

THE DIRECT ANALYSIS METHOD MADE SIMPLE

Matthew Newton – President
Jason Ericksen, SE – Technical Manager

CSC Inc

Before We Start

► Maximize Screen

- ► Screen saver
 - ► Black screen

Before We Start

- ► Posing Questions
- ► Listen to Audio:
 - ► Use speakers

or

► Use telephone

CSC Fastrak

- Certificate administration
 - ► This Webinar provides 1.0 PDH (0.1 CEU)
 - Provide details at the end
- ► Shared Q&A
 - Distributed following the event
- ► Free Composite Beam Software for each attendee
 - Provide details at the end
- Website http://www.cscworld.com/fastrak/us/
- Contact Matthew.newton@cscworld.com Tel: 877 710 2053

THE DIRECT ANALYSIS METHOD MADE SIMPLE

Matthew Newton – President
Jason Ericksen, SE – Technical Manager

CSC Inc

Corporate Info

- ► Established in 1975
- ► Structural Engineering Software
- ► Successful, Focussed Business
- ▶ 6,000 customers
- ► 60+ employees
- ► Lead Products
 - **►**TEDDS
 - ► Hand Calculations in MS Word
 - ► FASTRAK Building Designer...

www.cscworld.com

Worldwide Customers

Whitby Bird & Partners

SKIDMORE, OWINGS

Corporate Information

- ► Global
 - ► CSC offices in UK, Malaysia, Singapore, Australia and USA
 - ► Partner network
 - ► US support office in Chicago
- Reputation for quality
- ► Technical presentations common
 - ► Chief Engineer presents regularly
 - ► Jason Ericksen (former-AISC) contributes to AISC technical committees

THE DIRECT ANALYSIS METHOD MADE SIMPLE

Matthew Newton – President
Jason Ericksen, SE – Technical Manager

CSC Inc

Why are we here today?

- ► AISC has made significant changes
- ► Initial imperfections, inelasticity, 2nd Order Analysis
- ► Direct Analysis Method (DAM)

Why are we here today?

Model courtesy of Fisher Engineering

What does the DAM mean to you?

- ► Straight-forward Analysis and Design
- ► Improved Results
- ► Less potential for error
- ►K=1.0

2005 AISC Specification

- ► Brings ASD and LRFD together
 - ► Same nominal strength, R_n
 - ► Little change to LRFD
 - ► ASD reformatted substantially
 - ► No significant change to limit states

2005 AISC Specification

- ► Updates Stability Design Requirements
 - ► New requirements for analysis
 - ► Recognizes current analysis options
 - ► Addresses shortcomings of previous methods (K = ?)
 - ► Provides straight-forward methods

Seminar Topics

- ► Real world effects in steel buildings
- ► Previous methods
- ► 2005 AISC Requirements
- ► Stability Analysis and Design with Modern Software
- ► DAM using FASTRAK Building Designer

- ► P- Delta Effects
- ► Initial Geometric Imperfections
- ► Reduced member stiffness due to inelasticity

- ► P- Delta Effects
 - ► P-∆ (Structure Effect)

- ► P- Delta Effects
 - ▶ $P-\delta$ (Member Effect)

- ► P- Delta Effects
 - ► Nonlinear Response

- ► Initial Geometric Imperfections
 - ► Out-of-straightness
 - ► Tolerance from ASTM A6

- ► Initial Geometric Imperfections
 - ► Out-of-plumbness
 - ► AISC Code of Standard Practice

- Reduced member stiffness due to inelasticity
 - ► Residual Stresses from rolling process

► 'Early' yielding when applied loads results in 0.7 F_y

- Reduced member stiffness due to inelasticity
 - ► Overall stiffness of the section is reduced (tangent modulus)

Seminar Topics

- ► Real world effects in steel buildings
- ► Previous methods
- ► 2005 AISC Requirements
- ► Stability Analysis and Design with Modern Software
- Example using Fastrak Building Designer

- ► Analysis Requirements (Demand)
 - ▶ 2nd Order Analysis was required!
 - ►B₁, B₂ method been in Specification since 1st LRFD in 1986
 - ▶ Required in 1989 ASD
 - ► Effect of initial imperfections not considered
 - ► Effect of inelasticity not considered

- ► Design Requirements (Capacity)
 - ► Accounts for inelasticity
 - ► Accounts for initial imperfections

- ► Design Requirements (Capacity)
 - ► Effective Length Factor, K
 - ►Used to compensate for neglecting effects in the analysis
 - ► Relates the analysis and design method to 'actual' buckling behavior

- ► Does K compensate?
 - ► Likely will give adequate columns size
 - ► Underestimates moments in surrounding members/elements
 - ► Underestimates displacements at strength level, including effect on stability

► Does K compensate? – Example

- ► Even with 2nd Order analysis, base moment = 0 k*ft
- ► K = 2.1 compensates for column design
- ► Base plate (or other supporting elements) will have understated moments

► Modern Buildings: Stability Analysis more critical

- ► Modern Buildings: Stability Analysis more critical
 - ► Higher Strength Steel
 - ► More complex geometry
 - Less often have substantial walls
 - ► Less redundancy
 - ► Longer spans
 - ► Frames are working harder!

- ► Other problems with K
 - ▶ Tedious to calculate
 - ► Difficult to calculate correctly
 - ► Alignment charts based on 9 assumptions that are rarely met in real structures
 - ► Behavior is purely elastic
 - ► Rotations at opposite ends of restraining beams are equal producing reverse curvature
 - ► All columns buckle at the same time
 - ► Leaning columns violates this assumption

- ► Other problems with K
 - ► Can be overly conservative
 - ► If not all effects are considered, can be unconservative

Seminar Topics

- ► Real world effects in steel buildings
- ► Previous methods
- ► 2005 AISC Requirements
- ► Stability Analysis and Design with Modern Software
- ► DAM using FASTRAK Building Designer

What does the 2005 AISC Specification/DAM mean to you?

- ► <u>K=1.0</u>
- ► Straight-forward Analysis and Design
 - ► Real world effects accounted for
- ► When combined with modern software
 - ► Improved Results
 - ► Less potential for error

2005 AISC Specification

- ► AISC 360-05 (2005 Specification) Chapter C
 - ►C1. Stability Design Requirements
 - ►C2. Calculation of Required Strength

- ► C1.1 Stability Design Requirements
 - ► <u>Any method</u> that considers the influence of the following on the stability of the structure and its elements is permitted.
 - ► Second-order effects (P- Δ and P- δ)
 - ► Flexural, shear and axial deformations
 - ► Geometric imperfections
 - ► Member stiffness reduction due to inelastic behavior (inelasticity)

- ► Second-Order effects
 - ► Any analysis that considers both $P-\Delta$ and $P-\delta$ is allowed
 - ► Direct (rigorous) analysis
 - ► Amplified first-order analysis (B₁,B₂ method)
- ► Flexural, Axial and Shear deformation
 - ► Included in most analysis software
- ► Geometric imperfections and inelasticity
 - ► Any rational method or those presented in C2.

- ► What is really NEW?
 - ► Second-Order analysis
 - ▶Not new, but more specific
 - ► Initial out-of-plumbness
 - ► Inelastic behavior (including Residual stress)
 - ►Only the influence on the stability of the structure

- ► C2.2 Design Requirements
 - ► Second-order analysis (C2.2a)
 - **▶Limited application**
 - ► Effective Length Method (uses K>1.0)
 - ► First-order analysis (C2.2b)
 - **▶Limited application**
 - ► Simplest approach
 - ► Direct Analysis Method (Appendix 7)
 - ▶ Applies to all buildings
 - ▶ Preferred method

Design Methods

- ► Design by Second-Order Analysis: Effective Length Method
 - ► Applies when $\Delta_{\text{2nd-order}}/\Delta_{\text{1st-order}} \leq 1.5$
 - ► Notional Loads, N_i = 0.002Y_i (gravity load combinations)
 - ► Second-Order Analysis
 - ► Nominal Geometry
 - ► Nominal Stiffness
 - K from a sidesway buckling analysis
 - $\Delta_{2nd-order}/\Delta_{1st-order} \leq 1.1 \text{ then K}=1.0$

Design Methods

- Design by First-Order Analysis
 - ► Applies when $\Delta_{2nd\text{-}order}/\Delta_{1\text{st-}order} \leq 1.5$ and $\alpha P_r \leq 0.5 P_y$ for all lateral members
 - ▶ Notional Loads
 - $N_i = 2.1(\Delta_{1st-order}/L)Y_i \ge 0.0042Y_i$
 - ► First-Order Analysis on Nominal Geometry using Nominal Stiffness
 - ► Apply B₁ to total member moments
 - ▶ Use K=1.0

Design Methods

- ▶ Direct Analysis Method
 - ► Applies to all structures
 - ► Required when $\Delta_{2nd\text{-order}}/\Delta_{1\text{st-order}} > 1.5$
 - ►K = 1.0
 - ► Applies to all lateral systems or combination of systems w/o distinction
 - ► Most accurate determination of internal forces when combined with rigorous second-order analysis

- Second Order Analysis
 - ▶ Consider both $P-\Delta$ and $P-\delta$
 - ► Any general second-order analysis
 - ► Amplified first-order analysis (B₁,B₂ method)
 - **►**ASD
 - ► Carried out under 1.6 times ASD load combination
 - ► Results divided by 1.6 to obtain required strengths

► Second Order Analysis - ASD

- ► Initial imperfections
 - ► Notional Loads at each level
 - $N_i = 0.002Y_i$
 - ►Y_i = total gravity load on a level

- ► Initial imperfections
 - ► Notional Loads at each level
 - $N_i = 0.002Y_i$
 - ►Y_i = total gravity load on a level
 - ► Correlates to maximum initial out-ofplumbness allowed for columns in COSP of 1/500
 - ►Smaller value can be used if out-of-plumbness is known

- ► Notional Loads
 - ► Applied to all load combinations
 - ► If $\Delta_{2nd\text{-}order}/\Delta_{1\text{st-}order}$ < 1.5 they can be treated as a minimum (gravity load combos only)

- ► Stiffness Reductions (Inelasticity)
 - ► Axial Stiffness
 - ►EA* = 0.8 EA
 - ► Flexural Stiffness

►EI* =
$$0.8\tau_b$$
EI

▶
$$\tau_{\rm b} \leq 1.0$$

► Ultimately this allows for K=1.0

- ► Stiffness Reductions
 - $ightharpoonup au_b$ depends on the axial stress
 - ► for $\alpha P_r \leq 0.5 P_y$
 - $ightharpoonup au_b = 1.0$
 - ► for $\alpha P_r > 0.5 P_y$

 - $ightharpoonup \alpha = 1.0$ (LRFD), $\alpha = 1.6$ (ASD)
 - ▶ τ_b = 1.0 may be used for all members provided an additive notional load of 0.001Y_i is applied

- ► Member design
 - ► Design all individual members using the provisions in Chapters E, F, G, H and I
 - ► **K**=1.0 For compression design

- ► Procedure Summary
 - ► Model the structure (no change)
 - ► Apply Notional Loads
 - ► Perform second-order analysis on nominal geometry with reduced stiffness
 - ► Design all members for resulting forces
 - ▶ Design compression members with **K=1.0**

- ► AISC has clarified requirements for stability analysis and design
- ► DAM applies to all buildings
- ► DAM is most general and accurate approach
- ► When combined with modern software and structural analysis the DAM is straight-forward and eliminates problems with previous methods

Seminar Topics

- ► Real world effects in steel buildings
- Previous methods
- ► 2005 AISC Requirements
- ► Stability Analysis and Design with Modern Software
- ► DAM using FASTRAK Building Designer

- Buildings have changed over the years
 - ► Frame is working harder (less redundancy)
 - ► Less substantial permanent walls
 - ► Architecture creates irregular lateral framing (differing systems)

- ► Sophisticated structural analysis tools are readily available
 - ► Rigorous second-order analysis is practical in the average engineering office
 - ► Hand methods (such as B₁, B₂ method) can be replaced with more accurate analyses

- ► Stability analysis is more critical in modern buildings
- ► Rigorous Second-Order analysis is practical
- ► DAM was developed in recognition of these issues
 - ► requirements easily automated

- ► Second-Order Analysis
 - ► General second-order analysis that considers both $P-\Delta$ and $P-\delta$ effects
 - ► Amplified first-order analysis (B₁, B₂)

- ► Limitations of Amplified First-Order Analysis (AISC Commentary)
 - ►AISC does not recommend when $\Delta_{2nd\text{-order}}/\Delta_{1\text{st-order}} > 1.2$
 - ► Difficult to distribute moments where several members join
 - ► Complex geometry cause difficulties
 - ▶ Sloping beams and columns
 - ► Floor levels not readily identifiable

- ► Limitations of Amplified First-Order Analysis
 - ► Have to separate translation and notranslation moments
 - ► Engineering judgment often required (can't be automated!)
 - ► Distribution of moments where B₂ factors vary at a joint

- ► General Second-Order Analysis
 - ► Free of limitations of amplified first-order method
 - ► More accurate determination of internal forces and strength level deformations
 - **▶**Complex geometry
 - ▶irregular lateral framing
 - ► Structure Analyzed for Load Combinations
 - ►ASD with a 1.6 factor
 - ► Stable model required

► Representative Project

$$B_1 = ?; B_2 = ?$$

Seminar Topics

- ► Real world effects in steel buildings
- ► Previous methods
- ► 2005 AISC Requirements
- Stability Analysis and Design with Modern Software
- ► DAM using FASTRAK Building Designer

- ► Fastrak Building Designer is design modeling software focusing on the analysis and design of structural steel buildings
- ► Example implementation of Stability and Analysis requirements

- ► Stability Analysis and Design in Fastrak
 - ▶ Direct Analysis Method Applied
 - ► Rigorous Second-Order Analysis Performed
 - ► Member stiffness reductions applied automatically ($\tau_b = 1.0$)
 - ► Notional Loads applied automatically
 - $N_i = 0.003Y_i$

- ► AISC Requirements
 - ► Flexural, shear, and axial deformations
 - ► All component and connection deformation
 - ► Second-order effects (both $P-\Delta$ and $P-\delta$)
 - ► Geometric imperfections
 - Member stiffness reductions due to inelasticity

FASTRAK

EXAMPLE IMPLEMENTATION

- ► When using FASTRAK, how does all this affect your design practice?
 - ► Very little!
 - ► FASTRAK does all the work
 - ► A Rigorous Second-Order analysis performed automatically
 - ► Initial out-of-plumbness considered automatically with notional loads
 - ► Inelastic behavior considered automatically with stiffness reductions (and notional loads)

- ► When using FASTRAK, how does all this affect your design practice?
 - ► Understanding is key
 - ► AISC Requirements
 - ► Details of DAM implementation
 - ► Effects of second-order analysis on modeling and results
 - ► Tools provided to help create stable analysis model

- ► When using FASTRAK, how does all this affect your design practice?
 - ► More accurate results and more efficient designs on a wider range of building structures
 - ► No need to assess whether the building is suitable for DAM
 - ►K=1.0

2010 AISC

- ► The next AISC specification comes out in 2010
- ► DAM will be default method in body of code
- Stability Analysis and the Direct Analysis Method in an upcoming webinar

Contact Info

- ► Jason Ericksen Technical Manager
- ▶ jason.ericksen@cscworld.com
- ► Contact me for
 - ► Link to download State of the Industry paper on Stability Analysis from CSC
 - ► Questions on today's material

CSC Fastrak

- Q&A
- Certificates within 1-week
- ► Free Composite Beam Software
 - http://www.cscworld.com/fastrak/us/composite_download.html
- **Direct Analysis Paper**
- Survey
- Website http://www.cscworld.com/fastrak/us/
- Contact Matthew.newton@cscworld.com

Tel: 877 710 2053

