Crane Design Basics

A brief introduction to Crane Design is present the intent that it will be useful to the users spectac wose who are newn in this field and have no knowledge of how a crane is built.

This work is motivated due to the 蚛 4 of presence of这eratur compelled tor ${ }^{\circ}$ int up some effort to haye at least some stuff on the webl which can at least give a introductory level information to engineers and students.

Feel free to send me a mail with questions or comments

41. SIMPLE BEAM-TWO EQUAL CONCENTRATED MOVING $E C L=\frac{2 P\left(L-\frac{1}{2} W \cdot B\right)^{2}}{L^{2}}$ LOADS

R_{1} max. $=V_{1}$ max. $($ at $x=0) \cdots=P\left(2-\frac{a}{l}\right)$
$M_{\text {max. }}\left\{\begin{array}{l} \\ \end{array}\right.$
$\left\{\begin{array}{l}{\left[\begin{array}{l}\text { when a }<(2-\sqrt{2}) l=.586 l \\ \text { under load } 1 \text { at } \mathrm{x}=\frac{1}{2}\left(l-\frac{\mathrm{a}}{2}\right)\end{array}\right]=\frac{\mathrm{P}}{2 l}\left(l-\frac{\mathrm{a}}{2}\right)^{2}} \\ {\left[\begin{array}{l}\text { when a }>(2-\sqrt{2}) l=.586 l \\ \text { with one load at center of span } \\ \text { (case 40) }\end{array}\right]=\frac{\mathrm{P} l}{4}}\end{array}\right.$
42. SIMPLE BEAM - TWO UNEQUAL CONCENTRATED MOVING LOADS

R_{1} max. $=\mathrm{V}_{1}$ max. $($ at $\mathrm{x}=0)$ $M_{\text {max. }}\left\{\begin{array}{l}{\left[\text { under } P_{1}, \text { at } x=\frac{1}{2}\left(l-\frac{P_{2 a}}{P_{1}+P_{2}}\right)\right]=\left(P_{1}+P_{2}\right) \frac{x^{2}}{l}} \\ {\left[\begin{array}{l}M \\ \text { max. may occur with }\end{array}\right.}\end{array}\right.$ M. max. $\left\{\begin{array}{l}\text { M max. may occur with larger } \\ \text { load at center of span and }\end{array}\right.$ $\left[\begin{array}{l}\text { load at center of span and other } \\ \text { load off span (case 40) }\end{array}\right]=\frac{\mathrm{P}_{1} l}{4}$

If P1=P2, use the Case 41, otherwise use Case 42. Also calculate the Max moment using the formula PL/4. In other words, to be conservative, use the largest value obtained.

$$
\begin{aligned}
& \text { Dynamic Mx = LL Mx + DL Mx } \\
& \text { My = LL My + DL My } \\
& f_{b_{x_{T}}}=\frac{M_{x}}{S_{b o t t}} \leq 0.6 F_{y} \\
& f_{b_{x_{C}}}=\frac{M_{x}}{S_{T o p}} \\
& f_{b_{y_{C}}}=\frac{M_{y}}{S_{T o p}} \\
& \frac{f_{b_{x_{C}}}}{F_{b_{x}}}+\frac{f_{b_{y_{C}}}}{0.6 F_{y}} \leq 1.0
\end{aligned}
$$

Girder Beam
Available to 60 ft max. length

Fabricated/Box Beam
L/h should not exceed 25
L/b should not exceed 65

$$
\begin{array}{ll}
\Delta=\frac{5 w l^{4}}{384 E I} \text { For Uniform Load } & \text { For Trolley: } \\
\Delta=\frac{P L l^{3}}{48 E I} \text { For Conc. Load } & \Delta=\frac{P a}{2}\left[3 l^{2}-4 a^{2}\right]
\end{array}
$$

 mbt bu constered in detemineng deflemon.

 oonsiderod in dotermining deflectom.
 defertion phes onthat of the live had deflection.
3.5. Eingle Wob Girders

 stonal ens isteral deltotions.

$$
\text { Teraion l|kil }=0.0 \sigma_{m}=0.6 \sigma_{y}
$$

$$
\text { Shear }=0.40 a_{F}
$$

$$
L / r_{t} \geq \sqrt{102000 / F_{y}} \text { And } L / r_{t} \leq \sqrt{510000 / F_{y}}, F_{b_{2}}=\left[\frac{2}{3}-\frac{F_{y}\left(L / r_{t}\right)^{2}}{1530000}\right] F_{y}
$$

$$
\text { Otherwise, } F_{b_{3}}=\frac{170000}{\left(L / r_{t}\right)^{2}}
$$

$$
F_{b_{1}}=\frac{12000}{L\left(d / A_{f}\right)}(\operatorname{perCMAA})
$$

$$
F_{b}=0.6 \sigma_{y}
$$

Select Allowable Stress which is the Greatest of all. Then check for the following:

$$
\begin{aligned}
& \sigma_{\text {Tensile }<0.6 \sigma_{y}} \\
& \frac{\sigma_{\text {comp }_{x}}}{f_{b}}+\frac{\sigma_{\text {comp }}^{y}}{} \\
& 0.6 \sigma_{y}
\end{aligned} 1
$$

Due to Vertical Loads:

Torsional moment due to vertical forces acting eccentric to the vertical neutral axis of the girder
shall be considered as those vertical forces multiplied by the horizontal distance between the centerline of the forces and the shear center of the girder.

3.3.2.4.3 Due to Lateral Loads:

The torsional moment due to the lateral forces acting eccentric to the horizontal neutral axis of the girder shall be considered as those horizontal forces multiplied by the vertical distance between the centerline of the forces and the shear center of the girder.

Load Combination
The combined stresses shall be calculated for the following design cases:
3.3.2.5.1 Case 1: Crane in regular use under principal loading (Stress Level 1)
$D L\left(D L F_{B}\right)+T L\left(D L F_{T}\right)+L L(1+H L F)+I F D$
3.3.2.5.2 Case 2: Crane in regular use under principal and additional loading (Stress Level 2)
$D L\left(D L F_{B}\right)+T L\left(D L F_{T}\right)+L L(1+H L F)+I F D+W L O+S K$
3.3.2.5.3 Case 3: Extraordinary Loads (Stress Level 3)
3.3.2.5.3.1 Crane subjected to out of service wind
$D L$ + TL + WLS
3.3.2.5.3.2 Crane in collision
$D L+T L+L L+C F$
3.3.2.5.3.3 Test Loads

CMAA recommends test load not exceed 125 percent of rated load.

This is a empirical formula

3.3.2.6 Local Bending of Flanges Due to Wheel Loads

3.3.2.6.1 Each wheel load shall be considered as a concentrated load applied at the center of wheel contact with the flange (Figure 3.3.2.6-1). Local flange bending stresses in the lateral (x) and longitudinal (y) direction at certain critical points may be calculated from the following formulas:

Underside of flange at flange-to-web transition -Point 0 :
$\sigma_{x 0}=C_{x 0} \frac{P}{\left(t_{a}\right)^{2}}$
$\sigma_{\mathrm{ro}}=C_{\mathrm{ro}_{0}} \frac{\mathrm{P}}{\left(\mathrm{t}_{\mathrm{a}}\right)^{2}}$

Underside of flange directly beneath wheel contact point -Point 1:
$\sigma_{x 1}=C_{x 1} \frac{P}{\left(t_{a}\right)^{2}}$
$\sigma_{Y 1}=C_{Y 1} \frac{P}{\left(t_{\mathrm{a}}\right)^{2}}$

For a crane where the trolley is running on the bottom flange, it is necessary to check the local bending of flange due to the wheel load. The flange must be OK before a beam selection is made.

Topside of flange at flange-to-web transition -Point 2:
$\sigma_{x 2}=-\sigma_{x 0}$
$\sigma_{\gamma 2}=-\sigma_{\mathrm{ro}}$

For tapered flange sections (Figure 3.3.2.6-2)

$$
\begin{aligned}
& C_{x 0}=-1.096+1.095 \lambda+0.192 e^{-6.0 \lambda} \\
& C_{x 1}=3.965-4.835 \lambda-3.965 e^{-2.675 \lambda} \\
& C_{Y_{0}}=-0.981-1.479 \lambda+1.120 e^{1.322 \lambda} \\
& C_{r_{1}}=1.810-1.150 \lambda+1.060 e^{-7.70 \lambda} \\
& t_{a}=t_{t}-\left[\frac{b}{24}\right]+\left[\frac{a}{6}\right] \quad \begin{array}{l}
\text { for standard } \\
\text { "S" section }
\end{array}
\end{aligned}
$$

where: $\quad t_{t}=$ published flange thickness for standard " S " section (inches)
For parallel flange section (Figure 3.3.2.6-3 \& 4)

$$
\begin{aligned}
& C_{x 0}=-2.110+1.977 \lambda+0.0076 e^{6.53 \lambda} \\
& C_{x_{1}}=10.108-7.408 \lambda-10.108 e^{-1.364 \lambda} \\
& C_{Y_{0}}=0.050-0.580 \lambda+0.148 e^{3.015 \lambda} \\
& C_{Y_{1}}=2.230-1.49 \lambda+1.390 e^{-18.33 \lambda}
\end{aligned}
$$

For single web symmetrical sections (Figure 3.3.2.6-2 \& 3)
$\lambda=\frac{2 a}{b-t_{w}}$
b $\quad=$ section width across flanges (inches)
For other cases (Figure 3.3.2.6-4)
$\lambda=\frac{a}{b^{\prime}-\frac{t_{w}}{2}}$
$b^{\prime} \quad=\quad$ distance from centerline of web to edge of flange (inches)
where: $\quad \mathbf{P}=$ Load per wheel including HLF (pounds)
$\mathrm{t}_{\mathrm{a}} \quad=\quad$ Flange thickness at point of load application (inches)
$t_{\mathrm{w}}=$ Web thickness (inches)
a $=$ Distance from edge of flange to point of wheel load application (inches) (Center of wheel contact)
$=\quad$ Napierian base $=2.71828$..
3.3.2.6.2 The localized stresses due to local bending effects imposed by wheel loads calculated at points 0 and 1 are to be combined with the stresses due to the Case 2 loading specified in paragraph 3.3.2.5.2 of this Specification.

The lower flange of the crane beam must be checked for:

1) Tension in the web. 2) Bending of the bottom flange.

Refer to the figure, the length of resistance is seen to be 3.5 k . The 30 degree angle is a consensus figure used for many years. Assuming 4 wheels (2 pair) at each end of the crane, each wheel will support P/4 delivered to the supporting crane beam. Two wheels cause the web tension, so the load is $\mathrm{P} / 2$. Tensile stress in the web is:
stress in the wed is

$$
f_{t}=\frac{P}{2 A}=\frac{P}{2 t_{w}(3.5)}=\frac{P}{7 t_{w}}
$$

Flange bending depends upon the location of the wheels with respect to the beam web. This dimension is ' e ' as shown in the figure. The wheel load is P/4. Longitudinal length of the flange participating in the bending resistance is 2 e per yield line analysis. Bending stress is:

$$
f_{b}=\frac{M}{S}=\frac{P e}{4} \frac{6}{b d^{2}}=\frac{P e}{4} \frac{6}{2 e t_{f}^{2}}=\frac{0.75 P}{t_{f}^{2}}
$$

Now, the angle is changed from 30 degree to 45 degrees.

> Capacity $=6000 \mathrm{lb}$
> Hoist wt $=1000 \mathrm{lb}$

$$
\begin{gathered}
\text { Load }=6000+1000=7000 \\
\text { Wheel load }=7000 / 4=1750
\end{gathered}
$$

With 15% impact $=1750(1.15)=2013 \mathrm{lb}$

$$
\begin{gathered}
\mathrm{b}=11.5, \mathrm{e}=\mathrm{b} / 2=5.75 \\
\mathrm{Tf}=0.875 \\
\mathrm{M}=2013(5.75)=11574.75
\end{gathered}
$$

$$
\text { Stress }=M / S=11574.75 \cdot(6) /(11.5)(0.875)^{\wedge} 2=7890.15
$$

Moment $=7000(1.15)(30)(12) / 4+110((12)(30))^{\wedge} 2 /(8(12))=873000 \mathrm{lb}-\mathrm{in}$
Stress $=873000 / 280=3117.8$
$\sigma=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{x} \sigma_{y}}=\sqrt{3117.8^{2}+7890.15^{2}+3117.8(7890.15)}$
Stress $=9827 \ll 0.6$ Sigma y (21600) OK

Capacity: 2 Ton (4000 Lb), Span: 20 Ft (480 in)
Hoist Wt: 200 Lb, Hoist W.B: 12 in
Vertical Impact factor $=15 \%$, Hor. Impact $=10 \%$

Solution:

$$
M x=\frac{w L^{2}}{8}+\frac{P}{2 L}\left(L-\frac{a}{2}\right)^{2}
$$

Beam must be checked for

Lower flange load, if the trolley is under running
$M x=\frac{31.8}{12} \times \frac{240^{2}}{8}+\frac{2100 \times 1.15}{2 \times 240}\left(240-\frac{12}{2}\right)^{2}=294571.1$
$\sigma_{x}=\frac{M_{x}}{S_{x}}=\frac{294571.1}{36.4}=8092.6$
$\sigma_{x}=\frac{M_{y}}{S_{y}}=\frac{294571.1 \times 1.1 \times 0.1}{9.27 \times 1.15}=3039.5$
$\delta=\frac{5 w L^{4}}{384 E I}+P a \frac{\left(3 L^{2}-4 a^{2}\right)}{24 E I}$
$\delta=\frac{5(31.8) 240^{4}}{384 \times 12 \times 218 E}+2100 \times 1.15 \times 114 \frac{\left(3 \times 240^{2}-4 \times 114^{2}\right)}{24 \times 218 E}$
$\delta=0.237<\frac{L}{600}=0.4 \quad \mathrm{OK}$

$$
\begin{aligned}
& \sigma_{\text {comb }}=8092.6+3039.5=11132.1 \\
& \sigma_{\text {all1 }}=0.6 \sigma_{y}=0.6 \times 36=216000 \\
& \sigma_{\text {all2 }}=\frac{12000}{L \times d / A_{f}}=\frac{12000}{240 \times 4.41}=11337 \\
& \sigma_{\text {all }}=M i n_{-} o f-\sigma_{\text {all1 }}, \sigma_{\text {all2 }}=11337.8 \\
& \sigma_{\text {comb }}<\sigma_{\text {all. }} \quad \text { OK }
\end{aligned}
$$

Moment A $=\operatorname{HLF} \times \mathrm{M}$ (whichever is greater) $=P_{1}>P_{2}, M=\frac{\left(P_{1}+P_{2}\right)}{L} X^{2}, X=0.5\left[\frac{L-W B \times P_{2}}{P_{1}+P_{2}}\right], O R, M=\frac{P L}{4}=166290$
Moment B $=$ IFD x M (whichever is greater) $=56394$

Static Moment $=\frac{w L^{2}}{8}+\frac{P}{4}=19080$
Moment C $=$ DLF x Static Moment $=20988$
Moment D = IFD x Static Moment $=7441.2$
Moment $\mathrm{Mx}=\mathrm{A}+\mathrm{C}=187278$
Moment $\mathrm{My}=\mathrm{B}+\mathrm{D}=63835.2$
Tensile Stress $=\sigma=M x / S_{x}=5.15<0.6(36) \mathrm{OK}$
Comp. Stress $\mathrm{X}=\sigma=M x / S_{x}=5.15$
Comp. Stress $Y=\sigma=M y / S y=17.07$
$\frac{C_{x}}{f_{b}}+\frac{C_{y}}{0.6 F_{y}}<1=\frac{5.15}{21.6}+\frac{17.07}{21.6}=1.03>1 \quad$ ERR
$d 1=\frac{5 w L^{4}}{384 E I}=0.0181$
$d 2=\frac{P F^{3}}{3 E I}=0$
$d 3=\frac{\left(P_{1}+P_{2}\right)}{2} a \frac{\left[3 L^{2}-4 a^{2}\right]}{24 E I}=0.2188$
$d 4=\frac{P_{1} L^{3}}{48 E I}=0.1098$
Total Deflection $=\mathrm{d} 1+\mathrm{d} 2+($ Greater of d 3 and d 4$)$
Deflection $=0.0181+0+0.2188=0.2369$ in
Deflection $0.2369<L / 600$ (0.4) OK

