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This paper presents a generally applicable approach to laminar heat transfer
problems in the entrance region of ducts. Consideration is given to the general
situation in which ducts have arbitrary but constant cross sections. The
finite-element method is used in the simultaneous step-by-step integration of the
momentum and energy equations. Several illustrative examples demonstrate the
versatility of the proposed technique and permit an evaluation of its accuracy.

INTRODUCTION

This paper is part of a series comprising an extensive study of laminar flow and
heat transfer in the entrance region of straight ducts having arbitrary but constant
cross sections [1-4]. In [1] laminar forced convection in the thermal entrance region
was investigated but only fully developed flow was considered. In [2-4] different
solution procedures were proposed for the developing flow problem. Starting from a
very simple Targ-type solution [2, 5], we first implemented Sparrow’s solution [5, 6],
using the finite-element method (FEM) instead of the more complex semianalytical
procedure suggested originally [3]. Finally, we produced a step-by-step version of
Sparrow’s solution that is more suitable to the analysis of simultaneous development of
velocity and temperature distributions [4].

The present paper describes a numerical study of heat transfer in ducts where the
velocity is uniform at the entrance and the heating begins at the entrance. Thus the
velocity and temperature distributions develop simultaneously. The FEM is used in the
simultaneous step-by-step integration of the momentum and energy equations.
Application of the method is illustrated with reference to many thermal boundary
conditions of practical interest and to several duct geometries, including multiply
connected domains. Comparisons with available analytical solutions and experimental
results show that the accuracy reached is limited only by the approximations involved
in neglecting cross-stream flows and axial molecular transport of momentum and
energy. On the other hand, such approximations lead to results that are good enough
for many design purposes.

Past solutions for the simultaneous development of the laminar velocity and
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NOMENCLATURE
A domain of definition T thermal boundary condition referring to
Bi Biot number, dimensionless (= h;Dp/k) known constant wall temperature
cp specific heat capacity at constant pressure T3  thermal boundary condition referring to
Dy hydrualic diameter (= 44/P) finite outside convective resistance
h,  convective heat transfer coefficient at u fluid axial velocity
outside duct periphery 7 mean axial velocity
H2 thermal boundary condition referring to u' dimensionless velocity (= u/i1)
known constant wall heat flux density v, w velocity components in the y, z directions
k thermal conductivity x Cartesian coordinate along flow direction
L dimensionless parameter in linearized x' dimensionless axial coordinate (= x/
momentum equation Dy, Re Pr)
Nu Nusselt number, dimensionless [Eq. (14)] v, z Cartesian coordinates in cross section A
P perimeter y' dimensionless coordinate (= y/Dh)
Pe  Peclet number, dimensionless (= Re Pr) z' dimensionless coordinate (= z/Dy,)
Pr Prandtl number, dimensionless (= cppu/k) € weighting factor, dimensionless
q dimensionless heat flow density v kinematic viscosity
Re Reynolds number, dimensionless o density
(= uDp/v)
t dimensionless temperature defined as in
1] Superscripts
tp  fluid bulk mean temperature [Eq. (5)]
t,, dimensionless average wall temperature e element
[Eq. (4)] ! dimensionless quantity

temperature fields in ducts were limited to a few thermal boundary conditions and to
very simple geometries such as circular tubes, flat channels, and annular passages
[7-15]. Therefore the present extension should constitute a valuable addition to the
heat transfer literature.

STATEMENT OF THE PROBLEM

Consideration is given to laminar incompressible flow in a straight duct of
arbitrary but axially unchanging cross section. In the absence of body forces, flow is in
the positive axial direction, x, ¥, and z being the cross-sectional coordinates.

Application of the equations of motion is restricted to conditions such that the
flow is independent of time, the cross-stream velocities are small with respect to the
axial velocities, and the fluid density and viscosity are constant. Usually, in obtaining a
solution of the x-momentum equation, axial molecular transport of momentum is
neglected and the pressure is assumed to be uniform across each section (e.g., [5, 6]).
In Sparrow’s analysis [5, 6] the effect of cross-stream flow is approximated by means
of a weighting factor e(x'), which weights the mean axial velocity &, and by a
right-hand-side term L'(x"), which includes the pressure gradient as well as the residual
of the inertia terms. On the basis of these assumptions, the x-momentum equation can
be conveniently written in dimensionless form as [3, 4]

n ou' %y’ | 0%’ )
x)—=Pr|—+—+L(x 1
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where e(x’) and L'(x") can be evaluated at every axial location, as shown in [4].
Equation (1) is subjected to the no-slip boundary condition on P, and the velocity
profile is assumed to be uniform across the inlet section.

By neglecting axial heat condiction and the effects of cross-stream flow, the
energy equation can be written in dimensionless form as [1]

' 2,7 2,0
'a_t_-at+é_L (2)

ox' 3yt oz

The thermal boundary conditions classified in [16] can be dealt with by using
the present model [1]. However, we consider here only the most common thermal
boundary conditions of practical interest, T, T3, and H2 [1, 16]. Initial conditions for
the temperature distribution at the entrance section are taken as uniform.

After obtaining the developing temperature distribution from Eqs. (1) and (2)
and the appropriate boundary and initial conditions, other quantities of interest can be
calculated from their definitions. For example, the local Nusselt number, averaged over
.the duct perimeter P, can be computed as

—(1/P) Jp(3t'/0on) dP
u =

] 3
ty, —th (3)
y _ 1 '
where tw=7p / t dP “4)
P
' 1 !
and tb=Z/ut dA (5)
‘A

are, respectively, the average fluid temperature at the inside duct periphery and the
fluid bulk mean temperature.

Because axial transport of momentum and axial heat conduction were neglected,
the present analysis is valid only for Re 2> 50 and Pe = Re Pr > 50 (e.g., see [13, 14]).

Cross-stream convection is important only at the very beginning of the entrance
region. According to [17, 18], cross-stream convection is important only for
x' =x/Dy Pe <0.001. Perhaps more realistically, according to the analytical results
reported in [13], neglecting cross-stream convection results in an error of the order of
5% in the local Nusselt number at x’ = 0.001,

FINITE-ELEMENT DISCRETIZATION

The unknown variables u' and ¢ are approximated throughout the solution
domain A by the relationships

WG,y 2)= ) NG, ') = NU ©)

r=1
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G,y )= ) N, 2)(x) = NT (7)

r=1

where u, and ¢, are nodal values and the N, are the usual shape functions, which
represent the potential distributions and are defined piecewise element by element.
Equations (1) and (2) can be written in discretized form as

VU+SU+R=0 (8)

KT+CT+F=0 )
in which

. dU . 9T

= — = — 0

U P T i’ (10)

and some values of the unknown vectors U, T may be specified on P according to the
no-slip and T boundary conditions [1].
Typical matrix elements are

3N, AN, aN AN,
,S—PrZ/( i az)dA (11)
O, N,  oN, aNs) _
+
K, = Z/ ay ot a5 ) AT B ELN,M, dP (12)
S,s=62/ N.N, dA (13)
Ae
Co=) / u'N,N, dA (14)
Ae

R, = —L'Z/ N, dA (15)
Ae

=q') / N, dP (16)
Pe

where (r, s =1, m).

In the foregoing, the summations are taken over the contributions of each
element, 4¢ is the element region, and P€ refers only to elements with boundaries on
which T3 or H2 conditions are specified [1].
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The two sets of ordinary differential equations, (8) and (9), that define the
discretized problem have been solved together as a system of 2m X 2m differential
equations [19].

Finite differences and a three-time-level algorithm have been used to march ahead
in the axial direction x'. Since only central values of the matrices are used in the
recurrence scheme, the necessity for iterating within each step is circumvented [19].
Besides, as the marching scheme is unconditionally stable, it has been possible to
incorporate into the program an axial step adjustment feature. Thus for the spectrum
of problem solved by this method, Ax' has been changed from initial values as low as
1076 up to 1073 for slowly varying flows at the end of the entrance length.

Once velocities and temperatures at location x’ have been calculated, local
Nusselt numbers may be evaluated by use of Eq. (3).

This formulation is general and applicable to any type of finite-element
discretization even if, for this research, only isoparametric parabolic elements have
been used.

More details of the solution procedure have been published; interested readers
can find them in [1-4, 19].

TEST PROBLEMS AND NEW RESULTS

The examples presented concern developing velocity and temperature fields in
the entrance region through circular ducts, flat channels, concentric annular passages,
square and equilateral triangular ducts, and rod bundles. Meshes used to deal with
these geometries and results concerning developing velocity fields have been presented
[4] and will not be reported again here.

In Figs. 1-3 the FEM results are compared with available analytical solutions and
with experimental data conceming circular ducts, for three different boundary
conditions and several Prandtl or Biot numbers. In Figs. 1 and 2 Javeri’s solutions for
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Fig. 1 Nusselt number behaviors in the entrance region of a circular
duct with simultaneous development of velocity and temperature
fields. The T boundary condition is investigated for several values of
the Prandtl number.
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Fig. 2 Nusselt number behaviors in the entrance region of a circular
duct with simultaneous development of velocity and temperature
fields. The T3 boundary condition is investigated for Pr= 1 and

several

values of the Biot number.

v, w=0 have been considered to show that agreement is very good for x' > 5 X 1074,
Below this value, Javeri’s solutions do not seem to converge properly.

In Figs. 4 and 5 comparisons are made with available solutions for flat channels,
considering T and H (= H2) boundary conditions and different values of the Prandtl

number.

In Fig. 6 the FEM results for a concentric annular passage (r,/r; = 2), cooled
inside and with the outside surface adiabatic, are compared with a linearized solution
that neglects cross-stream flow effects.

In these comparative examples Prandtl numbers in the range Pr= 0.1 to Pr= 10
have been considered. It can be seen that agreement is quite good as long as the

100

Nu

10

LN R L |

T LRI T Illvll[l T Ty

Pr-0.7

— FEM

---- Ulrichson, Schmitz [10]
o Heaton et al,th. [9)pPr=0.7
o Heaton et al, exp. (9]

1 41 111 lI 1

1 Lo el ! voa sl

T

1

T T 7Ty

®

lllllll

ILI llljl

|

L1111

3
10°

5 - —-3 -
1074 103 o 10

10°1

Fig. 3 Nusselt number behaviors in the entrance region of a circular
duct with simultaneous development of velocity and temperature
fields. The H (= H2) boundary condition is considered for Pr = 0.7
and Pr = 1. The solution from [9] is for v, w = 0; the solution from
[10] takes into account cross-flow effects.
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Fig. 4 Nusselt number behaviors in the entrance region of flat
channels with simultaneous development of velocity and temperature
fields. The T boundary condition is investigated for several values of
the Prandtl number. Javeri’s solution takes into account cross-flow
effects but it is v, w = 0 for Pr = 0 (slug flow) and Pr = = (developed
flow).
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comparison is limited to the solutions for developed flow (Pr=°) and slug flow
(Pr=0) or to solutions disregarding the effects of cross-stream flow (v, w=0). In
other cases the FEM solutions, like all solutions assuming v, w=0, tend to
overestimate the local Nusselt number near the entrance by a few percent. The error in
the local Nusselt number decreases with increasing Prandtl number and becomes
negligible well before the end of the entrance length.

Some new applications of our calculation procedure have also been carried out.
Since our objective was illustration of the method rather than production of an
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Fig. 5 Nusselt number behaviors in the entrance regicn of flat
channels with simultaneous development of velocity and temperature
fields. The H (= H2) boundary condition is investigated for Pr= 0.7
and Pr= 1. Solutions considered for comparison take into account
cross-flow effects.
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Fig. 6 Nusselt number behaviors in the entrance region of a
concentric annular duct (r,/r; = 2) cooled inside and with the outside
surface adiabatic. Simultaneous development of velocity and tempera-
ture fields and the H (= H2) boundary condition are considered. The
solution from [9] refers to v, w = 0.

T llvlll T T T Illl[' T T llI'fTT T T LRI
100
Nu |
101
2 r A lllllll 1 1 AJIIIII 1 1 Jlllll' g A 1 1 3134
10-5 1074 103 X' 102 10~

Fig. 7 Nusselt number behaviors in the entrance region of a square
duct with simultaneous development of velocity and temperature
fields. The T and H2 boundary conditions are considered.
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Fig. 8 Nusselt number behaviors in the entrance region of an
equilateral triangular duct with simultaneous development of velocity

and temperature fields. The T and H2 boundary conditions are
considered.
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Fig. 9 Nusselt number behaviors in the entrance region between rod
bundles with simultaneous development of velocity and temperature
fields.

exhaustive series of results, only three new geometries and T and H2 boundary

conditions have been considered. In Figs. 7-9 the FEM results for square ducts,
equilateral triangular ducts, and rod bundles are presented with reference to the value
Pr=1.

As has been pointed out, these results are certainly reliable for x' <0.001, but
some caution is necessary when using, for design purposes, this kind of FEM data for
the zone x’ < 0.001.

CONCLUSIONS

A calculation procedure based on the finite-element method is proposed to deal
with the simultaneous development of velocity and temperature distributions in the
entrance region of ducts. The procedure is stable and convergent. Besides, it can be
implemented by using, with minor modifications, finite-clement bodes that are already
available. The accuracy reached is limited only by the approximations involved in
neglecting cross-stream flows and axial molecular transport of momentum and energy.
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