moment capacity approach (2 groups) in Section 4.4.3. 
TMCA2 = Total moment capacity approach (3 groups) in Section 4.4.3. 
EPMC = Moment capacity based on elasto-plastic stress distribution in Section 4.4.4. 
ROMC = Moment capacity based on Ramberg-Osgood stress distribution in Section 4.4.5. 
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The first three proposed approaches in this table are suited for application in design, 

while the remaining two are somewhat too complicated. The first category in Table 

4.4 defines the limit state used in each approach, which is described in Section 2.1. 

The second category indicates whether the equivalent slenderness ratio (as well as the 

compressive limit state stress) for each component element is determined using the 

AA Specification (2000a, Section 2.2) or the Numerical Slenderness Approach (NSA, 

Section 4.1). The third category represents whether the neutral axis is directly 

calculated from equilibrium or determined based on the linear elastic stress 

distribution (LENA). The final category indicates the method used to calculate the 

moment capacity.  

 

4.5.2 Cross-Sections Used in Parametric Study 

A parametric study is performed for five types of sections, as shown in Figure 

4.10. The first two sections are simple extrusions, which can be designed accurately 

following the proposed approaches in Chapter 2 and 3. However, these sections are 

included in this study so that the applicability of the NSA to the simple extrusions can 

also be examined. The NSA is originally designed for complex extrusions, as 

explained in Section 4.1. 

 
(a)        (b)             (c)      (d)            (e) 

Note: web group area is shaded. 

Figure 4.10 Cross-sections used in the parametric study 

Although there is a provision in the AA Specification (2000a) for the edge-

stiffened sections shown in Figure 4.10c and Figure 4.10d, unlike the more general 
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NSA, it does not deal with cross-sections with different flange and stiffener 

thicknesses. In addition, it is limited to the yield limit state. There is no provision in 

the AA Specification (2000a) for taking into account multiple intermediate stiffeners 

and variation in thickness within one component element, as is the case for the cross-

section in Figure 4.10e. 

The slenderness of the cross-sections used in the parametric study is rather 

low, such that the equivalent slenderness ratios of component elements mostly fall into 

the yielding or inelastic buckling ranges defined in Figure 2.4. This is because the 

slenderness of most of the standard sections in AA (2000b) also falls within these 

ranges. Fixed dimensions of the cross-sections are given below, and the varied 

dimensions used in the parametric study can be found in Section 6.4 of the Appendix. 

4.5.2.1 Symmetric I-Shaped Sections with Uniform Thickness (Figure 4.10a) 

The cross-sections used in this parametric study are the same as in Section 2.7. 

The depth between flange center-lines and the width of the flanges are maintained at 

254mm (10 in.), while the thicknesses are varied. The length is set to ten times the 

depth. The width-to-thickness ratio for the flange ranges from 2.70 to 9.75, and from 

8.33 to 38.0 for the web. This covers most of the width-to-thickness ratios of the 

standard doubly symmetric I-sections listed in AA (2000b). 

4.5.2.2 Symmetric I-Shaped Sections with Tapered Thickness (Figure 4.10b) 

The cross-sections used in this parametric study are the same as in Section 3.5. 

All the 36 standard I-sections with tapered thickness listed in AA (2000b) are used for 

Series 1. Since all of these sections are rather stocky, additional sections are created 

through reduction of the thickness of the standard sections by 60% that constitute 

Series 2. Width-to-average thickness ratio for the flange ranges from 3.5 to 21.6, while 

width-to-thickness ratio for the web ranges from 6.6 to 81.5. Each member length is 

set to more than or equal to four times the member depth. 
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4.5.2.3 Edge-Stiffened Z-Sections (Figure 4.10c) 

Depth and flange width along the mid-thickness are maintained at 91.44mm 

(3.6 in.) and 45.72mm (1.8 in.), respectively, while the thicknesses for each 

component element are varied. Width-to-thickness ratio for the flange ranges from 2.2 

to 21, and ranges from 6.3 to 43 for the web. In Series 1, thicknesses of all component 

elements are the same. In Series 2 stiffeners are twice as thick as the other elements, 

as shown in Figure 4.11. Since the dimensions of tension elements are identical to 

those of compression elements and the sections are laterally supported, the behavior of 

edge-stiffened Z-sections should be similar to the edge-stiffened C-sections. Thus, this 

type of section is considered as symmetric when design approaches are applied. 

Member length is taken as three times the half-wavelength corresponding to the 

minimum distortional buckling stress mode obtained from buckling analyses. 

 
(a)     (b) 

Note: All dimensions are in mm (and inches inside parenthesis) and not to scale. 

Figure 4.11 Model geometry and dimensional notations for edge-stiffened Z-
sections (a) Series 1 (b) Series 2 

4.5.2.4 Singly Symmetric Edge-Stiffened Sections (Figure 4.10d) 

Two different series of cross-sections used in the parametric study are 

investigated. For both series, the width of the compression flange is 228.6mm (9 in.), 
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the depth of the member is 279.4mm (11 in.), and the length of the stiffener is 63.5mm 

(2.5 in.) when measured through mid-thickness. Tension flange width varies from 25.4 

mm (1 in.) to 431.8mm (17 in.). The varying width is used to evaluate the influence of 

the location of the neutral axis on each approach. The thickness of the flanges and web 

is 25.4mm (1 in.) for one series and 7.62mm (0.3 in.) for the other. The thickness of 

edge-stiffeners is set to twice the flange thickness. The length of the member is set to 

three times the half-wavelength corresponding to the minimum distortional buckling 

stress mode obtained from buckling analyses. 

 

   
   (a)         (b) 

Note: all dimensions are in mm (and inches inside parenthesis) and not to scale. 

Figure 4.12 Model geometry and dimensional notations for edge-stiffened singly-
symmetric sections (a) Series 1 (b) Series 2 

4.5.2.5 Dome-strut sections (Figure 4.10e) 

There are two series of cross-sections used in this parametric study. In Series 

2, the web-flange junction is protruded, while it is not protruded in Series 1, as shown 

in Figure 4.13. The depth measured between mid-thicknesses of the flanges and the 
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width of flanges remain constant at 127 mm (5 in.). Interior intermediate stiffeners are 

12.7 mm (0.5 in.) long, while exterior stiffeners are 10.16mm (0.4 in.) long. Width-to-

thickness ratio for the flange ranges from 4.1 to 27.2 if the intermediate stiffeners are 

ignored. Width-to-thickness ratio for the web ranges from 12 to 86.4 if the portions 

protruding from the web-flange junctions are ignored. The thickness of the thicker 

portion of the web (tw2) is set to three times the thinner portion (tw). The length of the 

thicker portion of the web (dw) is set to one-eighth of the section depth. All the 

thicknesses are varied for this parametric study. The length of the member is set to 

three times the half wavelength corresponding to the minimum distortional buckling 

stress mode obtained from the buckling analyses. 

         
(a)        (b) 

Note: all dimensions are in mm (and inches inside parenthesis) and not to scale. 

Figure 4.13 Model geometry and dimensional notations for dome-strut sections 
(a) Series 1 (b) Series 2 

4.5.3 Finite Element Modeling 

Second order inelastic non-linear finite element analyses are conducted using 

ABAQUS, developed by Hibbitt, Karlsson & Sorensen, Inc. (1998), for comparison 
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with the design approaches proposed in this study and those presented in the AA 

Specification (2000a) as summarized in Table 4.4.  

For all cross-sections used in the parametric study except type (c) sections, 

rigid beam elements are attached at the ends of the member so that a plane section can 

remain plane during bending. For these sections, equal and opposite concentrated 

moments are applied at both ends to simulate pure bending conditions. For type (c) 

sections, consistent nodal forces are applied to simulate pure bending conditions. 

Lateral supports are attached at web-flange junctions so that lateral buckling is 

prevented. Initial geometric imperfections are generated using elastic buckling 

analyses with the maximum amplitude based on the standard flatness tolerance 

provided in AA (2000c). 

For type (b) sections, twenty-noded quadratic hexahedral solid elements with 

reduced integration are used to fully take into account the tapered thickness. For all 

other types of sections, shell elements are used. Further details regarding finite 

element modeling can be found in Section 2.5. 

 

4.5.4 Material Properties 

The cross-sections used in the parametric study are extrusions of 6061-T6 with 

the minimum material properties tabulated in AA (2000c) and shown in Table 2.4. 

Based on these properties, a tensile stress-strain curve is fitted by the Ramberg-

Osgood equation given in Equation (7). The stress-strain curve for compression is 

assumed to be the same as for tension. The ultimate strain, which is not defined in AA 

(neither 2000a, 2000b or 2000c), is set to 8%, based on the discussion set forth in 

Section 2.3.  



 

 

           91

4.5.5 Idealization of Type (e) Sections in the AA Specification (2000a) and NSA 

The dome-strut section shown in Figure 4.10e is one of the most common 

types of extrusion. It consists of a doubly symmetric I-shaped portion and multiple 

stiffeners on one of the flanges. The stiffeners are intended for use as a screw chase to 

hold the exterior panels of a dome structure. The behavior of sections with (Figure 

4.10e) and without stiffeners (Figure 4.10a) is significantly different, which is also 

demonstrated in Figure 4.2. This difference affects the calculated member capacity.  

 

Figure 4.14 Idealization in the AA Specification (2000a) for a dome strut section 

However, the AA Specification (2000a) does not have provisions for multiple 

stiffeners as in this dome-strut section. In addition, the variation in the web thickness 

near the web-flange junctions cannot be taken into account in the specification. A 

possible idealization made for the limit state (or allowable) stress computation of 

component elements using the AA Specification (2000a) is shown in Figure 4.14. In 

contrast, the NSA can account for the irregularities of the section. However, the 

thickness variation in the web is not considered when the shape factor is computed, 

because it is based on uniform thickness as shown in Figure 4.3. 

 

4.5.6 Results 

The ultimate moment capacity obtained from each finite element analysis for 

each section given in Figure 4.10 is divided by that from each approach in the AA 

Specification (2000a) and proposed in this study. The results are shown in Figure 4.15 
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with respect to the slenderness factor (λ), as defined in Equation (22), in the horizontal 

axis. Since AISI (1996) defines a component element as fully effective when λ is less 

than or equal to 0.673, it would be reasonable to consider 0.673 as the border between 

the slender and stocky ranges. However, the slenderness factor is not used in design 

procedures but for visual convenience only. 

For all sections, the proposed approaches using the NSA show a performance 

superior to the approaches in the AA Specification (2000a). The differences amongst 

the approaches are summarized in Table 4.4. For the stocky range (λ ≤ 0.673), the 

difference between the proposed and specification-based approaches should be mainly 

due to the choice of limit state (ultimate or yield). In this range, proposed approaches 

predict the ultimate-plastic capacities quite precisely for all type of sections, when 

they are compared to the finite element analyses. On the other hand, for the slender 

range (λ > 0.673), the accuracy of the approach should depend more on the method 

that the equivalent slenderness ratio is determined. For this reason, when the limit 

state stress is computed based on highly idealized geometry as shown in Figure 4.14, 

the bending capacity cannot be computed accurately using the current specification 

approach as shown in Figure 4.15e; the moment capacity computed is at times less 

than half of that computed using the FEM analysis for some cross-sections.  

In addition, the proposed approaches based on the WASA2, TMCA or 

TMCA2 show a closer agreement with the finite element analysis than the 

specification approaches based on the MMCA or WASA. This supports the accuracy 

of the proposed approaches. Especially for unsymmetric cross-sections, the MMCA is 

the only specification-based approach that can be used as explained in Section 4.4.2. 

Since contributions from all component elements cannot be fully incorporated in the 

MMCA as opposed to the other aforementioned approaches, the deviation between 

this approach and the finite element analysis is larger for unsymmetric cross-sections. 
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The following subsections further elaborate on the results of the parametric study for 

each type of cross-section shown in Figure 4.10. 

4.5.6.1 Symmetric I-Shaped Sections with Uniform Thickness (Figure 4.10a) 

For this type of cross-section, the approaches using the NSA in Figure 4.15a 

show almost the same performance as the proposed approaches in Figure 2.14. This 

implies that the idealization of the web-flange junction as being simply-supported is 

quite accurate for simple I-shaped sections with uniform thickness. 

4.5.6.2 Symmetric I-Shaped Sections with Tapered Thickness (Figure 4.10b) 

For use in the NSA, the buckling stress of the tapered thickness sections is 

computed using CUFSM-tap, which is the version of the CUFSM program modified 

for the tapered element based on the study in Section 3.2. For this type of cross-

section, the idealization of simply-supported boundaries between component elements 

is quite accurate if the equivalent slenderness ratio developed in Section 3.3 for simple 

I-shaped sections with tapered thickness is used, which is almost the same conclusion 

made for the I-sections with uniform thickness. 

4.5.6.3 Edge-Stiffened Z-Sections (Figure 4.10c) 

For this type of cross-section, the results based on the AA Specification 

(2000a) are not significantly different from those based on the NSA in the slender 

range (λ > 0.673). The approach available in the AA Specification (2000a) for edge-

stiffened sections seems reasonable.  

4.5.6.4 Singly Symmetric Edge-Stiffened Sections (Figure 4.10d) 

For the singly symmetric edge-stiffened section, it is noted that the moment 

capacity based on the Ramberg-Osgood equation (ROMC) shows excellent agreement 

with the non-linear finite element analysis as shown in Figure 4.15d. In this figure, 
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although the proposed approach based on the TMCA is still much better than that of 

the AA Specification (2000a), the difference from the results of the finite element 

analysis increases as the distance from the neutral axis to the mid-depth (yNA) 

increases. On the other hand, the other proposed approach using the TMCA2 shows 

considerable improvement compared to the approach using the TMCA, because the 

TMCA2 uses three linearized stress distributions. Thus, the use of TMCA2 is 

recommended for unsymmetric sections.  

4.5.6.5 Dome-Strut Sections (Figure 4.10e) 

In order to investigate the effect of the idealizations shown in Figure 4.14, type 

(e) sections are analyzed at the yield limit state in Figure 4.16. As seen in this figure, a 

more significant difference between the approach based on the AA Specification 

(2000a) and the proposed approach is observed in the larger slenderness range, where 

the limit state stress is more sensitive to the equivalent slenderness ratio. In addition, 

Series 2 sections show more deviation from the finite element analysis than Series 1 

sections due to the additional idealization in the web element. Thus, the equivalent 

slenderness ratio computed through the NSA should be applied to the design of 

complex extrusions. 

Finally, the performance improvement from the use of both the ultimate limit 

state and the TMCA2 is demonstrated in Figure 4.15e. Although the results for the 

TMCA and TMCA2 are similar for large slenderness factors, as the slenderness of the 

cross-section decreases the difference between these two methods becomes more 

prominent. This is because as the slenderness increases the stress distribution becomes 

more linear due to the lack of non-linear inelastic reserve capacity. 
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Figure 4.15 Parametric study results 
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Figure 4.15 (Continued)  
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Figure 4.15 (Continued)  
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Figure 4.16 Effect of idealization for dome-strut sections  
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4.6 Flexural Tests 

The average of the three bending test results for an Aluminum Association 

Standard I-Beam with uniform thickness (I-3x1.64), described in Section 2.8, is 

included in Figure 4.15a within the dashed-line oval. The average of two other 

bending test results for an American Standard I-Beam with tapered thickness (I-

3x1.96), listed in AA (2000b), is compared to the current and proposed approaches in 

Table 4.5. From the comparisons, it can be seen that the proposed approaches are in 

better agreement with the test results than the current approaches. Further details 

regarding the tests are given in Section 3.6. 

Table 4.5 Comparison of test results to proposed approaches for I-section with 
tapered thickness (I-3x1.96) 

current approaches proposed approaches 
TESTS

AA-UNI-Y-MMCA

M
M

 TESTS

AA-UNI-Y-WASA

M
M

 TESTS

NSA-U-WASA2

M
M

 TESTS

NSA-U-TMCA

M
M

 

1.174 1.141 0.967 0.960 

Additionally, flexural tests are conducted for a complex extrusion type cross-

section. This cross-section is not a standard section but a mullion section made by 

Kawneer Co., which is similar to the cross-section shown in Figure 4.7. The exact 

dimensions of the cross-section cannot be presented here due to patent issues. 

Before bending tests are conducted, the test setup is simulated using the finite 

element method. The same solid elements are used to take into account the complex 

geometry of the mullion section as those used for tapered thickness I-sections in 

Section 3.6. On the assumption that the failure shape would be symmetric, only half of 

the member is analyzed with longitudinal restraints at the cross-section cut. From the 

analyses, the lateral support spacing is determined as shown in Figure 4.17 so that 

continuous lateral support can be properly simulated. The test setup is designed for 

typical two-point bending tests. Except for the spacing of the lateral supports specified 



 

 

           99

in this figure, details of the test setup are quite similar to those for the uniform 

thickness I-sections shown in Figure 2.16. 

 
Figure 4.17 Schematic bending test setup for mullion section  

The residual deformations of the tested mullion sections are shown in Figure 

4.18. In the first test, a single wave was formed near the middle of the span; this is 

very similar to the assumption made for the finite element analysis that the failure 

shape would be symmetric. On the other hand, in the second test, two waves were 

formed; one is at the middle and the other is between two neighboring lateral supports. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.18 Residual deformation of tested mullion specimens (a) side view at 
Test 1 (b) plan view at Test 1 (c) side view at Test 2 (d) plan view at Test 2 
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Tests results are plotted and compared to the finite element analysis in Figure 

4.19. Although there are some differences, the overall results are in good agreement. 

The moment capacities from the tests and finite element simulation are compared to 

those from the specification-based and proposed approaches in Table 4.6 and Table 

4.7, respectively. From the tables, it is clear that the proposed approaches are in better 

agreement with both the finite element analysis and the experimental test results than 

current specification-based approaches for the mullion section. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50

Vertical Displacement (Span Center, mm)

Lo
ad

 F
ac

to
r (

M
u/M

y)

 
Note. The maximum load factors are shown as solid shapes. 

Figure 4.19 Test results for a mullion section  

Table 4.6 Comparison of test results for mullion 

current approaches proposed approaches 
TESTS

AA-Y-MMCA

M
M

 TESTS

NSA-U-TMCA

M
M

 TESTS

NSA-U-TMCA2

M
M

 

1.295 1.096 1.106 
Note. MTESTS is the average of the two maximum load factors from the tests. 

Table 4.7 Comparison of finite element simulation results for mullion 

current approaches proposed approaches 
FEM

AA-Y-MMCA

M
M

 FEM

NSA-U-TMCA

M
M

 FEM

NSA-U-TMCA2

M
M

 

1.205 1.020 1.029 

Max-LF Disp-XL

TEST 1 1.26 36.4

TEST 2 1.33 32.8

FEM 1.20 36.5

Note: Disp-XL = Displacement at max. LF 
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Before the tests are conducted, initial geometric imperfections were measured 

on the compression flange and web as shown in Figure 6.5 in the Appendix. The 

maximum imperfection on the flange is somewhat larger than the standard flatness 

tolerance in AA (2000c), while the maximum imperfection on the web is much less 

than the tolerance.  

Uniaxial tension tests have also been conducted using seven test coupons 

obtained from a portion adjacent to the specimens used for the bending tests. In Table 

6.27d in the Appendix, the results are compared to the standard values listed in AA 

(2000b). The median of the seven test results is introduced into the finite element 

analysis. 

4.7 Application to the AA Specification 

In Section 2.9, two procedures are proposed for the governing allowable stress 

equations for symmetric sections. In these procedures, the proposed allowable stress 

equations for component elements are based on the AA Specification (2000a). By 

replacing the allowable stress equations for component elements with the NSA, the 

governing allowable stress equations can employ the NSA. In other words, Table 2.10 

is replaced by Table 4.8.  

It should be noted that the width-to-thickness ratio is not used for the 

slenderness in Table 4.8. Instead, the equivalent slenderness ratio (λp) is used directly 

to determine the allowable stress. The equivalent slenderness ratio (λp) is a function of 

the buckling stress (Fcr), as shown in Equation (47). The buckling stress is the 

minimum value that can be obtained from any numerical buckling analysis program. 

Further details regarding the NSA can be found in Section 4.1. Although Table 4.8 is 

based on the Allowable Stress Design, this table can also be applied to the Load and 

Resistance Factor Design by replacing the reciprocal of each safety factor with the 

corresponding resistance factor. 
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Table 4.8 Allowable stress equations of NSA for (a) tension component element 
(b) compression component element and (c) shape factors  

(a) 

AA Section allowable stress 

ay y ty yF F nα=  3.4.2 
3.4.4 ( )au u ty t uF F k nα=  

(b)  
c 

AA Section 
allowable stress

λp ≤ S1 
limit 

S1 
allowable stress 

S1 ≤ λp ≤ S2 
limit 

S2 
allowable stress 

S2 ≤ λp 
y cy

ay
y

F
F

n
α

=  y cyB F
D
α−3.4.15 

3.4.16 
3.4.16.2 
3.4.16.3 

3.4.18, 3.4.19 
u cy

au
u

F
F

n
α

=  
y

u

n
u cynB F

D

α− ( )1
ay au

p
y

F F

B D
n

λ

= =

−
 1k B

D
 

2

ay au

y p

F F

k BE
n λ

= =

 

(c) 
c 

AA Section 
yield shape 

factor ultimate shape factor 

3.4.2 1.0yα =  u tu tyF Fα =  

3.4.4 1.3yα =  
a3

14 13 0.5 1.25 0.2tu NA NA tu
u

ty ty

F y y F
F h h F

α
     = + − + +             

3.4.15, 3.4.16 
3.4.16.2, 3.4.16.3 

1.0yα =                                                                                                               b
αu = Ftu /Fcy 

3.4.18 1.3yα =  
b3

14 13 0.5 1.25 0.2tu NA NA tu
u

cy cy

F y y F
F h h F

α
     = + − + +             

Note: B, D, k1 and k2 are the factors provided in the AA Specification (2000a). These factors differ for 
flanges and webs. Fau = ultimate allowable stress. Fay = yield allowable stress. yNA = the distance 
from the neutral axis to the mid-depth. See Equation (47) for λp. 

 a. In the AA Specification (2000a), αu = 1.42Ftu/Fty.   
 b. Not available in the AA Specification (2000a). 
 c. The allowable stress equations corresponding to the AA Section numbers indicated here can 

be replaced with the NSA. In the following sections, flanges are under uniform compression, 
while webs are under bending in own plane. 
AA 3.4.2: tension flange 
AA 3.4.4: tension web 
AA 3.4.15: compression flange with one edge supported and the other edge free 
AA 3.4.16: compression flange with both edges supported 
AA 3.4.16.2: compression flange with one edge supported and the other edge with stiffener 
AA 3.4.16.3: compression flange with both edges supported and with an intermediate stiffener 
AA 3.4.18: compression web with both edges supported  
AA 3.4.19: compression web with both edges supported with a horizontal stiffener 
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For cross-sections with the neutral axis not at mid-depth, the ultimate shape 

factor of rectangular web elements (αu) varies according to the location of the neutral 

axis as shown in Equation (54). The maximum shape factor is obtained from one of 

two solutions of 0w NAyα∂ ∂ = , which is when yNA = 0.125h (yNA = distance between 

the neutral axis and the mid-depth of the web element. h = depth of the web element). 

Introducing this into Equation (54) results in the maximum ultimate shape factor of 

rectangular web elements when the neutral axis is not at mid-depth (unsymmetric 

sections): 

 ( ) 0.125
max 1.34 0.286

NA

tu
u u y h

ty

F
F

α α
=

= = +              (63) 
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(a)         (b) 

Figure 4.20 Safety factor on yield strength of the tensile allowable stress 
(AA Section 3.4.4) for a plate under bending when Procedure II is used 

Using Equation (63), the safety factors on yield strength based on Procedure II 

are computed for the previously selected 986 alloy-temper combinations as is done in 

Section 2.9 for symmetric sections. Compared to the safety factor on yield strength in 

the AA Specification (ny =1.65), the average of the varying safety factor ( yn =1.50) is 

yn

tu tyF F numbers of alloy-temper 
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9.1% smaller for unsymmetric cross-sections as shown in Figure 4.20. The average is 

also somewhat smaller than that for symmetric cross-sections in Figure 2.20, as a 

result of using a larger shape factor in Equation (63). However, the safety factor on 

ultimate strength (nu = 1.95 for building and similar type of structures) given in the 

AA Specification (2000a) is maintained, since only a specified percentage of the 

ultimate allowable stress is used, as explained in Section 2.9. 

4.8 Conclusions 

The Numerical Slenderness Approach (NSA) is developed in this study to 

provide a design approach for complex extrusions, in which the simply-supported 

boundary idealization between component elements is not applicable or appropriate. 

Since this approach computes the limit state (or allowable) stresses of component 

elements using the numerically determined buckling stress, practically all aluminum 

extrusions can be evaluated. The framework of the limit state (or allowable) stress 

equations used for the AA Specification (2000a) is maintained in the NSA, with only 

the expression for the equivalent slenderness ratio being changed. 

For all cross-sections used in the parametric study, the proposed approaches 

based on the NSA show a performance better than or equal to the approaches in the 

AA Specification (2000a). The NSA shows a superior performance especially for 

dome strut sections, in which intermediate stiffeners and variations in thickness are 

ignored in the specification-based approaches. It is found that the NSA can be used for 

the type of cross-sections that are presently covered by the AA Specification (2000a). 

In addition, a wide variety of extruded aluminum sections that are not covered in the 

specification can also be analyzed using the NSA. 

Due to the flexibility of the extrusion process, many aluminum cross-sections 

are not symmetric with respect to the bending axis or have a neutral axis that is not at 

mid-depth. For these types of cross-sections, the rigorously determined shape factor of 
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rectangular web elements developed for symmetric sections in Section 2.3 is not 

appropriate. Therefore, a rigorously determined shape factor based on the neutral axis 

location for unsymmetric sections is developed in this chapter. The rigorous 

expression is greatly simplified through curve-fittings for practical design purposes. 

The Total Moment Capacity Approach (TMCA) developed for symmetric 

sections in Section 2.6 is further extended to more general cross-sections in this study. 

For sections with the neutral axis not at the mid-depth, TMCA2 is suggested, in which 

the actual non-linear stress distribution is approximated by three linear stress 

distributions. When the ultimate limit state is employed, TMCA2 shows good 

agreement with the finite element analysis for the unsymmetric sections. 

Moment capacity evaluation approaches relying on elasto-plastic stress 

distribution (EPMC) and Ramberg-Osgood stress distribution (ROMC) are also 

developed for unsymmetric sections. Although these approaches are quite accurate, 

they are not appropriate for practical design approaches due to their complicated 

procedures. 

The approaches developed in this chapter are verified through parametric 

studies using finite element analyses. In addition, the approaches are further validated 

through physical flexural tests. In these tests, lateral supports are provided so that 

lateral buckling is prevented.  

Based on the NSA, the final form of the allowable stress equations has been 

provided. The two procedures for calculating the governing allowable stress (or 

factored limit state stress) suggested for symmetric sections have also been used for 

unsymmetric sections in this chapter.  

The ultimate shape factor for rectangular web elements with a neutral axis not 

at mid-depth and the TMCA2 can also be employed in the modified specification-

based approaches in Chapter 2.  
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5. CONCLUSIONS 

Aluminum is a structural material with “a thousand faces,” which are 

combinations of a wide variety of both geometric shapes and material properties. This 

wide range of variety distinguishes aluminum from other metals such as steel. To 

make use of all the advantages of aluminum as a structural material, the variety should 

be properly recognized.  

In the study presented here, it is found that physical tests could be replaced 

with numerical tools. Using numerical tools, a wide variety of virtual experiments can 

be conducted. Most of the current specification approaches are based on physical tests 

and analytical studies and it may not be appropriate to replace the whole specification 

with results from numerical tools. Instead, if at least portions that are not covered in 

the specification can be filled with the results of some simple numerical tools, 

significant benefits can be expected. This study shows that linear elastic buckling 

analyses using computers can improve the current specification in the application to a 

wide variety of cross-sections obtained through extrusion.  

In addition, the use of a uniform safety factor applied only to the yield strength 

provided in the specification could be overconservative for certain alloy-temper 

combinations that have a great margin between the ultimate stress and yield stress. For 

this reason, a new design approach is proposed so that a larger inelastic reserve 

capacity is recognized for such materials. This approach should provide a way to 

make the current specifications more flexible with respect to material variations with a 

varying safety factor on yield strength, while maintaining the usual safety factor on 

ultimate strength.   

In Chapter 2, equations are developed for the compressive limit state stress at 

the ultimate limit state. The rigorous closed-form expression derived for the ultimate 

shape factor using analytic integration shows that the current shape factor available in 
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the AA Specification (2000a) is unconservative for materials with a large ultimate to 

yield stress ratio. Thus, a better shape factor expression, simplified for practical design 

purposes, has been proposed. In addition, the parametric study for component 

elements shows that the existing limit state stress equations for the inelastic buckling 

range can be extended linearly up to the shape factor times the yield stress. A 

parametric study for I-shaped sections using the proposed approaches shows good 

agreement with the finite element analysis. The study is also further supported by the 

flexural tests of a standard section.  

For practical design purposes, two procedures are suggested for specifications. 

In Procedure I, the safety factor on yield strength used in the current AA Specification 

(2000a) is maintained. In Procedure II, the safety factor is applied to the additional 

inelastic capacity. Procedure II is more reasonable in that the safety factor varies 

depending on the margin between the ultimate and yield stresses.  

In Chapter 3, initial and geometric stiffness matrices for plates with tapered 

thickness are derived for a finite strip analysis program. The buckling coefficients 

obtained by this program show good agreement with previous research results. 

Expressions for the plate buckling coefficients of tapered plates are proposed with 

respect to the thickness variation ratio. Using the expressions, limit state stress 

equations are suggested for tapered thickness elements within the framework of the 

current specification. A parametric study validates the developed equations for tapered 

thickness plate flanges. Physical test results also agree well with the proposed 

approaches. 

In Chapter 4, the Numerical Slenderness Approach (NSA) is developed in this 

study to provide a design approach for complex extrusions, in which the simply-

supported boundary idealization between component elements is not applicable or 

appropriate. Since in this approach the limit state (or allowable) stresses of component 

elements are computed using the numerically determined buckling stress, a wider 
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range of geometric shapes of the cross-section can be covered. The framework of the 

limit state (or allowable) stress equations used for the specification is maintained in 

the NSA, with only the expression for the equivalent slenderness ratio being changed. 

For all cross-sections used in the parametric study, the proposed approaches based on 

the NSA show a performance better than or equal to the modified specification-based 

approaches in Chapters 2 and 3. In addition, a rigorous shape factor based on the 

neutral axis location is developed, and it is greatly simplified for practical design 

purposes. The Total Moment Capacity Approach (TMCA) developed for symmetric 

sections in Chapter 2 is further extended to unsymmetric sections in the TMCA2, 

where the actual non-linear stress distribution is approximated by three linear stress 

distributions. Moment capacity evaluation approaches relying on elasto-plastic stress 

distribution (EPMC) and Ramberg-Osgood stress distribution (ROMC) are also 

developed for unsymmetric sections. Although these approaches are quite accurate, 

they are not practical for use in design due to complicated procedures. The approaches 

developed in this chapter are verified through parametric studies using finite element 

analyses and physical flexural tests.  



 

 

           109

6. APPENDIX 

6.1 Computational Example (1) 

The following examples provide step-by-step computations of the moment 

capacities based on the currently available two approaches in the AA Specification 

(2000a) and two procedures proposed in Table 2.9. The safety factors on yield 

strength corresponding to the moment capacities are also computed. The cross 

sectional geometry is given in Figure 6.1, which is one of the cross-sections used in 

the parametric study in Table 2.8.  

 
Note: All dimensions are in inches and not to scale 

Figure 6.1 Geometry of cross-section for Computational Example (1) 

Given: 

Cross section: Figure 6.1 

Alloy-temper: 6061-T6. See the first alloy-temper combination in Table 2.4. 

Required:  

Allowable moment capacities and safety factors on yield strength 

Solution: 

In Table 6.1, sectional properties are calculated for the cross-section given in 

Figure 6.1. For the computations of the ultimate shape factor for web (αu), the 

expression in the AA Specification, Equation (15), should be used, if the moment 

capacity computation is based on the AA Specification. Similarly, the proposed shape 
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factor expression, Equation (16), should be used, if the moment capacity is based on 

the proposed approaches. However, such consistency is not maintained in this 

example, because the shape factors computed from the two equations do not differ 

significantly for the material used here. Thus, Equation (16) is only used in this 

example. The following computations are based on the sequence of table numbers 

(from Table 6.1 to Table 6.6). 

Table 6.1 Geometrical and material properties 
geometrical properties material properties 

If = (10)(10.6253 – 9.3753)/12 = 312.91 in4 

Iw = (0.5)(9.3753)/12 = 34.33 in4 

I = If  + Iw = 347.24 in4 
S = I /(h/2) = 65.36 in3 
Sf = If /(hc/2) = 62.58 in3 
Sw = Iw /(ho/2) = 7.324 in3 
Af =(10)(0.625) = 6.25 in2 

Aw =(0.5)(9.375)/2 = 2.344 in2 

b = (10 – 0.5)/2 = 4.75 in 
b/tf = 4.75/0.625 = 7.6 
ho/tw = 9.375/0.5 = 18.75 

Ftu = 38 ksi 
Fty = 35 ksi 
Fcy = 35 ksi 
E = 10100 ksi (for compression) 

Table 6.2 Buckling constants, shape factors, and slenderness limits (from Table 
2.10) 

flange web 
Bp = 45.04 
Dp = 0.3008 
k1 = 0.35 
k2 = 2.27 
αu = 38/35 = 1.0857 
ultimate limit state 

( )( )
( )

1.65
1.95

1

45.04 1.0857 35
8.40

5.1 0.3008
uS

−
= =  

yield limit state 

( )1
45.04 35 6.54

5.1 0.3008
yS −
= =  

( )
( )2

0.35 45.04
10.28

5.1 0.3008
S = =  

Bbr = 66.76 
Dbr = 0.6648 
k1 = 0.5 
k2 = 2.04 
αu = 1.25(38/35) + 0.2 = 1.557 
ultimate limit state 

( )( )
( )

1.65
1.95

1

66.76 1.557 35
46.36

0.67 0.6648
uS

−
= =

yield limit state 
( )

( )1

66.76 1.3 35
47.73

0.67 0.6648
yS

−
= =  

( )
( )2

0.5 66.76
74.94

0.67 0.6648
S = =  

 Note: Bp, Dp, Bbr, Dbr, k1, and k2 are from AA (2000a) 
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Table 6.3 Allowable stresses for component elements (from Table 2.10) 

flange web 
For tension side, 

35 21.21
1.65ayF ksi= =  

( )( )1.0857 35
19.49

1.95auF ksi= =  

For compression side, 
since S1

y < b/tf  < S2, 
( )( )( )45.04 0.3008 5.1 7.6

20.23
1.65ayF ksi

−
= =

since b/tf  < S1
u < S2, (not in AA) 

( )( )1.0857 35
19.49

1.95auF ksi= =  

For tension side, 
( )( )1.3 35

27.58
1.65ayF ksi= =  

( )( )1.557 35
27.95

1.95auF ksi= =  

For compression side, 
since ho/tw  < S1

y < S2, 
( )( )1.3 35

27.58
1.65ayF ksi= =   

since ho/tw  < S1
u < S2, (not in AA) 

( )( )1.557 35
27.95

1.95auF ksi= =  

Table 6.4 Member and governing allowable stresses (Table 2.7 and Table 2.9) 

approaches member allowable stress 
AA-MMCA Fa = min (19.49, 21.21, 20.23, 27.95, 27.58, 27.58) = 19.49 ksi 

AA-WASA 

Tension  
( ) ( )21.21 6.25 27.58 2.344 / 3

21.92
6.25 2.344 / 3ayF

+
= =

+
ksi 

( ) ( )
( )

19.49 6.25 27.95 2.344 / 3
20.43

6.25 2.344 / 3auF
+

= =
+

ksi 

Compression 
( ) ( )

( )
20.23 6.25 27.58 2.344 / 3

21.05
6.25 2.344 / 3ayF

+
= =

+
 ksi 

Entire section 
Fa = min (21.92, 20.43, 21.05) = 20.43 

Procedure I -
WASA2 

Tension  
( )21.92 10.625 10ayF = = 23.29 ksi 

( )20.43 10.625 10auF = = 21.71 ksi 
Compression 

( )21.05 10.625 10ayF = =22.37 ksi 

( ) ( )
( )

19.49 6.25 27.95 2.344 / 3 10.625
6.25 2.344 / 3 10auF

+  = = +  
21.71 ksi 

Entire section 
Fa = min (23.29, 21.71, 22.37, 21.71) = 21.71 ksi 
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Table 6.4 (Continued) 

Procedure I -
TMCA 

Tension  
( ) ( )21.21 62.58 27.58 7.324

65.36ayF
+

= =23.40 ksi 

( ) ( )19.49 62.58 27.95 7.324
65.36auF
+

= =21.79 ksi  

Compression 
( ) ( )20.23 62.58 27.58 7.324

65.36ayF
+

= = 22.46 ksi 

( ) ( )19.49 62.58 27.95 7.324
65.36auF
+

= =21.79 ksi 

Entire section 
Fa = min (23.40, 21.79, 22.46, 21.79) = 21.79 ksi 

Procedure II -
WASA2 

Tension 
Fa = 23.29+0.25(21.71 – 23.29) = 22.90 < min{1.25(23.29), 21.71}? 

 No! ∴Fa = 21.71 ksi (due to the second safeguard) 
Compression 
Fa = 21.71 ksi (due to the second safeguard) 
Entire section 
Fa = 21.71 ksi  

Procedure II -
TMCA 

Tension 
Fa = 21.79 ksi (due to the second safeguard) 
Compression 
Fa = 21.79 ksi (due to the second safeguard) 
Entire section 
Fa = 21.79 ksi 

Table 6.5 Moment capacity based on the yield limit state stresses and TMCA 

yield limit 
state stresses-

TMCA 

FLS = Fay ny 
Tension  
FLSt = 23.40(1.65) = 38.61 ksi 
Compression 
FLSc = 22.46(1.65) = 37.06 ksi 
Entire section 
FLS = min (38.61, 37.06) = 37.06 ksi 
MLS = 37.06(65.36) = 2422.2 in-k 

Note: To obtain FLS, Fay in Table 6.4 is multiplied by the yield safety factor (1.65). 
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Table 6.6 Allowable moment capacity and varying safety factor on yield strength 

 
approaches 

allowable moment capacity
( )a aM F S=  

safety factor on yield strength
( )y LS an M M=  

AA-MMCA 19.49(65.36) = 1273.9 in-k 2422.2/1273.9 = 1.90 current AA 
AA-WASA 20.43(65.36) = 1335.3 in-k 2422.2/1335.3 = 1.81 
P1-WASA2 21.71(65.36) = 1419.0 in-k 2422.2/1419.0 = 1.71 
P1-TMCA 21.79(65.36) = 1424.2 in-k 2422.2/1424.2 = 1.70 

P2-WASA2 21.71(65.36) = 1419.0 in-k 2422.2/1419.0 = 1.71 

proposed 
procedures 

P2-TMCA 21.79(65.36) = 1424.2 in-k 2422.2/1424.2 = 1.70 
Note: In actual design computations, it is not necessary to compute the safety factors. However, 
the safety factors are computed here just for comparison purposes. 

6.2 Computational Example (2) 

Given: 

Cross section: Figure 6.1 

Alloy-temper: 6063-T5 (test coupon diameter or thickness from 0.5 to 1.0 in.). 

See the third alloy-temper combination in Table 2.4. 

Required:  

Allowable moment capacities and safety factors on yield strength 

Solution: 

All comments are the same as Computational Example (1). The following 

computations are based on the sequence of table numbers (Table 6.7 to Table 6.12). 

Table 6.7 Geometrical and material properties 
geometrical properties material properties 

If = (10)(10.6253 – 9.3753)/12 = 312.91 in4 

Iw = (0.5)(9.3753)/12 = 34.33 in4 

I = If  + Iw = 347.24 in4 
S = I /(h/2) = 65.36 in3 
Sf = If /(hc/2) = 62.58 in3 
Sw = Iw /(ho/2) = 7.324 in3 
Af =(10)(0.625) = 6.25 in2 

Aw =(0.5)(9.375)/2 = 2.344 in2 

b = (10 – 0.5)/2 = 4.75 in 
b/tf = 4.75/0.625 = 7.6 
ho/tw = 9.375/0.5 = 18.75 

Ftu = 15 ksi 
Fty = 21ksi 
Fcy = 15 ksi 
E = 10100 ksi (for compression) 
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Table 6.8 Buckling constants, shape factors, and slenderness limits (from Table 
2.10) 

flange web 
Bp = 18.25 
Dp = 0.0775 
k1 = 0.35 
k2 = 2.27 
αu = 21/15 = 1.4 
ultimate limit state 

( )( )
( )

1.65
1.95

1

18.25 1.4 15
1.22

5.1 0.0775
uS

−
= =  

yield limit state 

( )1
18.25 15 8.22

5.1 0.0775
yS −
= =  

( )
( )2

0.35 18.25
16.16

5.1 0.0775
S = =  

Bp = 26.37 
Dp = 0.1650 
k1 = 0.5 
k2 = 2.04 
αu = 1.25(21/15) + 0.2 = 1.95 
ultimate limit state 

( )( )
( )

1.65
1.95

1

26.37 1.95 15
14.65

0.67 0.1650
uS

−
= =  

yield limit state 
( )

( )1

26.37 1.3 15
62.14

0.67 0.1650
yS

−
= =  

( )
( )2

0.5 26.37
119.27

0.67 0.1650
S = =  

Table 6.9 Allowable stress for component elements (from Table 2.10) 

flange web 
For tension side, 

15 9.09
1.65ayF ksi= =  

( )( )1.4 15
10.77

1.95auF ksi= =  

For compression side, 
since b/tf  < S1

y < S2, 
15 9.09

1.65ayF ksi= =  

since S1
u < b/tf  < S2, 

( )( )( )18.25 0.0775 5.1 7.6
1.65auF

−
=  

       = 9.24 ksi 

For tension side, 
( )( )1.3 15

11.82
1.65ayF ksi= =  

( )( )1.95 15
15

1.95auF ksi= =  

For compression side, 
since ho/tw < S1

y < S2, 
( )( )1.3 15

11.82
1.65ayF ksi= =   

since S1
u < ho/tw < S2, 

( )( )( )26.37 0.1650 0.67 18.75
1.65auF

−
=

       = 14.73 ksi 
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Table 6.10 Member and governing allowable stresses (Table 2.7 and Table 2.10) 

approaches member allowable stress 
AA-MMCA  Fa = min (9.09, 10.77, 9.09, 11.82, 15, 11.82) = 9.09 ksi 

AA-WASA 

Tension  
( ) ( )

( )
9.09 6.25 11.82 2.344 / 3

9.39
6.25 2.344 / 3ayF

+
= =

+
ksi 

( ) ( )
( )

10.77 6.25 15 2.344 / 3
11.24

6.25 2.344 / 3auF
+

= =
+

ksi 

Compression 
( ) ( )

( )
9.09 6.25 11.82 2.344 / 3

9.39
6.25 2.344 / 3ayF

+
= =

+
 ksi 

Entire section 
Fa = min (9.39, 11.24, 9.39) = 9.39 ksi 

Procedure I -
WASA2 

Tension  
( )9.39 10.625 10ayF = = 9.98 ksi 

( )11.24 10.625 10auF = = 11.94 ksi 
Compression 

( )9.39 10.625 10ayF = = 9.98 ksi 

( ) ( )
( )

9.24 6.25 14.73 2.344 / 3 10.625
6.25 2.344 / 3 10auF

+  = = +  
10.47 ksi 

Entire section 
Fa = min (9.98, 11.94, 9.98, 10.47) = 9.98 ksi 

Procedure I -
TMCA 

Tension  
( ) ( )9.09 62.58 11.82 7.324

65.36ayF
+

= = 10.03 ksi 

( ) ( )10.77 62.58 15 7.324
65.36auF

+
= = 11.99 ksi 

Compression 
( ) ( )9.09 62.58 11.82 7.324

65.36ayF
+

= = 10.03 ksi 

( ) ( )9.24 62.58 14.73 7.324
65.36auF
+

= = 10.49 ksi 

Entire section 
Fa = min (10.03, 11.99, 10.03, 10.49) = 10.03 ksi 
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Table 6.10 (Continued) 

Procedure II -
WASA2 

Tension 
Fa = 9.98+0.25(11.94 – 9.98) = 10.47 < min{1.25(9.98), 11.94} 
Compression 
Fa = 9.98+0.25(10.47 – 9.98) = 10.10 < min{1.25(9.98), 10.47} 
Entire section 
Fa = min(10.47, 10.10) = 10.10 ksi  

Procedure II -
TMCA 

Tension 
Fa = 10.03+0.25(11.99 – 10.03) = 10.52 < min{1.25(10.03), 11.99} 
Compression 
Fa = 10.03+0.25(10.49 – 10.03) = 10.15 < min{1.25(10.03), 10.49} 
Entire section 
Fa = min(10.52, 10.15) = 10.15 ksi 

Table 6.11 Moment capacity based on the yield limit state stresses and TMCA 

yield limit 
state stresses-

TMCA 

FLS = Fay ny 
Tension  
FLSt = 10.03(1.65) = 16.55 ksi 
Compression 
FLSc = 10.03(1.65) = 16.55 ksi 
Entire section 
FLS = min (16.55, 16.55) = 16.55 ksi 
MLS = 16.55(65.36) = 1081.7 in-k 

Note: Fay from [Procedure I –TMCA] in Table 6.10 is multiplied by the safety factor on yield strength. 

Table 6.12 Allowable moment capacity and varying safety factor on yield 
strength 

 
approaches 

allowable moment capacity
( )a aM F S=  

safety factor on yield strength
( )y LS an M M=  

AA-MMCA 9.09(65.36) = 594.1 in-k 1081.7/594.1 = 1.82 current AA 
AA-WASA 9.39(65.36) = 613.7 in-k 1081.7/613.7 = 1.76 
P1-WASA2 9.98(65.36) = 652.3 in-k 1081.7/652.3 = 1.66 
P1-TMCA 10.03(65.36) = 655.6 in-k 1081.7/655.6 = 1.65 

P2-WASA2 10.10(65.36) = 660.1 in-k 1081.7/660.1 = 1.64 

proposed 
procedures 

P2-TMCA 10.15(65.36) = 663.4 in-k 1081.7/663.4 = 1.63 
Note: In actual design computations, it is not necessary to compute the safety factors. However, 
the safety factors are computed here just for comparison purposes.  
 



 

 

           117

6.3 Computational Example (3) 

The following examples provide step-by-step computations of the moment 

capacities using the approaches based on the AA Specification (2000a) and the 

Numerical Slenderness Approach. The results from these approaches without safety 

factors are compared to the finite element analysis results. The cross sectional 

geometry is given in Figure 6.2, which is one of the cross-sections used in the 

parametric study in Chapter 4.  

 
Note: All dimensions are in inches and not to scale 

Figure 6.2 Geometry of cross section for Example (3) 

Given: 

Cross section: Figure 6.2 

Alloy-temper: 6061-T6. See the first alloy-temper combination in Table 2.4. 

Required:  

Allowable moment capacities  

Solution: 

In Table 6.13, the sectional properties are calculated for the cross-section 

given in Figure 6.2. The following computations are based on the sequence of table 
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numbers: from Table 6.13 to Table 6.16 for the AA Specification approach and from 

Table 6.17 to Table 6.20 for the proposed approach.  

Table 6.13 Geometrical and material properties 
geometrical properties material properties 

Icf = 4.390 in4 (all compression flange group) 
Itf  = 4.932 in4 (all tension flange group) 
If  = 9.322 in4 (all flange group) 
Iw = 1.628 in4 (all web group) 
I = 10.950 in4 (all) 
S = (10.950)/(2.5 + 0.309 + 0.125/2) =3.813 in3 
My = FyS = (35)(3.813) = 133.47 in-k 
b = (5 – 0.2343)/2 = 2.383 in 
b/tf = 2.383/0.125 = 19.1 
ho = 5 – 0.125 = 4.875 in 
ho/tw = 4.875/0.0781 = 62.4 
yNA = 0.309 

Ftu = 38 ksi 
Fty = 35 ksi 
Fcy = 35 ksi 
E = 10100 ksi (for compression) 

Table 6.14 Buckling constants, shape factors, and slenderness limits for AA (from 
Table 2.10) 

flange web 
Bp = 45.04 
Dp = 0.3008 
k1 = 0.35 
k2 = 2.27 
αu = 38/35 = 1.0857 
ultimate limit state 

( )( )
( )

1.65
1.95

1

45.04 1.0857 35
8.40

5.1 0.3008
uS

−
= =

yield limit state 

( )1
45.04 35 6.54

5.1 0.3008
yS −
= =  

( )
( )2

0.35 45.04
10.28

5.1 0.3008
S = =  

Bbr = 66.76 
Dbr = 0.6648 
k1 = 0.5 
k2 = 2.04 
a = 14x38/35+13 = 28.2: from Equation (52) 
m = 3: from Equation (53) 
yNA/h = 0.309/(5-0.125) = 0.0634 
αwo = 1.25x38/35 + 0.2 = 1.557  
αu = (28.2)(0.0634)(0.5-0.0634)3 + 1.557 
     = 1.706 
ultimate limit state 

( )( )
( )

1.65
1.95

1

66.76 1.706 35
36.45

0.67 0.6648
uS

−
= =  

yield limit state 
( )

( )1

66.76 1.3 35
47.73

0.67 0.6648
yS

−
= =  

( )
( )2

0.5 66.76
74.94

0.67 0.6648
S = =  

 Note: Bp, Dp, Bbr, Dbr, k1, and k2 are obtained  from AA (2000a) 
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Table 6.15 Allowable stresses for component elements (from Table 2.10) 

flange web 
For tension side, 

35 21.21
1.65ayF ksi= =  

( )( )1.0857 35
19.49

1.95auF ksi= =  

For compression side, 
since b/tf  > S2, 

Fau = 
2.27 (45.04)(10100)

1.65(5.1)(19.06)ayF =  

= 9.55 ksi 

For tension side, 
( )( )1.3 35

27.58
1.65ayF ksi= =  

( )( )1.706 35
30.62

1.95auF ksi= =  

For compression side, 
since S1

u <S1
y < ho/tw < S2, 

Fau = ( )( )( )66.76 0.6648 0.67 62.4
1.65ayF

−
=  

      =23.62 ksi 

Table 6.16 Member and governing allowable moments (from Table 2.7 and Table 
2.9) 

approaches member allowable moment 

AA-MMCA 

tension flange  

May = ( )21.21 10.950
2.5 0.309 0.125 / 2+ +

= 80.88 in-k 

Mau = ( )19.49 10.950
2.5 0.309 0.125 / 2+ +

= 74.32 in-k 

compression flange 

May = ( )9.55 10.950
2.5 0.309−

= 47.73 in-k 

compression stiffeners (it is assumed that they reach the maximum)  

May =
( )21.21 10.950

2.5 0.309 0.125 / 2 0.5− + +
= 84.35 in-k 

tension web  

May =
( )27.58 10.950

2.5 0.309 0.125 / 2+ −
= 110.0 in-k 

Mau =
( )30.62 10.950

2.5 0.309 0.125 / 2+ −
= 122.1 in-k 

compression web 

May =
( )23.62 10.950

2.5 0.309 0.125 / 2− −
= 121.5 in-k 

Ma = min(80.88, 74.32, 47.73, 84.35, 110.0, 122.1, 121.5) 
      = 47.73 in-k 

AA-WASA Not appropriate 
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Table 6.17 Buckling constants, shape factors, and slenderness limits for NSA 
(from Table 4.8)   

Flange group Web group 
Bp, Dp, k1, k2, αu are the same as those 
for AA in Table 6.14. 
ultimate limit state 

( )( )1.65
1.95

1

45.04 1.0857 35
42.84

0.3008
uS

−
= =  

yield limit state 

( )1
45.04 35 33.38

0.3008
yS −
= =  

( )
( )2

0.35 45.04
52.41

0.3008
S = =  

Bbr, Dbr, k1, k2, αu are the same as those
for AA in Table 6.14. 
ultimate limit state 

( )( )
( )

1.65
1.95

1

66.76 1.706 35
24.42

0.6648
uS

−
= =  

yield limit state 
( )

( )1

66.76 1.3 35
31.98

0.6648
yS

−
= =  

( )
( )2

0.5 66.76
50.21

0.6648
S = =  

 Note: Bp, Dp, Bbr, Dbr, k1, and k2 are obtained from AA (2000a) 

0

1

2

3

1 10 100

 
 

Figure 6.3 CUFSM analysis results finding minimum local bukling stress 

 

From the CUFSM analysis results shown in Figure 6.3, the minimum buckling stress 

is Fcr = 1.02Fy = 35.7 ksi. Thus, from Equation (47), p crE Fλ π=  = 10100 35.7π  

= 52.8. This is the equivalent slenderness ratio used in the NSA, which is the same for 

all elements. 

(11, 1.02) 

M
cr

 /M
y 

half-wavelength (in.)
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Table 6.18 Allowable stresses for component elements (from Table 4.8) 
flange group web group 

For tension side, 
35 21.21

1.65ayF ksi= =  

( )( )1.0857 35
19.49

1.95auF ksi= =  

For compression side, 
since λp > S2, Fau = 

2.27 (45.04)(10100)
17.57

1.65(52.8)ayF ksi= =  

For tension side, 
( )( )1.3 35

27.58
1.65ayF ksi= =  

( )( )1.706 35
30.62

1.95auF ksi= =  

For compression side, 
since λp > S2, Fau = 

2.04 (66.76)(10100)
19.20

1.65(52.8)ayF ksi= =  

Table 6.19 Member and governing allowable moments (Table 2.7 and Table 2.9) 

NSA-TMCA- 
Procedure I 

Flange group 
tension flange  

May = ( )21.21 9.322
2.5 0.309 0.125 / 2+ +

= 68.86 in-k 

Mau = ( )19.49 9.322
2.5 0.309 0.125 / 2+ +

= 63.27 in-k 

compression flange 

May = Mau =
( )17.57 9.322

2.5 0.309−
= 74.75 in-k 

compression stiffeners (it is assumed that they reach the maximum)  

May = ( )21.21 9.322
2.5 0.309 0.125 / 2 0.5− + +

= 71.81 in-k 

Mau = ( )19.49 9.322
2.5 0.309 0.125 / 2 0.5− + +

= 65.98 in-k 

Mf = min(68.86, 63.27, 74.75, 71.81, 65.98) = 63.27 in-k 
Web group 
tension web  

May = ( )27.58 1.628
2.5 0.309 0.125 / 2+ −

= 16.35 in-k 

Mau = ( )30.62 1.628
2.5 0.309 0.125 / 2+ −

= 18.15 in-k 

compression web 

May =  Mau =
( )19.20 1.628

2.5 0.309 0.125 / 2− −
= 14.69 in-k 

Mw = min(16.35, 18.15, 14.69) = 14.69 in-k 
Entire section 
Ma = Mf  + Mw = 63.27 + 14.69 = 77.96 in-k 
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Table 6.19 (Continued) 

NSA-TMCA- 
Procedure II 

Flange group  
May = min(68.86, 74.75, 71.81) = 68.86 in-k 
Mau = min(63.27, 74.75, 65.98) = 63.27 in-k 
Mf = 63.27 in-k (due to a safeguard of Procedure II) 
Web group 
May = min(16.35, 14.69) = 14.69 in-k 
Mau = min(18.15, 14.69) = 14.69 in-k 
Mw = 14.69 in-k 
Entire section 
Ma = Mf  + Mw = 63.27 + 14.69 = 77.96 ksi (same as Procedure I) 

NSA-TMCA2- 
Procedure I 

All computations should be done without yield safety factor 
(1.65). 
Stress values computed here are based on the yield limit state 
Flange group 
Fcf = 1.65(17.57) = 28.99 ksi 
From Ramberg-Osgood equation with εu = 8% assumption 
εcf = 28.99/10100+0.002(28.99/35)44.27

 = 0.00287 
From similar triangles, 
εtf = 0.00287(2.5+0.309+0.125/2)/(2.5-0.309)=0.00376 
By monotonically increasing trial values of stress using Ramberg-
Osgood equation, 0.00376 ≅ 33.8/10100+0.002(33.8/35)44.27 
Ftf = 33.8 ksi 
Web group 
Fcw = (19.2)1.65 = 31.68 ksi 
Element moment capacities 
Mcf  = (28.99)(4.390)/(2.5-0.309) = 58.09 in-k 
Mtf  = (33.8)(4.932)/(2.5+0.309+0.125/2) = 58.05 in-k 
Mcw = (31.68)(1.628)/(2.5-0.309-0.125/2) = 24.23 in-k 
Mtw = (27.58x1.65)(1.628)/(2.5+0.309-0.125/2) = 26.97 in-k 
Mw = min(24.23, 26.97) = 24.23 in-k 
Entire section 
Mu = Mcf  + Mtf  + Mw = 58.09 + 58.05 + 24.23 = 140.37 in-k 

Table 6.20 Comparison of computed moment capacities  

 approaches allowable moment 
capacity (Ma) 

moment capacity without 
safety factor (Mu) 

current AA AA-MMCA 47.73 in-k 47.73x1.65 = 78.75 in-k 
P1-, P2-TMCA 77.96 in-k 77.96 x 1.65 = 128.63 in-k proposed 

procedures P1-TMCA2 140.37/1.65 = 85.07 in-k 140.37 in-k 
 FEM  1.06(133.47) = 141.5 in-k 
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6.4 Dimensions and Moment Capacities of Parametric Study Sections 

The tables and figures in this section provide detailed dimensions and analysis 

results of the cross-sections used in the parametric studies in this report. 

 
      (a)         (b)            (c) 

 
        (d)          (e)            (f) 
Note: All dimensions are in inches and not to scale. 

Figure 6.4 Cross-sections used in the parametric study 

Table 6.21 I-sections with uniform thickness for Figure 4.15a (Figure 6.4a) 

tw tf 
MNSA-U-WASA2 
 

My 

MNSA-U-TMCA 
 

My 

 
tw tf 

MNSA-U-WASA2 
 

My 

MNSA-U-TMCA 
 

My 

25.4 42.3 1.309 1.316  8.46 42.3 1.282 1.284 
25.4 31.8 1.277 1.285  8.46 31.8 1.241 1.244 
25.4 21.2 1.249 1.259  8.46 21.2 1.164 1.167 
25.4 15.9 1.213 1.224  8.46 15.9 1.075 1.079 
25.4 12.7 1.156 1.167  8.46 12.7 1.002 1.005 
12.7 42.3 1.289 1.292  6.35 42.3 1.278 1.280 
12.7 31.8 1.251 1.255  6.35 31.8 1.236 1.238 
12.7 21.2 1.194 1.199  6.35 21.2 1.150 1.152 
12.7 15.9 1.119 1.125  6.35 15.9 1.053 1.056 
12.7 12.7 1.059 1.065  6.35 12.7 0.971 0.974 
Note: The moment capacities obtained by MAA-Y-MMCA, MAA-Y-WASA, MAA-U-WASA2, and 

MAA-U-TMCA are given in Table 2.8. All dimensions are in mm. 
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Table 6.22 I-sections with tapered thickness for Figure 3.10 (Figure 6.4b) 

(a) Series 1 
(t2-t1) M UNI -Y-MMCA M UNI -Y-WASA MTAP -U-WASA2 MTAP -U-TMCA MFEM 
     Desig- 

nation h w tf 
(mean) tw 

b0 My My My My My 
y

cr

F
λ =

F

WF2x1.43 2.0 2.00 0.232 0.188 1/11.4 1.000 1.027 1.280 1.289 1.286 0.293 
WF2.5x1.8 2.5 2.00 0.247 0.250 1/7.00 1.000 1.040 1.282 1.296 1.323 0.259 
WF4x4.76 4.0 4.00 0.370 0.313 1/11.3 1.000 1.029 1.249 1.257 1.249 0.364 
WF5x6.49 5.0 5.00 0.415 0.313 1/13.6 1.000 1.027 1.203 1.209 1.217 0.422 
WF6x7.85 6.0 5.93 0.451 0.250 1/15.6 1.000 1.021 1.153 1.157 1.176 0.496 
WF6x8.30 6.0 6.00 0.451 0.313 1/15.6 1.000 1.026 1.162 1.167 1.184 0.478 
WF6x9.18 6.0 6.13 0.451 0.438 1/15.6 1.000 1.034 1.178 1.185 1.208 0.446 
WF8x11.2 8.0 7.94 0.458 0.313 1/18.9 0.922 0.956 1.063 1.066 1.121 0.629 
WF8x11.8 8.0 8.00 0.458 0.375 1/18.9 0.922 0.961 1.073 1.077 1.131 0.606 
WF8x13.0 8.0 8.13 0.458 0.500 1/18.9 0.922 0.972 1.091 1.096 1.143 0.567 

I3x1.96 3.0 2.33 0.257 0.170 1/18.9 1.000 1.029 1.245 1.254 1.268 0.315 
I3x2.25 3.0 2.41 0.257 0.251 1/6.00 1.000 1.039 1.265 1.277 1.303 0.297 
I3x2.59 3.0 2.51 0.257 0.349 1/6.00 1.000 1.050 1.284 1.301 1.333 0.284 
I4x2.64 4.0 2.66 0.289 0.190 1/6.00 1.000 1.034 1.235 1.245 1.271 0.325 
I4x3.28 4.0 2.80 0.289 0.326 1/6.00 1.000 1.052 1.266 1.282 1.322 0.298 
I5x3.43 5.0 3.00 0.323 0.210 1/6.00 1.000 1.038 1.231 1.240 1.250 0.333 
I5x4.23 5.0 3.14 0.323 0.347 1/6.00 1.000 1.055 1.261 1.277 1.314 0.305 
I5x5.10 5.0 3.28 0.323 0.494 1/6.00 1.000 1.070 1.287 1.308 1.344 0.290 
I6x4.30 6.0 3.33 0.355 0.230 1/6.00 1.000 1.041 1.229 1.238 1.243 0.339 
I6x5.10 6.0 4.44 0.355 0.343 1/6.00 1.000 1.044 1.237 1.249 1.250 0.386 
I6x5.96 6.0 3.57 0.355 0.465 1/6.00 1.000 1.068 1.276 1.294 1.331 0.299 
I7x5.27 7.0 3.66 0.389 0.250 1/6.00 1.000 1.044 1.227 1.237 1.235 0.344 
I7x6.05 7.0 3.76 0.389 0.345 1/6.00 1.000 1.055 1.248 1.261 1.289 0.325 
I7x6.92 7.0 3.86 0.389 0.450 1/6.00 1.000 1.066 1.267 1.284 1.332 0.306 
I8x6.35 8.0 4.00 0.421 0.270 1/6.00 1.000 1.045 1.227 1.236 1.235 0.351 
I8x7.96 8.0 4.17 0.421 0.441 1/6.00 1.000 1.065 1.260 1.275 1.326 0.316 
I8x8.81 8.0 4.26 0.421 0.532 1/6.00 1.000 1.073 1.275 1.293 1.328 0.305 
I9x7.51 9.0 4.33 0.453 0.290 1/6.00 1.000 1.047 1.226 1.236 1.211 0.356 

I10x8.76 10 4.66 0.487 0.310 1/6.00 1.000 1.048 1.225 1.235 1.228 0.360 
I10x10.4 10 4.80 0.487 0.447 1/6.00 1.000 1.063 1.251 1.265 1.293 0.332 
I10x12.1 10 4.94 0.487 0.594 1/6.00 1.000 1.076 1.274 1.292 1.328 0.309 
I12x11.0 12 5.00 0.538 0.350 1/6.00 1.000 1.055 1.225 1.235 1.217 0.364 
I12x12.1 12 5.08 0.538 0.428 1/6.00 1.000 1.063 1.245 1.258 1.236 0.345 
I12x14.1 12 5.25 0.653 0.460 1/6.00 1.000 1.055 1.244 1.256 1.243 0.306 
I12x15.6 12 5.36 0.653 0.565 1/6.00 1.000 1.064 1.259 1.273 1.301 0.291 
I12x17.3 12 5.48 0.653 0.687 1/6.00 1.000 1.072 1.274 1.291 1.349 0.275 

Note: 1. The designations given here represent the original ones in AA (2000b). 
2. All dimensions are in inches. 
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Table 6.22 (Continued) 
(b) Series 2 (60% thickness reduction) 

(t2-t1) M UNI -Y-MMCA M UNI -Y-WASA MTAP -U-WASA2 MTAP -U-TMCA MFEM 
     Desig- 

nation h w tf 
(mean) tw 

b0 My My My My My 
y

cr

F
λ =

F

WF2x1.43 2.0 2.00 0.093 0.075 1/28.50 0.827 0.878 0.977 0.979 1.066 0.761 
WF2.5x1.8 2.5 2.00 0.099 0.100 1/17.50 0.865 0.934 1.049 1.053 1.122 0.666 
WF4x4.76 4.0 4.00 0.148 0.125 1/28.25 0.655 0.728 0.831 0.831 0.958 0.937 
WF5x6.49 5.0 5.00 0.166 0.125 1/34.00 0.584 0.658 0.734 0.733 0.869 1.083 
WF6x7.85 6.0 5.93 0.180 0.100 1/39.00 0.531 0.584 0.635 0.635 0.765 1.269 
WF6x8.30 6.0 6.00 0.180 0.125 1/39.00 0.527 0.601 0.657 0.657 0.788 1.225 
WF6x9.18 6.0 6.13 0.180 0.175 1/39.00 0.520 0.619 0.697 0.696 0.842 1.142 
WF8x11.2 8.0 7.94 0.183 0.125 1/47.25 0.402 0.474 0.513 0.512 0.636 1.601 
WF8x11.8 8.0 8.00 0.183 0.150 1/47.25 0.400 0.499 0.538 0.537 0.665 1.542 
WF8x13.0 8.0 8.13 0.183 0.200 1/47.25 0.396 0.526 0.584 0.582 0.699 1.441 

I3x1.96 3.0 2.33 0.103 0.068 1/15.00 0.780 0.838 0.965 0.968 1.036 0.807 
I3x2.25 3.0 2.41 0.103 0.100 1/15.00 0.764 0.846 1.007 1.010 1.070 0.759 
I3x2.59 3.0 2.51 0.103 0.140 1/15.00 0.744 0.852 1.029 1.034 1.086 0.721 
I4x2.64 4.0 2.66 0.116 0.076 1/15.00 0.767 0.836 0.950 0.954 1.025 0.830 
I4x3.28 4.0 2.80 0.116 0.130 1/15.00 0.743 0.852 1.022 1.026 1.075 0.756 
I5x3.43 5.0 3.00 0.129 0.084 1/15.00 0.760 0.823 0.937 0.941 1.018 0.848 
I5x4.23 5.0 3.14 0.129 0.139 1/15.00 0.739 0.854 1.011 1.016 1.068 0.773 
I5x5.10 5.0 3.28 0.129 0.198 1/15.00 0.719 0.870 1.060 1.066 1.104 0.730 
I6x4.30 6.0 3.33 0.142 0.092 1/15.00 0.752 0.810 0.924 0.928 1.004 0.865 
I6x5.10 6.0 4.44 0.142 0.137 1/15.00 0.566 0.688 0.875 0.877 0.941 0.975 
I6x5.96 6.0 3.57 0.142 0.186 1/15.00 0.720 0.866 1.043 1.048 1.088 0.754 
I7x5.27 7.0 3.66 0.156 0.100 1/15.00 0.750 0.801 0.914 0.918 0.987 0.878 
I7x6.05 7.0 3.76 0.156 0.138 1/15.00 0.737 0.851 0.967 0.971 1.038 0.825 
I7x6.92 7.0 3.86 0.156 0.180 1/15.00 0.725 0.865 1.017 1.022 1.075 0.774 
I8x6.35 8.0 4.00 0.168 0.108 1/15.00 0.742 0.788 0.903 0.907 0.988 0.895 
I8x7.96 8.0 4.17 0.168 0.176 1/15.00 0.723 0.860 0.992 0.997 1.059 0.801 
I8x8.81 8.0 4.26 0.168 0.213 1/15.00 0.714 0.871 1.031 1.036 1.088 0.768 
I9x7.51 9.0 4.33 0.181 0.116 1/15.00 0.738 0.778 0.893 0.898 0.975 0.910 

I10x8.76 10 4.66 0.195 0.124 1/15.00 0.737 0.772 0.886 0.891 0.965 0.921 
I10x10.4 10 4.80 0.195 0.179 1/15.00 0.723 0.840 0.956 0.961 1.032 0.843 
I10x12.1 10 4.94 0.195 0.238 1/15.00 0.711 0.873 1.018 1.023 1.080 0.780 
I12x11.0 12 5.00 0.215 0.140 1/15.00 0.760 0.783 0.882 0.887 0.963 0.935 
I12x12.1 12 5.08 0.215 0.171 1/15.00 0.752 0.822 0.922 0.928 1.007 0.881 
I12x14.1 12 5.25 0.261 0.184 1/15.00 0.862 0.915 0.975 0.981 1.063 0.786 
I12x15.6 12 5.36 0.261 0.226 1/15.00 0.856 0.952 1.013 1.019 1.102 0.743 
I12x17.3 12 5.48 0.261 0.275 1/15.00 0.850 0.968 1.052 1.058 1.140 0.700 
Note: 1. The designations given here are from AA (2000b). However, the thickness of all 

component elements of Series 2 sections is reduced by 60% from the original ones. 
2. All dimensions are in inches 
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Table 6.23 I-sections with tapered thickness for Figure 4.15b (Figure 6.4b) 

(a) Series 1 
(t2-t1) MNSA-U-WASA2 M NSA-U-TMCA MFEM 
   Desig- 

nation h w tf 
(mean) tw 

b0 My My My 
y

cr

F
λ =

F
 

WF2x1.43 2.0 2.00 0.232 0.188 1/11.4 1.280 1.289 1.286 0.293 
WF2.5x1.8 2.5 2.00 0.247 0.250 1/7.00 1.282 1.296 1.323 0.259 
WF4x4.76 4.0 4.00 0.370 0.313 1/11.3 1.249 1.258 1.249 0.364 
WF5x6.49 5.0 5.00 0.415 0.313 1/13.6 1.226 1.234 1.217 0.422 
WF6x7.85 6.0 5.93 0.451 0.250 1/15.6 1.174 1.180 1.176 0.496 
WF6x8.30 6.0 6.00 0.451 0.313 1/15.6 1.190 1.197 1.184 0.478 
WF6x9.18 6.0 6.13 0.451 0.438 1/15.6 1.219 1.228 1.208 0.446 
WF8x11.2 8.0 7.94 0.458 0.313 1/18.9 1.087 1.092 1.121 0.629 
WF8x11.8 8.0 8.00 0.458 0.375 1/18.9 1.104 1.110 1.131 0.606 
WF8x13.0 8.0 8.13 0.458 0.500 1/18.9 1.134 1.143 1.143 0.567 

I3x1.96 3.0 2.33 0.257 0.170 1/18.9 1.245 1.254 1.268 0.315 
I3x2.25 3.0 2.41 0.257 0.251 1/6.00 1.265 1.277 1.303 0.297 
I3x2.59 3.0 2.51 0.257 0.349 1/6.00 1.284 1.301 1.333 0.284 
I4x2.64 4.0 2.66 0.289 0.190 1/6.00 1.235 1.245 1.271 0.325 
I4x3.28 4.0 2.80 0.289 0.326 1/6.00 1.266 1.282 1.322 0.298 
I5x3.43 5.0 3.00 0.323 0.210 1/6.00 1.231 1.240 1.250 0.333 
I5x4.23 5.0 3.14 0.323 0.347 1/6.00 1.261 1.277 1.314 0.305 
I5x5.10 5.0 3.28 0.323 0.494 1/6.00 1.287 1.308 1.344 0.290 
I6x4.30 6.0 3.33 0.355 0.230 1/6.00 1.229 1.238 1.243 0.339 
I6x5.10 6.0 4.44 0.355 0.343 1/6.00 1.231 1.243 1.250 0.386 
I6x5.96 6.0 3.57 0.355 0.465 1/6.00 1.276 1.294 1.331 0.299 
I7x5.27 7.0 3.66 0.389 0.250 1/6.00 1.227 1.237 1.235 0.344 
I7x6.05 7.0 3.76 0.389 0.345 1/6.00 1.248 1.261 1.289 0.325 
I7x6.92 7.0 3.86 0.389 0.450 1/6.00 1.267 1.284 1.332 0.306 
I8x6.35 8.0 4.00 0.421 0.270 1/6.00 1.226 1.236 1.235 0.351 
I8x7.96 8.0 4.17 0.421 0.441 1/6.00 1.260 1.275 1.326 0.316 
I8x8.81 8.0 4.26 0.421 0.532 1/6.00 1.275 1.293 1.328 0.305 
I9x7.51 9.0 4.33 0.453 0.290 1/6.00 1.224 1.234 1.211 0.356 

I10x8.76 10 4.66 0.487 0.310 1/6.00 1.224 1.234 1.228 0.360 
I10x10.4 10 4.80 0.487 0.447 1/6.00 1.251 1.265 1.293 0.332 
I10x12.1 10 4.94 0.487 0.594 1/6.00 1.274 1.292 1.328 0.309 
I12x11.0 12 5.00 0.538 0.350 1/6.00 1.227 1.238 1.217 0.364 
I12x12.1 12 5.08 0.538 0.428 1/6.00 1.245 1.258 1.236 0.345 
I12x14.1 12 5.25 0.653 0.460 1/6.00 1.244 1.256 1.243 0.306 
I12x15.6 12 5.36 0.653 0.565 1/6.00 1.259 1.273 1.301 0.291 
I12x17.3 12 5.48 0.653 0.687 1/6.00 1.274 1.291 1.349 0.275 
Note: 1. The designations given here represent the original ones in AA 

(2000b). 
     2. All dimensions are in inches. 
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Table 6.23 (Continued) 
(b) Series 2 (60% thickness reduction) 

(t2-t1) MNSA-U-WASA2 M NSA-U-TMCA MFEM 
   Desig- 

nation h w tf 
(mean) tw 

b0 My My My 
y

cr

F
λ =

F
 

WF2x1.43 2.0 2.00 0.093 0.075 1/28.50 1.007 1.012 1.066 0.761 
WF2.5x1.8 2.5 2.00 0.099 0.100 1/17.50 1.065 1.073 1.122 0.666 
WF4x4.76 4.0 4.00 0.148 0.125 1/28.25 0.903 0.907 0.958 0.937 
WF5x6.49 5.0 5.00 0.166 0.125 1/34.00 0.791 0.794 0.869 1.083 
WF6x7.85 6.0 5.93 0.180 0.100 1/39.00 0.671 0.673 0.765 1.269 
WF6x8.30 6.0 6.00 0.180 0.125 1/39.00 0.697 0.699 0.788 1.225 
WF6x9.18 6.0 6.13 0.180 0.175 1/39.00 0.750 0.753 0.842 1.142 
WF8x11.2 8.0 7.94 0.183 0.125 1/47.25 0.529 0.531 0.636 1.601 
WF8x11.8 8.0 8.00 0.183 0.150 1/47.25 0.550 0.552 0.665 1.542 
WF8x13.0 8.0 8.13 0.183 0.200 1/47.25 0.590 0.593 0.699 1.441 

I3x1.96 3.0 2.33 0.103 0.068 1/15.00 0.972 0.977 1.036 0.807 
I3x2.25 3.0 2.41 0.103 0.100 1/15.00 1.006 1.013 1.070 0.759 
I3x2.59 3.0 2.51 0.103 0.140 1/15.00 1.037 1.047 1.086 0.721 
I4x2.64 4.0 2.66 0.116 0.076 1/15.00 0.957 0.962 1.025 0.830 
I4x3.28 4.0 2.80 0.116 0.130 1/15.00 1.011 1.019 1.075 0.756 
I5x3.43 5.0 3.00 0.129 0.084 1/15.00 0.945 0.950 1.018 0.848 
I5x4.23 5.0 3.14 0.129 0.139 1/15.00 1.000 1.007 1.068 0.773 
I5x5.10 5.0 3.28 0.129 0.198 1/15.00 1.037 1.047 1.104 0.730 
I6x4.30 6.0 3.33 0.142 0.092 1/15.00 0.935 0.940 1.004 0.865 
I6x5.10 6.0 4.44 0.142 0.137 1/15.00 0.876 0.882 0.941 0.975 
I6x5.96 6.0 3.57 0.142 0.186 1/15.00 1.018 1.027 1.088 0.754 
I7x5.27 7.0 3.66 0.156 0.100 1/15.00 0.927 0.932 0.987 0.878 
I7x6.05 7.0 3.76 0.156 0.138 1/15.00 0.965 0.971 1.038 0.825 
I7x6.92 7.0 3.86 0.156 0.180 1/15.00 1.002 1.010 1.075 0.774 
I8x6.35 8.0 4.00 0.168 0.108 1/15.00 0.917 0.922 0.988 0.895 
I8x7.96 8.0 4.17 0.168 0.176 1/15.00 0.983 0.991 1.059 0.801 
I8x8.81 8.0 4.26 0.168 0.213 1/15.00 1.009 1.018 1.088 0.768 
I9x7.51 9.0 4.33 0.181 0.116 1/15.00 0.909 0.914 0.975 0.910 

I10x8.76 10 4.66 0.195 0.124 1/15.00 0.903 0.907 0.965 0.921 
I10x10.4 10 4.80 0.195 0.179 1/15.00 0.955 0.962 1.032 0.843 
I10x12.1 10 4.94 0.195 0.238 1/15.00 1.002 1.010 1.080 0.780 
I12x11.0 12 5.00 0.215 0.140 1/15.00 0.895 0.900 0.963 0.935 
I12x12.1 12 5.08 0.215 0.171 1/15.00 0.930 0.936 1.007 0.881 
I12x14.1 12 5.25 0.261 0.184 1/15.00 0.986 0.992 1.063 0.786 
I12x15.6 12 5.36 0.261 0.226 1/15.00 1.017 1.024 1.102 0.743 
I12x17.3 12 5.48 0.261 0.275 1/15.00 1.051 1.059 1.140 0.700 
Note: 1. The designations given here are from AA (2000b). However, the 

thickness of all component elements of Series 2 sections is reduced by 
60% from the original ones. 

2. All dimensions are in inches 
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Table 6.24 Edge-stiffened Z-sections for Figure 4.15c (Figure 6.4c)  

MAA-Y-MMCA M AA-Y-WASA MNSA-U-WASA2 M NSA-U-TMCA MFEM 
     tf tw ts ds 

My My My My My 

y

cr

F
λ =

F

0.164 0.164 0.164 0.122 0.906 0.995 1.036 1.033 1.020 0.745 
0.164 0.164 0.164 0.247 0.964 1.038 1.064 1.061 1.030 0.695 
0.164 0.164 0.164 0.368 1.000 1.061 1.097 1.094 1.050 0.636 
0.164 0.164 0.164 0.552 1.000 1.057 1.134 1.132 1.060 0.568 
0.082 0.082 0.082 0.271 0.607 0.791 0.765 0.765 0.828 1.118 
0.082 0.082 0.082 0.551 0.811 0.940 0.942 0.942 0.941 0.860 
0.082 0.082 0.082 0.822 0.869 0.946 1.001 1.004 0.973 0.751 
0.082 0.082 0.082 1.234 0.588 0.702 1.020 1.026 0.904 0.711 
0.491 0.491 0.491 0.247 1.000 1.055 1.333 1.311 1.281 0.274 
0.491 0.491 0.491 0.368 1.000 1.053 1.329 1.308 1.286 0.273 
0.491 0.491 0.491 0.552 1.000 1.050 1.323 1.306 1.295 0.265 
0.245 0.245 0.245 0.271 1.000 1.061 1.207 1.200 1.158 0.495 
0.245 0.245 0.245 0.551 1.000 1.055 1.235 1.230 1.180 0.435 
0.245 0.245 0.245 0.822 1.000 1.051 1.236 1.234 1.186 0.396 
0.245 0.245 0.245 1.234 1.000 1.045 1.231 1.236 1.197 0.373 
0.123 0.123 0.123 0.175 0.743 0.878 0.915 0.913 0.980 0.928 
0.123 0.123 0.123 0.355 0.862 0.967 0.999 0.998 1.026 0.783 
0.123 0.123 0.123 0.529 0.976 1.043 1.053 1.052 1.044 0.688 
0.123 0.123 0.123 0.794 1.000 1.054 1.097 1.099 1.067 0.605 
0.164 0.164 0.327 0.165 0.951 1.026 1.058 1.054 1.010 0.704 
0.164 0.164 0.327 0.246 0.991 1.052 1.078 1.075 1.030 0.665 
0.164 0.164 0.327 0.369 1.000 1.054 1.105 1.104 1.040 0.611 
0.082 0.082 0.164 0.208 0.574 0.774 0.740 0.740 0.757 1.155 
0.082 0.082 0.164 0.422 0.734 0.898 0.895 0.896 0.877 0.937 
0.082 0.082 0.164 0.630 0.890 0.990 0.951 0.953 0.946 0.833 
0.082 0.082 0.164 0.944 1.000 1.041 0.991 0.996 0.876 0.754 
0.491 0.491 0.982 0.327 1.000 1.048 1.320 1.302 1.276 0.268 
0.491 0.491 0.982 0.410 1.000 1.046 1.316 1.299 1.278 0.266 
0.491 0.491 0.982 0.492 1.000 1.044 1.312 1.298 1.278 0.262 
0.491 0.491 0.982 0.615 1.000 1.041 1.307 1.295 1.278 0.256 
0.245 0.245 0.491 0.331 1.000 1.053 1.217 1.211 1.161 0.464 
0.245 0.245 0.491 0.545 1.000 1.047 1.226 1.223 1.173 0.422 
0.245 0.245 0.491 0.752 1.000 1.042 1.223 1.224 1.184 0.395 
0.245 0.245 0.491 1.067 1.000 1.036 1.217 1.225 1.187 0.373 
0.123 0.123 0.245 0.199 0.785 0.911 0.951 0.950 0.973 0.864 
0.123 0.123 0.245 0.342 0.880 0.980 1.007 1.006 1.014 0.762 
0.123 0.123 0.245 0.480 0.973 1.035 1.043 1.043 1.035 0.695 
0.123 0.123 0.245 0.689 1.000 1.046 1.073 1.076 1.063 0.632 

Note: All dimensions are in inches. 
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Table 6.25 Edge-stiffened unsymmetric sections for Figure 4.15d  
(a) (Figure 6.4d) 

MAA-Y-MMCA MNSA-U-TMCA M NSA-U-TMCA2 MNSA-U-EPMC M NSA-U-ROMC MFEM 
     wt yNA yEP yRO 

My My My My My My 

y

cr

F
λ =

F

17 -0.02 1.00 -0.07 1.007 1.155 1.194 1.189 1.277 1.264 0.299 
16 0.10 1.50 0.32 1.000 1.152 1.211 1.200 1.291 1.286 0.293 
15 0.23 2.00 0.70 1.000 1.157 1.238 1.220 1.313 1.317 0.285 
14 0.36 2.50 1.07 1.000 1.163 1.267 1.238 1.336 1.347 0.277 
13 0.50 2.78 1.43 1.000 1.169 1.297 1.255 1.360 1.382 0.269 
12 0.65 2.97 1.78 1.000 1.176 1.330 1.272 1.385 1.411 0.261 
11 0.80 3.13 2.10 1.000 1.184 1.365 1.291 1.410 1.454 0.252 
10 0.96 3.26 2.41 1.000 1.193 1.403 1.312 1.438 1.489 0.243 
9 1.13 3.38 2.70 1.000 1.203 1.444 1.336 1.468 1.501 0.234 
8 1.31 3.50 2.96 1.000 1.215 1.489 1.365 1.502 1.544 0.224 
7 1.50 3.60 3.20 1.000 1.229 1.540 1.398 1.541 1.592 0.214 
6 1.70 3.70 3.42 1.000 1.247 1.598 1.438 1.588 1.648 0.203 
5 1.91 3.80 3.62 1.000 1.269 1.664 1.488 1.645 1.696 0.192 
4 2.14 3.90 3.79 1.000 1.297 1.744 1.550 1.718 1.756 0.180 
3 2.38 4.00 3.95 1.000 1.336 1.842 1.632 1.815 1.846 0.167 

(b) (Figure 6.4e) 
MAA-Y-MMCA MNSA-U-TMCA M NSA-U-TMCA2 MNSA-U-EPMC M NSA-U-ROMC MFEM 
     wt yNA yEP yRO 

My My My My My My 

y

cr

F
λ =

F

16 0.09 0.17 0.25 1.000 1.069 1.044 1.027 1.055 1.078 0.668 
15 0.21 0.63 0.61 1.000 1.120 1.081 1.058 1.095 1.109 0.651 
14 0.34 1.07 0.98 1.000 1.131 1.121 1.087 1.135 1.139 0.634 
13 0.48 2.78 1.35 1.000 1.145 1.165 1.188 1.174 1.168 0.615 
12 0.62 2.97 1.80 1.000 1.161 1.214 1.206 1.215 1.200 0.598 
11 0.78 3.13 2.28 1.000 1.175 1.263 1.224 1.258 1.230 0.578 
10 0.93 3.26 2.66 1.000 1.183 1.308 1.245 1.299 1.262 0.559 
9 1.10 3.38 2.95 1.000 1.193 1.357 1.269 1.341 1.296 0.539 
8 1.27 3.50 3.19 1.000 1.204 1.411 1.296 1.386 1.334 0.518 
7 1.46 3.60 3.16 1.000 1.218 1.471 1.328 1.420 1.376 0.496 
6 1.65 3.70 3.38 1.000 1.234 1.536 1.366 1.459 1.424 0.472 
5 1.86 3.80 3.57 1.000 1.253 1.596 1.412 1.507 1.483 0.447 
4 2.08 3.90 3.75 1.000 1.279 1.667 1.469 1.566 1.550 0.420 
3 2.31 4.00 3.91 1.000 1.312 1.754 1.543 1.643 1.614 0.391 
2 2.56 4.10 4.04 1.000 1.358 1.864 1.643 1.749 1.713 0.359 
1 2.82 4.20 4.16 1.000 1.426 2.013 1.787 1.903 1.848 0.325 
Note: 1. yNA = distance from neutral axis based on linear-elastic stress distribution to mid-depth.      

yEP = distance from neutral axis based on elasto-plastic stress distribution to mid-depth.    
yRO = distance from neutral axis based on Ramberg-Osgood stress distribution to mid-
depth. 

2. All dimensions are in inches. 
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Table 6.26 Dome-strut sections for Figure 4.15e and Figure 4.16 (Figure 6.4f) 

(a) Series 1 

MAA-Y-MMCA M NSA-Y-TMCA MNSA-U-TMCA M NSA-U-TMCA2 MFEM 
     tf = ts tw tw2 dw 

My My My My My 

y

cr

F
λ =

F

0.500 0.313 0.313 0.000 1.000 1.035 1.142 1.357 1.417 0.326 
0.333 0.208 0.208 0.000 1.000 1.032 1.134 1.325 1.346 0.465 
0.250 0.156 0.156 0.000 1.000 1.031 1.129 1.243 1.280 0.607 
0.200 0.125 0.125 0.000 0.961 1.030 1.112 1.167 1.210 0.746 
0.167 0.104 0.104 0.000 0.791 1.029 1.095 1.105 1.124 0.882 
0.143 0.089 0.089 0.000 0.672 1.018 1.079 1.038 1.054 1.015 
0.125 0.078 0.078 0.000 0.585 0.971 0.971 0.957 1.015 1.144 
0.111 0.069 0.069 0.000 0.517 0.872 0.872 0.871 0.983 1.270 
0.100 0.063 0.063 0.000 0.464 0.793 0.793 0.793 0.956 1.393 
0.091 0.057 0.057 0.000 0.420 0.728 0.728 0.728 0.929 1.512 

(b) Series 2 

MAA-Y-MMCA M NSA-Y-TMCA MNSA-U-TMCA M NSA-U-TMCA2 MFEM 
     tf = ts tw tw2 dw 

My My My My My 

y

cr

F
λ =

F

0.500 0.313 0.938 0.375 1.000 1.059 1.171 1.382 1.481 0.282 
0.333 0.208 0.625 0.458 1.000 1.058 1.165 1.356 1.382 0.402 
0.250 0.156 0.469 0.500 1.000 1.057 1.161 1.311 1.321 0.524 
0.200 0.125 0.375 0.525 0.990 1.056 1.146 1.240 1.261 0.645 
0.167 0.104 0.313 0.542 0.808 1.055 1.120 1.171 1.194 0.763 
0.143 0.089 0.268 0.554 0.682 1.054 1.094 1.111 1.123 0.879 
0.125 0.078 0.234 0.563 0.590 1.033 1.069 1.051 1.061 0.991 
0.111 0.069 0.208 0.569 0.520 0.991 0.991 0.975 1.020 1.100 
0.100 0.063 0.188 0.575 0.464 0.900 0.900 0.899 0.992 1.207 
0.091 0.057 0.171 0.580 0.420 0.827 0.827 0.827 0.967 1.311 

Note: All dimensions are in inches. 
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6.5 Uniaxial Tensile Coupon Test Results 

Table 6.27 Uniaxial tensile coupon test results (a), (b) uniform I-sections (c) 
tapered I-section (d) mullion section 

(a) 

specimen name Fy (ksi) εy Fu (ksi) εu (ksi) E (ksi) 

1t1 (top flange) 29.91 0.00497 34.24 0.06250 10068 

1t2 (top flange) N.A. N.A. N.A. N.A. N.A. 

1w1 (web) 29.82 0.00514 33.78 0.05400 9509 

1w2 (web) 29.92 0.00506 33.89 0.06580 9775 

1b1 (bottom flange) 28.84 0.00508 33.41 0.06270 9359 

1b2 (bottom flange) 29.57 0.00598 33.98 0.06700 7430 

average 29.61 0.00525 33.86 0.06240 9228 

c.o.v. 0.015 0.079 0.009 0.081 0.113 

6063-T6 (average in AA, 2000c) 31.00 0.00510 35.00 N.A. 10000 

6063-T6 (minimum in AA, 2000c) 25.00 0.00448 30.00 N.A. 10100 

 

(b) 

specimen name Fy (ksi) εy Fu (ksi) εu (ksi) E (ksi) 

2t1 (top flange) 30.26 0.00519 35.09 0.06294 9498 

2t2 (top flange) 30.38 0.00527 35.12 0.06407 9289 

2w1 (web) 30.72 0.00523 35.38 0.06810 9526 

2w2 (web) 31.02 0.00538 35.52 0.06690 9189 

2b1 (bottom flange) 30.68 0.00520 35.50 0.06400 9596 

2b2 (bottom flange) 30.25 0.00509 35.10 0.06750 9786 

average 30.55 0.00522 35.29 0.06559 9481 

c.o.v. 0.010 0.019 0.006 0.033 0.023 

6063-T6 (average in AA, 2000c) 31.00 0.00510 35.00 N.A. 10000 

6063-T6 (minimum in AA, 2000c) 25.00 0.00448 30.00 N.A. 10100 
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Table 6.27 (Continued) 

(c) 

specimen name Fy (ksi) εy Fu (ksi) εu (ksi) E (ksi) 

t2t1 (top flange) 41.00 0.006140 43.52 0.06830 9902 

t2t2 (top flange) 40.81 0.006048 43.16 0.06783 10081 

t2w1 (web) 40.58 0.006047 43.11 0.07187 10028 

t2w2 (web) 40.15 0.005961 42.95 0.08132 10136 

t2b1 (bottom flange) 41.45 0.006072 43.85 0.06134 10179 

t2b2 (bottom flange) 41.46 0.006003 43.82 0.06960 10355 

average 40.91 0.006045 43.40 0.07004 10113 

c.o.v. 0.012 0.010 0.009 0.094 0.015 

6061-T6 (average in AA, 2000c) 40.00 0.00600 45.00 N.A. 10000 

6061-T6 (minimum in AA, 2000c) 35.00 0.00547 38.00 N.A. 10100 

 

(d) 

specimen name Fy (ksi) εy Fu (ksi) εu (ksi) E (ksi) 

m2t1 (top flange) 22.66 0.004412 25.73 0.048649 9394 

m2t3 (top flange) 22.62 0.004217 26.34 0.043504 10203 

m2b1 (bottom flange) 21.68 0.004300 25.46 0.054104 9426 

m2b2 (bottom flange) 22.25 0.004292 25.81 0.047961 9709 

m2w1 (web) 23.68 0.004403 27.42 0.053167 9853 

m2w2 (web) 23.27 0.004362 26.98 0.043095 9853 

m2w3 (web) 23.53 0.004422 27.24 0.048226 9714 

average 22.81 0.004344 26.43 0.048387 9736 

c.o.v 0.032 0.018 0.030 0.088 0.028 

6063-T5 (average in AA, 2000c) 21.00 0.00410 27.00 N.A. 10000 

6063-T5 (minimum in AA, 2000c) 16.00 0.00358 22.00 N.A. 10100 

Note: a. Gage length used in these tests is one inch.  
          b.  εy = strain at the yield stress = σy /E + 0.002. εu = strain at the ultimate stress. 

 c.  Results from test specimens of 1t1, 1t2, 1w2, and 1b2 are based on extensometer 
measurements only. All others are based on both extensometer and strain gage measurements 
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6.6 Local Geometric Initial Imperfection Measurements 

Before the tests have been conducted, initial geometric imperfections were 

measured on the flanges and webs of the specimens. On the flanges, the measured 

imperfection data are rotated along the web-flange junctions so that the average 

geometric line at the junction lies on the zero imperfection plane. On the web, the 

measured data are rotated along the mid-depth. The processed imperfection data are 

shown in Figure 6.5 and Figure 6.6. The maximum imperfection, which is expressed 

by a larger solid circle with a corresponding value in each figure, is less than the 

standard flatness tolerance by AA (2000c), except at the flange of the mullion section. 
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Note: All dimensions are in inches. 
Figure 6.5 Imperfection measurements of a mullion section (a) top flange (b) web 

longitudinal location 

longitudinal location 
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Note: All dimensions are in inches. 

Figure 6.6 Imperfection measurements of an I-3x1.64 section (a) top flange (b) 
bottom flange (c) web 
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