4 Symmetrical
Components: A Review

4.1 INTRODUCTION AND BACKGROUND

The method of symmetrical components provides a practical technology for
understanding and analyzing the operation of a system during power unbal-
anced conditions, such as those caused by faults between phases and ground,
open phases, unbalanced impedances, and so on. In addition, many protective
relays operate from symmetrical component quantities. Thus, a good under-
standing of this subject is of great value and another very important tool in
protection.

In a sense, symmetrical components can be called the language of the
relay engineer or technician. Its value is both in thinking or visualizing
unbalances, and it is a means of detailed analysis of them from the system
parameters. In this, it is like a language in that it requires experience and
practice for each access and application. Faults and unbalances occur infre-
quently and many do not require detailed analysis, so it becomes difficult to
practice the language. This has increased with the ready availability of fault
studies by computers. These provide rapid access to voluminous data, often
with little understanding of the background or method that provides the data.
Hence, this review of the method is intended to provide the fundamentals,
basic circuits and calculations, and an overview directed at clear understand-
ing and visualization.

The method of symmetrical components was discovered by Charles L.
Fortescue, who was mathematically investigating the operation of induction
motors under unbalanced conditions, late in 1913. At the 34th Annual Conven-
tion of the AIEE—on June 28, 1918, in Atlantic City—he presented an 89-page
paper entitled “Method of Symmetrical Co-ordinates Applied to the Solution
of Polyphase Networks.” The six discussants, including Charles Proteus
Steinmetz, added 25 pages. Practical application for system fault analysis was
developed by C.F. Wagner and R.D. Evans in the later part of 1920s and early
1930s, with W.A. Lewis adding valuable simplifications in 1933. Tables of fault
and unbalance connections were provided by E.L. Harder in 1937. At the same
time Edith Clarke was also developing notes and lecturing in this area, but
formal publication of her work did not occur until 1943. Additional material and
many examples for further study are found in Blackburn (1993).

© 2006 by Taylor & Francis Group, LLC.



Only symmetrical components for three-phase systems are reviewed in
this chapter. For these systems there are three distinct sets of components:
positive, negative, and zero for both current and voltage. Throughout this
discussion, the sequence quantities are always line-to-neutral or line-to-
ground and appropriate to the situation. This is an exception for voltage
connections, whereas while in the power system line-to-line voltages are
commonly indicated, in symmetrical components they are always given as
line-to-neutral (or possibly line-to-ground).

4.2 POSITIVE-SEQUENCE SET

The positive-sequence set consists of balanced three-phase currents and line-
to-neutral voltages supplied by the system generators. Thus, they are always
equal in magnitude and are phase-displaced by 120°C. Figure 4.1 shows a
positive-sequence set of phase currents, with the power system phase
sequence in the order of a, b, c. A voltage set is similar, except for line-
to-neutral voltage of the three phases, with equal magnitude and which
displaces at 120°C. These are phasors that rotate in the counterclockwise
direction at the system frequency.

To document the angle displacement, it is convenient to use a unit phasor
with an angle displacement of 120°. This is designated as a so that

a=1/120° = —0.5 +0.866
a® =1/240° = —0.5 — j0.866

@ =1/360°=1/0°=1.0+ 0. 4.1)
Therefore, the positive-sequence set can be designated as

lc1

120°
120° Lot
120°

Ib1

FIGURE 4.1 Positive-sequence current phasors. Phasor rotation is counterclockwise.
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Iy =5LVa =V,
1],] :(lzlal 1(1211 :Ilm Vbl :aZV: V] M,

Iin=aly=al, =1,/120° v, = aV, =V, /120°. 4.2)

It is most important to emphasize that the set of sequence currents or sequence
voltages always exists as defined. The phasors /,,; or I;,; or I.; can never exist
alone or in pairs, but always as a set of three. Thus, it is necessary to define
only one of the phasors (any one) from which the other two will be as
documented in Equation 4.2.

4.3 NOMENCLATURE CONVENIENCE

It will be noted that the designation subscript for phase a was dropped in the
second expression for the currents and voltages in Equation 4.2 (and also in the
following equations). This is a common shorthand notation used for conveni-
ence. When the phase subscript is not mentioned, it can be assumed that the
reference is to phase a. If phase b or phase ¢ quantities are intended, the phase
subscript must be correctly designated; otherwise, it is assumed as phase a. This
shortcut will be used throughout the book and is common in practice.

4.4 NEGATIVE-SEQUENCE SET

The negative-sequence set is also balanced with three equal magnitude
quantities at 120° separately, but only when the phase rotation or sequence
is reversed as illustrated in Figure 4.2. Thus, if positive sequence is a, b, c;
negative will be a, ¢, b. When positive sequence is a, ¢, b, as in some power
systems; negative sequence is a, b, c.

Ip2 la2

120°
120° | 120°

ICZ

FIGURE 4.2 Negative-sequence current phasors. Phasor rotation is counterclockwise.
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The negative-sequence set can be designated as
lp=101Vyp ="V,
Ib2 = alazalz = Izm Vb2 = (ZV2 = Vzm,
Ly = Plypd’ly = 1, [280° V= a2V, = v, [240° (4.3)

Again, negative sequence always exists as a set of current or voltage as
defined in the foregoing or as shown in Figure 4.2: I, or I, or I can
never exist alone. When one current or voltage phasor is known, the other
two of the set can be defined as mentioned earlier.

4.5 ZERO-SEQUENCE SET

The members of this set of rotating phasors are always equal in magnitude
and exist in phase (Figure 4.3).

Loo = Ipo = Ieco = 1oVao = Vo = Vo = V. (4.4)
Similarly, I, or V, exists equally in all three phases, but never alone in a phase.

4.6 GENERAL EQUATIONS

Any unbalanced current or voltage can be determined from the sequence
components given in the following fundamental equations:

L,=hL+hL+1l, Vio=Vi+V2+V,, 4.5)
I, =ad*l, +al, + 1y, V,=a’Vi+aV,+V, (4.6)
I.=al, + L+ 1y, V.=aV,+aV,+Vy, 4.7)

where I, I, and I.. or V,, V,,, and V, are general unbalanced line-to-neutral
phasors.

From these, equations defining the sequence quantities from a three-phase
unbalanced set can be determined:

lao=Ipo=Ico

FIGURE 4.3 Zero-sequence current phasors. Phasor rotation is counterclockwise.
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FIGURE 4.4 Zero-sequence current and voltage networks used for ground-fault
protection. See Figure 3.9 and Figure 3.10 for typical fault operations.

Io= 1y +1y+1), Vo= 5(Vy+Vy+Vo), “-8)
L= $U,+aly,+d’l), Vi=3(Ve+aV,+aVo), 4.9)
L= YU, +al,+al), V,=1V,+adV,+aV). (4.10)

These three fundamental equations are the basis for determining if the
sequence quantities exist in any given set of unbalanced three-phase
currents or voltages. They are used for protective-relaying operations from
the sequence quantities. For example, Figure 4.4 shows the physical applica-
tion of current transformers (CTs) and voltage transformers (VTs) to measure
zero sequence as required in Equation 4.8 and as used in ground-fault
relaying.

Networks operating from CTs or VTs are used to provide an output
proportional to I, or V, and are based on physical solutions (Equation 4.10).
This can be accomplished with resistors, transformers, or reactors, by digital
solutions of Equation 4.8 through Equation 4.10.

4.7 SEQUENCE INDEPENDENCE

The factor that makes the concept of dividing the unbalanced three-phase
quantities into the sequence components practical is the independence of the
components in a balanced system network. For all practical purposes, electric
power systems are balanced or symmetrical from the generators to the point
of single-phase loading, except in an area of a fault or unbalance, such as an
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open conductor. In this effectively balanced area, the following conditions
exist:

1. Positive-sequence currents flowing in the symmetrical or balanced
network produce only positive-sequence voltage drops, no negative- or
zero-sequence drops.

2. Negative-sequence currents flowing in the balanced network produce
only negative-sequence voltage drops, no positive- or zero-sequence
voltage drops.

3. Zero-sequence currents flowing in the balanced network produce only
zero-sequence voltage drops, no positive- or negative-sequence
voltage drops.

This is not true for any unbalanced or nonsymmetrical point or area, such as
an unsymmetrical fault, open phase, and so on.

4. Positive-sequence current flowing in an unbalanced system produces
positive-, negative-, and possibly zero-sequence voltage drops.

5. Negative-sequence currents flowing in an unbalanced system produces
positive-, negative-, and possibly zero-sequence voltage drops.

6. Zero-sequence current flowing in an unbalanced system produces all
three: positive-, negative-, and zero-sequence voltage drops.

This important fundamental condition permits setting up three independent
networks, one for each of the three sequences, which can be interconnected
only at the point or area of unbalance. Before continuing with the sequence
networks, a review of the source of fault current is useful.

4.8 POSITIVE-SEQUENCE SOURCES

A single-line diagram of the power system or area under study is the starting
point for setting up the sequence networks. A typical diagram for a section of
a power system is shown in Figure 4.5. In these diagrams, circles are used to
designate the positive-sequence sources, which are the rotating machines in
the system; generators, synchronous motors, synchronous condensers, and
probably induction motors. The symmetrical current supplied by these to the
power-system faults decreases exponentially with time from a relatively high
initial value to a low steady-state value. During this transient period three
reactance values are possible for use in the positive-sequence network and for
the calculation of fault currents. These are the direct-axis subtransient react-
ance X/, the direct-axis transient reactance X}, and the unsaturated direct-axis
synchronous reactance Xg.

The values of these reactances vary with the designs of the machines and
the specific values are supplied by the manufacturer. In their absence, typical
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FIGURE 4.5 Single-line diagram of a section of a power system.

values are shown in Blackburn (1993, p. 279) and in many other references.
Generally, typical values at the machines rated MVA (kVA) and kV are:
Xi=0.1 to 0.3 pu, with time constants of about 0.35 sec; X;=1.2—2.0
times Xj, with time constants in the order of 0.6—1.5 sec; X4 for faults is the
unsaturated value that can range from 6 to 14 times X.

For system- protection fault studies, the almost universal practice is to use
the subtransient (Xj) for the rotating machines in the positive-sequence
networks. This provides a maximum value of fault current that is useful for
high-speed relaying. Although slower-speed protection may operate after the
subtransient reactance has decayed into the transient reactance period,
the general practice is to use X}, except possibly for special cases where X}
would be used. There are special programs to account for the decremental
decay in fault current with time in setting the slower-speed protective relays,
but these tend to be difficult and tedious, and may not provide any substantial
advantages. A guide to aid in the understanding of the need for special
considerations is outlined in Figure 4.6. The criteria are very general and
approximate.

Cases A and B (see Figure 4.6) are the most common situations, so that
the use of X} has a negligible effect on the protection. Here the higher system
Z, tends to negate the source decrement effects.

Case C (see Figure 4.6) can affect the overall operation time of a
slower-speed protection, but generally the decrease in fault current level
with time will not cause coordination problems unless the time—current
characteristics of various devices that are used are significantly different.
When Zy, predominates, the fault levels tend to be high and well above the
maximum-load current. The practice of setting the protection as sensitive as
possible, but not operating on maximum load (phase devices) should provide
good protection sensitivity in the transient reactance period. If protection-
operating times are very long, such that the current decays into the synchron-
ous reactance period, special phase relays are required, as discussed in
Chapter 8.
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FIGURE 4.6 Guide illustrating the effects of rotating machine decrements on the
symmetrical fault current.

Usually, induction motors are not considered as sources of fault current
for protection purposes (see Figure 4.6, case D). However, it must be empha-
sized that these motors must be considered in circuit breakers’ applications
under the ANSI/IEEE standards. Without a field source, the voltage that is
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developed by induction motors decays rapidly, within a few cycles; thus, they
generally have a negligible effect on the protection. The DC offset that can
result from sudden changes in current in the ac networks is neglected in
symmetrical components. It is an important consideration in all protection.

An equivalent source, such as that shown in Figure 4.5, represents the
equivalent of all the systems that are not shown up to the point of connection
to that part of the system under study. This includes one or many rotating
machines that may be interconnected together with any network of transformers,
lines, and so on. In general, a network system can be reduced to two equivalent
sources at each end of an area to be studied, with an equivalent interconnecting
tie between these two equivalent sources. When the equivalent tie is large or
infinite, indicating that little or no power is exchanged between the two source
systems, itis convenient to express the equivalent source system up to a specified
bus or point in short-circuit MVA (or kVA). Appendix 4.1 outlines this and the
conversion to the impedance or the reactance values. In Figure 4.5, the network
to the right has reduced to a single equivalent impedance to represent it up to the
M terminal of the three-winding transformer bank.

4.9 SEQUENCE NETWORKS

The sequence networks represent one of the three-phase-to-neutral or
to-ground circuits of the balanced three-phase power system and document
how their sequence currents will flow if they can exist. These networks are
best explained by an example: let us now consider the section of a power
system in Figure 4.5.

Reactance values have been indicated only for the generator and the
transformers. Theoretically, impedance values should be used, but the resist-
ances of these units are small and negligible for fault studies. However, if
loads are included, impedance values should be used unless their values are
small in relation to the reactances.

It is important that all values should be specified with a base [voltage if
ohms are used, or MVA (kVA) and kV if per-unit or percent impedances are
used]. Before applying these to the sequence networks, all values must be
changed to one common base. Usually, per-unit (percent) values are used, and
a common base in practice is 100 MVA at the particular system kV.

4.9.1 PosITIVE-SEQUENCE NETWORK

This is the usual line-to-neutral system diagram for one of the three symmet-
rical phases modified for fault conditions. The positive-sequence networks
for the system in Figure 4.5 are shown in Figure 4.7. The voltages Vs and
Vg are the system line-to-neutral voltages. Vs is the voltage behind the
generator subtransient direct-axis reactance Xy, and Vg is the voltage behind
the system equivalent impedance Z;s.
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FIGURE 4.7 Positive-sequence networks for the system in Figure 4.5: (a) network
including loads; (b) simplified network with no load—all system voltages equal and in
phase.

X1g is the transformer leakage impedance for the bank bus G, and Xy is
the leakage impedance for the bank at H between the H and M windings.
More details on these are given in Appendix 4.2. The delta-winding L of this
three-winding bank is not involved in the positive-sequence network unless a
generator or synchronous motor is connected to it or unless a fault is to
be considered in the L delta system. The connection would be as in Figure
A4.2-3.

For the line between buses G and H, Z,gy is the line-to-neutral impedance
of this three-phase circuit. For open-wire transmission lines, an approximate
estimating value is 0.8 €}/mi for single conductor and 0.6 {}/mi for bundled
conductors. Typical values for shunt capacitance of these lines are 0.2 M{}/mi
for single conductor and 0.14 M()/mi for bundled conductors. Normally, this
capacitance is neglected, as it is very high in relation to all other impedances
that are involved in fault calculations. These values should be used either for
estimating or in the absence of specific line constants. The impedances of
cables vary considerably, so specific data are necessary for these.

The impedance angle of lines can vary quite widely, depending on the
voltage and type of cable or open wire that is used. In computer fault
programs, the angles are considered and included, but for hand calculation,
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it is often practical and convenient to simplify calculations by assuming that
all the equipment involved in the fault calculation is at 90°. Otherwise, it is
better to use reactance values only. Sometimes it may be preferred to use the
line impedance values and treat them as reactances. Unless the network
consists of a large proportion of low-angle circuits, the error of using all
values as 90° will not be too significant.

Load is shown to be connected at buses G and H. Normally, this would be
specified as kVA or MVA and can be converted into impedance.

1000 MV A g4 i v 1000 kV
oad = ———=—————  an =
load /3K LN /3
ViN kV?
Zioad = N = —— = ohms at kV.
oad = g MVApy e @.11)

Equation 4.11 is a line-to-neutral value and could be used for Z; g and Z y,
representing the loads at G and H as shown in Figure 4.7a. If load is
represented, the voltages Vg and Vg will be different in magnitude and
angle, varying according to the system load.

The value of load impedance is usually quite large compared with the
system impedances, such that the load has a negligible effect on the faulted-
phase current. Thus, it becomes practical and simplifies the calculations to
neglect load for shunt faults. With no load, Z; g and Z; y are infinite. Vg and
Vs are equal and in phase, and so they are replaced by a common voltage V as
in Figure 4.7b. Normally, V is considered as 1 pu, the system-rated line-
to-neutral voltages.

Conventional current flow is assumed to be from the neutral bus N; to the
area or point of unbalance. With this the voltage drop V, at any point in the
network is always

Vie=V =Y 1z, (4.12)

where V is the source voltage (Vg or Vg in Figure 4.7a) and 2I,Z, is the
sum of the drops along any path from the N; neutral bus to the point of
measurement.

4.9.2 NEGATIVE-SEQUENCE NETWORK

The negative-sequence network defines the flow of negative-sequence cur-
rents when they exist. The system generators do not generate negative
sequence, but negative-sequence current can flow through their windings.
Thus, these generators and sources are represented by an impedance without
voltage, as shown in Figure 4.8. In transformers, lines, and so on, the phase

© 2006 by Taylor & Francis Group, LLC.



N, Neutral bus

, da AT
Xo = X4 Viax Zos
H
X6 ZiGH Xim
\ AN N ~ /
+
(a) I2G ] T IZS
N
Vox Zos
G H
l ZigH J_ X
A AN
(b) | + 1
g b

FIGURE 4.8 Negative-sequence networks for the system in Figure 4.5: (a) network
including loads; (b) network neglecting loads.

sequence of the current does not change the impedance encountered; hence,
the same values as in the positive-sequence network are used.

A rotating machine can be visualized as a transformer with one stationary and
one rotating winding. Thus, DC in the field produces positive sequence in the
stator. Similarly, the DC offset in the stator ac current produces an ac component
in field. In this relative-motion model, with the single winding rotating at syn-
chronous speed, negative sequence in the stator results in a double-frequency
component in the field. Thus, the negative-sequence flux component in the air gap
alternates between and under the poles at this double frequency. One common
expression for the negative-sequence impedance of a synchronous machine is

X = 3 (Xg+Xp) (4.13)

or the average of the direct and substransient reactance of quadrature axes.
For a round-rotor machine, Xg=Xg, so that X,=Xg. For salient-pole
machines, X, will be different, but this is frequently neglected unless calcu-
lating a fault very near the machine terminals. Where normally X, = X3, the
negative-sequence network is equivalent to the positive-sequence network
except for the omission of voltages.

Loads can be shown, as in Figure 4.8a, and will be the same impedance as

that for positive sequence, provided they are static loads. Rotating loads, such as
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those of induction motors, have quite a different positive- and negative-sequence
impedances when in operation. This is discussed further in Chapter 11.

Similarly, when the load is normally neglected, the network is as shown in
Figure 4.8b and is the same as the positive-sequence network (see Figure
4.7b), except that there is no voltage.

Conventional current flow is assumed to be from the neutral bus N, to the
area or point of unbalance. With this the voltage drop V5, at any point in the
network is always

Ve =0 L7, (4.14)

where 21,7, is the sum of the drops along any path from the N, neutral bus to
the point of measurement.

4.9.3 ZERO-SEQUENCE NETWORK

The zero-sequence network is always different. It must satisfy the flow of
equal and in-phase currents in the three phases. If the connections for this
network are not apparent, or in doubt, these can be resolved by drawing
the three-phase system to see how the equal in-phase, zero-sequence
currents can flow. For the example in Figure 4.5, a three-phase diagram is
shown in Figure 4.9. The convention is that the current always flows to the
unbalance. Therefore, assuming an unbalance between buses G and H, the top
left diagram shows Iyg flowing from the transformer at bus G. Zero sequence

° — g
P
'< l T — g
o AN Sl N

o — g Unbalanced area
between buses G and H

T /'i
e N l
. lor
<—IOH _31
~—loy

FIGURE 4.9 Diagrams illustrating the flow of zero-sequence current as an aid in drawing
the zero-sequence network. Arrows indicate current directions only, not relative magnitudes.
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FIGURE 4.10 Zero-sequence network for the system of Figure 4.5.

can flow in the grounded wye and to the fault because there is a path for it to
flow in the delta. Thus Xtg is connected between the zero potential bus and
bus G as shown in Figure 4.10. This connection for the grounded-wye—delta
transformer bank is also shown in Figure A4.2-1.

Zero-sequence impedance for transformer banks is equal to the positive and
negative sequences and is the transformer leakage impedance. The exception to
this is three-phase core-type transformers, for which the construction does not
provide an iron flux path for zero sequence. For these the zero-sequence flux
must pass from the core to the tank and return. Hence, for these types X usually
is 0.85-0.9 X; and, when known, the specific value should be used.

The lower right-hand diagram in Figure 4.9 is for the system connected to
bus H (see Figure 4.5). Currents out of the three-winding transformer will
flow as shown in the L and M windings. The three currents can flow in the M-
grounded wye because the equivalent source is shown grounded with Zyg
given. Thus, the three-winding equivalent circuit is connected in the zero-
sequence network (see Figure 4.10) as shown, which follows the connections
documented in Figure A4.2-3b.

Note that in the right-hand part of Figure 4.9, if any of the wye connec-
tions were not grounded, the connections would be different. If the equivalent
system or the M winding were ungrounded, the network would be open
between Zy; and Zys, since zero-sequence currents could not flow as shown.
Loads, if desired, would be shown in the zero-sequence network only if they
were wye grounded; delta loads would not pass zero sequence.

Zero-sequence line impedance is always different, as it is a loop impedance:
the impedance of the line plus a return path either in the earth or in a parallel
combination of the earth and ground wire, cable sheath, and so on. The positive-
sequence impedance is a one-way impedance from one end to the other end. As a
result, zero sequence varies from two to six times X; for lines. For estimating
open wire lines, a value of X, =3 or 3.5 X, is commonly used.

The zero-sequence impedance of generators is low and variable, depend-
ing on the winding design. Except for very low-voltage units, generators are
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never solidly grounded. This is discussed in Chapter 7. In Figure 4.5, the
generator G is shown grounded through a resistor R. Faults on bus G and in
the system to the right do not involve the generator as far as zero sequence is
concerned because the transformer delta blocks the flow of zero-sequence
current, as shown.

Conventional current flow is assumed to be from the zero-potential bus Ny
to the area or point of unbalance. Thus, the voltage drop V, at any point in the
network is always

Vor =0 InZo, (4.15)

where 210Zo is the sum of the drops along the path from the N, bus to the
point of measurement.

4.9.4 SeQUENCE NETWORK REDUCTION

For shunt fault calculations, the sequence networks can be reduced to a single
equivalent impedance commonly designated as Z; or X, Z, or X5, and Z, or
X, from the neutral or zero-potential bus to the fault location. This is the
Thevenin theorem equivalent impedance, and in the positive-sequence
network, it is termed as the Thevenin voltage. These values are different for
each fault location. Short-circuit studies with computers use various tech-
niques to reduce complex power systems and to determine fault currents and
voltages.

For the positive-sequence network in Figure 4.7b consider faults at bus H.
Then by paralleling the impedances on either side, Z; becomes

(X4 + X16 + Zicn)(Zis + Xum)

Zl - G .
Xy +X16 + Zigu + Zis + Xum

Each term in parentheses in the numerator, divided by the denominator,
provides a per-unit value to define the portion of current flowing in the two
parts of the network. These are known as distribution factors and are neces-
sary to determine the fault currents in various parts of the system. Thus, the
per-unit current distribution through bus G is

_ Zis + Xum .
Xy +X16 + Zicu + Zis + Xum

I u (4.16)

and the current distribution through bus H is

_ Xy + X16 + Zicn pu
X + X16 + Zicu + Zis + Xum

Iis 4.17)
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FIGURE 4.11 Reduced sequence networks where Z;, Z,, and Z, are the equivalent
impedances of the networks to the fault point.

The reduction of the positive-sequence network with load (see Figure 4.7a)
requires determining the load current flow throughout the network before a
fault, determining the open-circuit voltage (Thevenin voltage) at the fault
point, and then the equivalent impedance looking into the network from the
fault point with all calculations. The total currents in the network are the sum
of the prefault load and the fault currents.

The negative- and zero-sequence networks can be reduced in a
manner similar to a single impedance to a fault point and with appropriate
distribution factors. These three independent equivalent networks are shown
in Figure 4.11 with 1, I, and I representing the respective sequence currents in
the fault and V', V5, and V representing the respective sequence voltages at the
fault.

As indicated earlier, the sequence networks, such as those shown in
Figure 4.11, are completely independent of each other. Next, we discuss
interconnections to represent faults and unbalances.

4.10 SHUNT UNBALANCE SEQUENCE NETWORK
INTERCONNECTIONS

The principal shunt unbalances are faults: three-phase, two-phase-to-phase,
two-phase-to-ground, and one-phase-to-ground. Two fault studies are nor-
mally made: (1) three-phase faults for applying and setting phase relays and
(2) one-phase-to-ground faults for applying and setting ground relays. The
other two faults (phase-to-phase and two-phase-to-ground) are rarely calcu-
lated for relay applications. With Z; =Z,, as is common, then, a solid phase-
to-phase fault is 0.866 of the three-phase fault.
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The phase currents for solid two-phase-to-ground faults will vary de-
pending on the zero-sequence impedances, but generally tend to be near the
phase-to-phase or three-phase fault values (see Section 4.16.1).

4.10.1 FAuLT IMPEDANCE

Faults are seldom solid, but involve varying amounts of resistance. However, it
is generally assumed in protective relaying and most fault studies that the
connection or contact with the ground involves very low and in general
negligible impedance. For the higher voltages of transmission and subtrans-
mission, this is essentially true. In distribution systems (34.5 kV and lower) a
very large to basically infinite impedance can exist. This is true, particularly at
the lower voltages. Many faults are tree contacts, which can be high imped-
ance, intermittent, and variable. Conductors lying on the ground may or may
not result in significant fault current and yet can be highly variable. Many tests
have been conducted over the years on wet soil, dry soil, rocks, asphalt,
concrete, and so on, with quite a different variable and sometimes unpredict-
able result. Thus, in most fault studies, the practice is to assume zero ground
mat and fault impedances for maximum fault values. Protective relays are set as
sensitively as possible, however, to respond properly to these maximum values.

Consequently, although arcs are quite variable, a commonly accepted
value for currents between 70 and 20,000 A has been an arc drop of 440 V
per phase, basically independent of current magnitude. Therefore,

4401
Zarc = T Q (418)

where [/ is the arc length in feet and / the current in amperes: 1/kV at 34.5 kV
and higher is approximately 0.1-0.05. The arc is essentially resistance, but
can appear to protective relays as an impedance, with a significant reactive
component resulting from out-of-phase contributions from remote sources.
This is discussed in more detail in Chapter 12. In low-voltage (480 V)
switchboard-type enclosures, typical arc voltages of about 150 V can be
experienced. This is relatively of current magnitude.

It appears that because arcs are variable, their resistances tend to start at a
low value and continue at the same value for an appreciable time, then build
up exponentially. On reaching a high value, an arc breaks over to shorten its
path and resistance.

4.10.2 SuBSTATION AND TOWER-FOOTING IMPEDANCE

Another highly variable factor, which is difficult both to calculate and
measure, is the resistance between a station ground mat, line pole, or tower,
and the ground. In recent years several technical papers have been written,
and computer programs have been developed in this area but there are still
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many variables and assumptions. All this is beyond the scope of this book.
The general practice is to neglect these in most fault studies and relay
applications and settings.

4.10.3 SEQUENCE INTERCONNECTIONS FOR THREE-PHASE FAULTS

Three-phase faults are assumed to be symmetrical; hence, no analysis is
necessary for their calculation. The positive-sequence network, which is the
normal balanced diagram for a symmetrical system, can be used, and the
connection is shown in Figure 4.12. For a solid fault the fault point F,
is connected back to the neutral bus (see Figure 4.12a); with fault impedance
the connection includes this impedance, as shown in Figure 4.12b. From these,

\%4
Iy =lg=— or I =I;

= 4.19
Z, Z\ +Zg 5

and IbF:a21 1, I.p=al, according to Equation 4.2. There is no difference
between a three-phase fault and a three-phase-to-ground fault.

4.10.4 SeEQUENCE INTERCONNECTIONS FOR SINGLE-PHASE-TO-GROUND
FAauLTs

A phase-a-to-ground fault is represented by connecting the three sequence
networks together as shown in Figure 4.13, with diagram 4.13a for solid faults
and 4.13b for faults with impedance. From these:

v
L=hL=ly=———— or
2y +2> + 2y
Ny
’_
Fault area I
—e a
Ny [ ] + v
Vi
! — BE
v Lo ,
Vi lar I le | ——F !
S Fi
l Z : | Z¢ : Z: : | Z¢
14 | — — Z
+ Fy W
° —-—w

(a) (b) (©

FIGURE 4.12 Three-phase fault and its sequence network interconnections: (a) solid
fault; (b) system fault; (c) with fault impedance.
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Equivalent
alternate

FIGURE 4.13 Single-phase-to-ground fault and its sequence network interconnec-
tions: (a) solid fault; (b) system fault; (c) with fault impedance.

\%4
L+ 2+ Zo + 377

L=hL=1I (4.20)

Le=1 +1+ 1y =3I = 3, = 3I,. 4.21)

From Equation 4.6 and Equation 4.7, it can be seen that I,p = I .z =0, which is
corrected in the fault. In addition, V,,z = 0, which is supported by the sequence
connections because V| +V,+ Vy;=0.

4.10.5 SEQUENCE INTERCONNECTIONS FOR PHASE-TO-PHASE FAULTS

For this type of fault, it is convenient to show that the fault is between phases b
and c. Then, the sequence connections are as shown in Figure 4.14. From these,
Vv 14

or | =-L=——-—+.
Z1+27, Z\+7Zy+ Zr

I =—1= (4.22)

From the fundamental Equation 4.5 through Equation 4.7,
Ig=1 -1 =0,

as it should be in the fault
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Fault area

—— r | |
! : z | | & ! | &
Iy I I 2 | 2 | 13
F L [ L
Fi
— " —Ww
(a) (b)
N, l N,
O vy

I4 2
Fy F,
Z Z
2 2
W1 w2
+ +

(©

FIGURE 4.14 Phase-to-phase fault and its sequence network interconnections:
(a) solid fault; (b) system fault; (c) with fault impedance.

Iir = &I, + al, = (& — a)l, = —jV31,, (4.23)
L = aly + a*l, = (a — I, = +j\/31,. (4.24)

As is common, Z, =Z,; then I} =V/2Z;; disregarding =+ and considering
only the magnitude yields

13V Vv
[¢¢ = 2_Z1 = 0866, Z_1 = 0.866]3¢. (425)

Thus, the solid phase-to-phase fault is 86.6% of the solid three-phase fault
when Z 1= Zz.
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4.10.6 SEQUENCE INTERCONNECTIONS FOR DOUBLE-PHASE-TO-GROUND
FAauLTs

The connections for this type are similar to those for the phase-to-phase fault,
but only with the addition of the zero-sequence network connected in parallel
as shown in Figure 4.15. From these,

|4
[=————,
2,7,
2+ =—
Zy+Zy
a
b
@ C
L lor ler
Z z o [T ] e
O ) I
oy A B - N 5
° 2 1 g2 2

I3z I 3z I3z N

L
|
|
I
®

N1 N2 NO
o
v, 1 z, v, l§zg v, l§20
I, A lo
Fy Fa Fo
Z Z Z
2 2 5
Wi 3Zre W
+
A d =
N + G —

(c)

FIGURE 4.15 The double-phase-to-ground fault and its sequence network intercon-
nections: (a) solid fault; (b) system fault; (c) with fault impedance.
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or

V
I =
: 7+ Zy | (o + (Z/2)(Zo + (Zr/2) + 3Zrc)
D) 7> + Zo + Zr + 3Zrg
Zo 7
L, = -1 and [y = —/ , 4.26
2 '\ Zo 0 ' 7o (4.26)
or
P s (Zr/2) + 3Zkq
: 'Zo + Zo + Zr + 3Zr’
and
Z Zr/2
I = 2+ (Zr/2) 4.27)

N ¥ Zo + Zr + 37k

Equation 4.5 through Equation 4.7 provide I,z =0 and fault magnitudes for
I bF and / cF-

4.10.7 OTHER SEQUENCE INTERCONNECTIONS FOR SHUNT SYSTEM
CONDITIONS

The impedances at the fault point in Figure 4.12 through Figure 4.15 were
considered to result from the fault arc. However, they can also be considered
as a shunt load, shunt reactor, shunt capacitor, and so on, connected at a given
point to the system. Various types and their sequence interconnections are
covered in Blackburn (1993).

4.11 EXAMPLE: FAULT CALCULATIONS ON A TYPICAL
SYSTEM SHOWN IN FIGURE 4.16

The system of Figure 4.16 is the same as that shown in Figure 4.5, but
with typical constants for the various parts. These are on the bases indicated,
so the first step is to transfer them to a common base, as discussed in Chapter
2. The positive- and negative-sequence networks (negative is the same as
positive, except for the omission of the voltage) are shown in Figure 4.17. The
conversion to a common base of 100 MVA is shown as necessary.

For a fault at bus G, the right-hand impedances (j0.18147 + j0.03667 +
j0.03 =0.5481) are paralleled with the left-hand impedances (j0.20 4 j0.1375 =
j0.3375). Reactance values, rather than impedance values, are used, as is typical
when the resistance is relatively small.

(0.5763) (0.4237)
~0.3375 x 0.2481

X, =X, = — j0.1430 pu. 428
=4 0.5856 Y pu (4.28)
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13.8 kv G bus H bus 230 kv
M LH

30 miles 115 kv
Fault X, =X,=24Q

Xo=82Q System
Generator <] Transformer <] Xi=Xo=3%

80 MVA, 13.8kV = 80 MVA

p Xo= 4%
Xd =Xoa=16% 13.8: 115 kV Transformer 0?1 100 MVA
1% 150 MVA 230 kV
230 kV: 115 kV: 13.2 kV
Xum = 5.5%
XHL= 360/0
Xy = 28%

FIGURE 4.16 Power system example for fault calculations.

The division of 0.3375/0.5856 =0.5763 and 0.2481/0.5856 =0.4237, as
shown, provides a partial check, for 0.5763 4 0.4237 must equal 1.0, which
are the distribution factors indicating the per-unit current flow on either side
of the fault. These values are added to the network diagram. Thus, for faults at
bus G, X; =X,=,0.1430 pu on a 100 MVA base.

The zero-sequence network for Figure 4.16 is shown in Figure 4.18.
Again the reactance values are converted to a common 100 MVA base.

Ni  Valuesin per unit at 100 MVA

j1.0

XH X1S:
d j.03
403y _100x24 4/.5763
80 1152 100
=J1875 F,  =j18147 X =055 x 750
10 = j. 03667
N, N,
I v
+ ~ 10 l X, = j.1430
l X, =j.1430 F,
I1
F1

FIGURE 4.17 Positive- and negative-sequence networks and their reduction to a
single impedance for a fault at bus G in the power system in Figure 4.16.
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Values in per unit at 100 MVA
No No

. Xos
1375 _jo4 | Xo=j1141

X G

XogH
/YY)
- 8299 F, 100x82 j-0083

2
?220 «— 1701
:]_

|
1.1184 %F,

0450

1.0

FIGURE 4.18 Zero-sequence network and its reduction to a single impedance for a
fault at bus G in the power system in Figure 4.16.

The three-winding bank connections are as indicated in Figure A4.2-3b with
Znu = Znwv = 0 because the neutrals are shown as solidly grounded.
The conversions to a common 100 MVA base are shown, except for the

three-winding transformer. For this bank,

100

Xum = 0.055 x 50~ 0.03667 pu,
100
X = 0. —=0.24
uL = 0.360 x 150 0.2400 pu,
100

Xyt = 0.280 x — — 0.18667 pu,
ML “ 150 pa

and from Equation A4.2-13 through Equation A4.2-15,

Xy = 1(0.03667 + 0.2400 — 0.18667) = 0.0450 pu,
Xy = 1(0.03667 + 0.18667 — 0.240) = —0.00833 pu,

X1, = $(0.2400 + 0.18667 — 0.3667) = 0.1950 pu.
(4.29)

These are shown in Figure 4.18.
This network is reduced for a fault at bus G by the first paralleling

XOS + ZH with ZL and then addlng ZM and XOGH;

(0.6964) (0.3036)
0.1950 x 0.0850

— /0.0592
0.280 J0-059

— j0.0083 (Zw)
j0.620

S22 Xog)-
j0.6709 (Xoon)
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This is the right-hand branch paralleling with the left-hand branch,

(0.8299) (0.1701)
_0.6709 x 0.1375

- —i 4.30
0 0 80%4 j0.1141 pu at 100 MVA. (4.30)

The values (0.8299) and (0.1701) add to 1.0 as a check and provide the current
distribution on either side of the bus G fault, as shown on the zero-sequence
network. The distribution factor 0.1701 for the right side is further divided
by 0.6964 x0.1701 =0.1184 pu in the 230 kV system neutral and
0.3036 x 0.1701 =0.0517 pu in the three-winding transformer H neutral
winding. These are shown on the zero-sequence network.

4.11.1 THree-PHASE FAuLT AT Bus G

For this fault,

I = Ip :JOJITO?, = 6.993 pu
= 6.993% =3510.8 A at 115 kV. (4.31)
The divisions of current from the left (/,g) and right (/) are:
I,c = 0.4237 X 6.993 = 2.963 pu, (4.32)
Iy = 0.5763 x 6.993 = 4.030 pu. (4.33)

4.11.2 SINGLE-PHASE-TO-GROUND FAULT AT Bus G
For this fault,

B jL.O

~j(0.143 +0.143 + 0.1141)

]1 = 12 = 10 =2.50 pu, (434)

l;r =3 x25="7.5 puat 100 MVA,
100,000

xi
V3 x 115

Normally, the 3], currents are documented in the system, for these are used to
operate the ground relays. As an aid to understanding these are illustrated in
Figure 4.19 along with the phase currents. Equation 4.5 through Equation 4.7
provide the three-phase currents. Because X; =X,, such that I, =15, these
reduce to I, =1.=-I, + I for the phase b and c currents, since a + at=-1.
The currents shown are determined by adding I, + I, + I, for 1,, —1, + I for
I, and I, and 31, for the neutral currents.

=75 =3764.4 A at 115 kV. (4.35)
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115 kV 230 kV

Transformer Bus G | e Bus H Transformer system
—4.193 -« 3.307 «——3.178
2 1203
<P Ry,
> /\1.0155 —1.01554\;} /\E%/‘\
1.0155 -1.0155 1145
— - -—
1 s ! | !
6.224 1.276 .888 .888

Per-unit currents at 100 MVA

FIGURE 4.19 Phase and 3/, current distribution for a single-phase-to-ground fault at
bus G in Figure 4.16.

In the 115 kV system the sum of the two neutral currents is equal and
opposite to the current in the fault. In the 230kV system the current up the
neutral equals the current down the other neutral.

The calculations assumed no load; accordingly, prefault, all currents in the
system were zero. With the fault involving only phase a, it will be observed
that current flows in the b and ¢ phases. This is because the distribution
factors in the zero-sequence network are different from the positive- and
negative-sequence distribution factors. On a radial system where positive-,
negative-, and zero-sequence currents flow only from one source and in the
same direction, the distribution factors in all three networks will be 1.0, in
spite of the zero-sequence impedances. Then I, =1.=-I, + I, becomes zero,
and fault current flows only in the faulted phase. In this type I, = 31, through-
out the system for a single-phase-to-ground fault.

4.12 EXAMPLE: FAULT CALCULATION FOR
AUTOTRANSFORMERS

Autotransformers have become quite common in recent years. They provide
some different and interesting problems. Consider a typical autotransformer
in a system, as shown in Figure 4.20, and assume that a single-phase-
to-ground fault occurs at the H or 345 kV system values that are given
based on this consideration. For the autotransformer, the equivalent network
is as in Figure A4.2-3d, with values as follows: On a 100 MVA base,

100
Xin = 8 x 120 = 5.333% = 0.05333 pu,
100
X = 4 _— = = U.
H = 34 x =5 = 68% = 0.68 pu,
100
Xyw = 21.6 x - = 54% = 0.54 pu, (4.36)
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Fault H

345 kV
<] Equivalent
system
M X, = X,= 8%
161 KV L-138kv  X,=28%
Equivalent On 100 MVA
system
X, = X,=5.7%
Xy = 3.2%
On 100 MVA
150 MVA
345:161: 13.8 kV
X = 8% On 150 MVA
X, = 34% On 50 MVA
Xy = 21.6% On 40 MVA
Ny Per unit on 100 MVA N,

1.0

X, = X, = j.0464

F1
\> j.0433 j.0967 ¢F1

j.032

~j.0433 70967 2331
78201 7669 Y

1.0
FIGURE 4.20 Example of fault calculation for an autotransformer.

and from Equation A4.2-13 through Equation A4.2-15,

Xu =1(0.0533 + 0.68 — 0.54) = 0.09667 pu,
XM = %(0.0533 + 0.54 — 0.68) = —0.04334 pu,
XL = %(0.68 + 0.54 — 0.0533) = 0.58334 pu. (4.37)
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These values are shown in the sequence diagrams in Figure 4.20. In the
positive- (and negative)-sequence networks for a fault at H,

(0.5796) (0.4204)
X1 =%20.0533 1 0.057)(0.08) _ 1004637 pu. (4.38)
0.1903

The zero-sequence network reduces as follows: first paralleling the left side,

(—0.0198)(1.0198)
~(0.032 —0.0433)(0.5833)  (—0.0113)(0.5833)

©0.032 —0.0433 +0.5833 0.5720
= —0.01156 pu
(0.2331)(0.7669)
Xo = (—0.01156 4 0.09667)(0.28) _ (0.08511)(0.28)
0.08511 +0.28 0.36511 (4.39)
= j0.06527 pu.

The current distribution factor through the Xy; path is 0.7669 x 1.0198 =
0.78207, and through the X path is 0.7669 x —0.0198 =-0.01519. These
current distributions are shown on the network.

4.12.1  SINGLE-PHASE-TO-GROUND FAuULT AT H CALCULATION

j1.0 1.0
L=0L=1I=- =
j(0.0464 + 0.0464 + 0.0653)  0.1580
= 6.3287 pu
100,000
= 6.3287 x ————— = 1059.1 A at 345 kV (4.40)
V3 x 345

I,r = 3lp = 3 x 6.3287 = 18.986 pu
=3 x 1059.1 =3177.29 A at 345 kV. (4.41)

It is recommended that amperes, rather than per unit, may be used for fault
current distribution, particularly in the neutral and common windings. The
autotransformer is unique in that it is both a transformer and a direct electrical
connection. Thus, amperes at the medium-voltage base [y are combined
directly with amperes at the high-voltage base Iy for the common winding
current / or for the high-side fault,

I = Iy(in amperes at kVy) — Iv(in amperes at kVy). 4.42)
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For the current in the grounded neutral,
31y = 3oy (in amperes at kVy) — 3l (in amperes at kVy,). (4.43)

Both of the foregoing currents are assumed to flow up the neutral and to the M
junction point.

Correspondingly, for a fault on the M or medium-voltage system, the
current flowing up the grounded neutral is

31y = 3lpm(in amperes at kVy;) — 3/ou(in amperes at kVy). (4.44)

Thus, these currents in the common winding and neutral are a mixture of
high- and medium-voltage currents; therefore, there is no base to which they
can be referred. This makes per unit difficult, as it must have a base. When, or
if, per unit must be used, a fictional base can be devised based on the ratios of
the transformer parts. This is quite complex. Because it is the fundamental
base, amperes are easy to handle and they will be used in the following.

The sequence, phase a, and neutral currents are documented in Figure 4.21
for the example in Figure 4.20. There will be current flowing in phases b and
¢ because the current distribution factors are different in the positive- and
zero-sequence networks. These are not shown, for they are of little import-
ance in protection.

Amperes at 345 kV
Iy = by =.4204 X 1059.1 =445.24 |, = |, =.5796 X 1059.1 = 613.85
loy = .7669 X 1059.1 = 812.22 lp=.2331X1059.1 = 246.88
—_— F P i—

Amperes at 161 kV lay=1702.7 °|" I, =1474.59
345 Up 345 kV
lim= low = 4204 X 1059.1 T le=317729  Neutrals
=954.1 31y = 740.64

345 Just amperes
low= 7821 x1059.1 T2 /1 — I, = 445249541 = -508.86
/Miégggﬁ’ 10_81222 1774.9 = -962.68
M = .

=-1980.4
Up 161 KV
Neutrals 3I0— —2888.04
3lom =
5324.7
Total Total Inside tertiary
from down to amperes at 13.8 kV
ground ground li= =0 s
5324.7 3177.29 =—
740.64 5888.04 lp=-.01519 X 1059.1\/3_13_8
6065.34 6065.33 =-232.21

FIGURE 4.21 Fault current distribution for the autotransformer in Figure 4.20.
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H 345 kV

345161 _ 4 1409 | | /022A
Per-unit turns T
161 kV M
e _ 232.21 A 131,2_1@,—
:Lj?nper-unlt 1980.4 T =.1485 per-unit

turn

| o
—— = <

Ampere-turns up = Ampere-turns down
1702.7 X 1.1429 + 232.21 X .1485=1980.4 X 1.0
1946.02 + 34.48 = 1980.4
1980.5 = 1980.4 Check.

FIGURE 4.22 Ampere-turn check to confirm or establish the direction of current flow
in the tertiary.

The example indicates that current flows in the downward direction of the
neutral sequence of the autotransformer instead of the upward direction, as
might be expected. In addition, in this example, the current in the delta has
reversed, because the negative branch of the transformer-equivalent circuit is
larger than the very solidly grounded 161 kV connected system. Both these
effects influence the protection. This is discussed further in Chapter 12.

There can be a question about the direction of current in the tertiary. This
can be checked by ampere turns, as shown in Figure 4.22. Arbitrarily, one per-
unit turn was assumed for the 161 kV winding and the others were derived.
Any convenient winding or group could be used for the base.

4.13 EXAMPLE: OPEN-PHASE CONDUCTOR

A blown fuse or broken conductor that opens one of the three phases repre-
sents an unbalance series that is dealt more in detail in Blackburn (1993). As
an example, consider phase a open on the 34.5 kV line at bus H that is given
in Figure 4.23. All constants are in per unit on a 30 MVA base.

The three sequence networks are shown in Figure 4.24. With no load,
opening any phase makes no difference in the current flow because it is
already zero. Constantly, in these series unbalances, it is necessary to consider
load; therefore, the 30 MVA, 90%, is as shown. With induction motor loads,
the negative-sequence load impedance is less than the positive-sequence
impedance. This is covered in Chapter 11.
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G

Syst J- Zian = 2117 J- % E 30 MVA
ystem
g E T Zogh = -64(67° T 3 E Iégoa/dp F
50 MVA Per unit at 30 MVA e
Xis = Xos = 15% [ A 34.5kV 2& <
50 MVA 30 MVA
115: 34.5 kV Xy = 8%
Xra=T7% 34.5:13.8 kV
FIGURE 4.23 Example for series unbalance calculations.
N, Per unit on 30 MVA
+ V=1.286/15.315° 4
1.0 25.84°
Xig = G
1530 Xra l ZiGH %
- '0950 Y O
=/ 30,07 | 2171°
50 — _ .
25 o042 G =.0684 + j.1986 -—
26 = Xys + X7 + 2
iG = X1s + X7 + ZiGH Zin = X1y + 24
= .0648 +/.3306 = .3369|78.91° pu = .9+/.5159 = 1.037 29.82°
N
Zi2
X1S G H = 0.6 29°
.09 X1g | ZiH X oyl Xm
f.W\ YL o)
joaz | - 0684 + j.1986| J.08
2y = X1 + X1G +Zign > k6 oy
=2
G ZH=XH + 2o
=.5248 + j. 3709
=.6426 | 35.25°
No
Xra
j042 3§ g
l ZoGH X
\ ~~ o
oG =250 + j.589

20G = X1G + Z0GH
= .250 + j.631

=.6788(68.39° pu

FIGURE 4.24 The three sequence networks for the system in Figure 4.23.
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lg=0___ lyy=0
G < 'aH H
System Load
\ﬁ; =1.025 |-154.53° I /\
lsg = 1.265 [92.29° o
| 3k = 1.275 |-40.15° 13y = 1275 [-40.15°

FIGURE 4.25 Per-unit current distribution for an open conductor in the power system
in Figure 4.23 (per unit at 30 MVA where 1 pu = 502 A at 34.5 kV).

If we assume the voltage at the load to be 1.00° pu, then the voltage at the
generator will be 1.286 /15.315° Phase a open is represented by connecting
the three-sequence X points together and the three-sequence Y points together.
This connects the total zero-sequence impedances in parallel with the total
negative-sequence impedances across the open X-Y of the positive-sequence
network. From these data, I, I,, and I, can be easily calculated.

The resulting currents flowing in the system are shown in Figure 4.25 and
are in the order of normal load currents. Thus, it is difficult to locate and
provide protection for these faults.

4.14 EXAMPLE: OPEN PHASE FALLING TO GROUND
ON ONE SIDE

In the system shown in Figure 4.23, the phase a conductor on the line at bus H
opens and falls to ground value on the bus H side. The sequence networks are
the same as those indicated in Figure 4.24, but are interconnected, as can
be noted in Figure 4.26. These are simultaneous faults: a series open-phase
fault and a phase-to-ground fault. Thus, three ideal or perfect transformers are
used for isolation of the open-phase X—Y interconnection from three networks
in series for the ground fault. Because these transformers have no leakage or
exciting impedances, the voltage drop across them cannot be expressed by
the current in their windings. The currents /4, I,, and I, can be determined
by solving various voltage drop equations around the networks. The resulting
fault currents are shown in Figure 4.27. In this instance, it is possible to obtain
currents by neglecting the load. These are shown in parentheses in Figure 4.27.

The other possibility is that the open conductor falls to ground value on the
line side. Here, the three ideal transformers are moved to the left or X side of the

© 2006 by Taylor & Francis Group, LLC.



\AANY

ZiaH, ZoGH Load
4
2’: Phase a /

Equivalent
system open & firi <]
Zig=2Zog grounded XTH
on H side
Ny Positive sequence
E \ &
%4 lo
+
Zis l
X G Z H X
\ TG 1GH X‘ y TH o
ha ~—
Ny Negative sequence
’_
lo
Z
Zos Ll ; ; T
\ X6 G Zigy X YH XtH s
IZG -~ IzH
No Zero sequence
lo
XTG XTH T
G Zgn vH lon l

\ X
I
0G Three

ideal 1:1
transformers

FIGURE 4.26 Example of the sequence network interconnections for phase a open
and grounded at bus H (broken conductor has fallen to ground value).

three-sequence networks: there is now no option—load must be considered.
The fault currents are shown in Figure 4.28. Note that, as in the open phase (see
Figure 4.25), the currents are still quite low, not higher than load currents.

4.15 SERIES AND SIMULTANEOUS UNBALANCES

Series and simultaneous unbalances certainly occur in power systems. One
type is a blown fuse or open (broken) phase conductor. The broken conductor
can contact the ground making a simultaneous unbalance. Several instances
of these are covered with examples in Blackburn (1993).
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Loy=1.26]-58.81°

L=0 (0.74 |-73.77°)
—_— - H
G Open
System T Load
lhg =1.01|5.05° — ~
Z RN (0.74|-73.77°) |
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3y = 185 |-59.02° he =20 =33 T Slon =312 |-98.98°
(0.74 |-73.77°) (2.22|-73.779

(1.48|-73.77°)

FIGURE 4.27 Per-unit current distribution for a broken conductor at bus H that falls
to ground value on the bus H side in the power system in Figure 4.23. Top values are
seen with a 30 MVA load. Values in parentheses are with load neglected (no load). Per
unit is at 30 MVA where 1 pu = 502 A at 34.5 kV.

4.16 OVERVIEW

Faults and the sequence quantities can be visualized and perhaps be better
understood by an overall view in contrast to the specific representations and
calculations. Accordingly, several overviews are presented next.

I, = 3.43|-58.91°

aa [58.97° =0

G — ~— H
System Load
\ lhg =1.10(=178.93° P /

bH = ~'bG

- —

I =1.71[101.32° lett = ~lea

— -~

I, = 3.43 |-58.91° o = 2.20 |-48.85°
Ts/oG =1.32|-75.78° l ** T Slor £

FIGURE 4.28 Per-unit current distribution for a broken conductor at bus H that falls
to ground value on the line side in the power system in Figure 4.29. Per unit is at
30 MVA when 1 pu = 502 A at 34.5 kV.
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4.16.1 VoOLTAGE AND CURRENT PHASORS FOR SHUNT FAULTS

The first overview is a review of shunt faults, which are the common types
experienced on a power system. These are illustrated in Figure 4.29, with
Figure 4.29a showing the normal balanced voltage and load current phasors.
Load is slightly lagging, normally from unit power factor to about a 30° lag.
With capacitors at light load, the currents may slightly be direct.

When faults occur, the internal voltage of the generators does not change;
that is true unless the fault is left unattended for long, and the voltage regulators
attempt to increase the terminal voltage of the fault-reduced machine.

A three-phase fault (see Figure 4.29a) reduces all three voltages and causes a
large increase and higher lagging by the system, and usually varies from about
a 30° to 45° lag, and sometimes nearly a 90° lag (see Figure 4.29b).

The single-phase-to-ground fault (see Figure 4.29¢) is the most common one.
The faulted-phase voltage collapses, and its current increases, as shown. Load
current is neglected, for it is usually relatively small, and I, = I. = 0. As has been

V. V.
// ‘ / )
\
S \
/ N // \
/ N \
7
7T\ V, \
/- ~A ¢y - Vv,
//________\_QA L/____ﬁ_\_\_\
Vc b
I,=0 I,=0

FIGURE 4.29 Typical current and voltage phasors for common shunt faults: The fault
currents are shown at 90° lagging or for a power system where Z = X. During faults the
load is neglected. (a) Normal balanced system; (b) three-phase faults; (c) phase-to-ground
a-Gnd faults; (d) phase-to-phase bc faults; (e) two-phase-to-ground bc-Gnd faults.
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indicated earlier, fault current flows in the unfaulted phases on loop systems in
which the distribution factors for the three sequence networks are different. Once
again the fault current lags normally. It is shown at 90° in Figure 4.29c.

The phase-to-phase fault is seen in Figure 4.29d. Neglecting the load, for
a b-to-c phase fault, V, is normal, I,=0. V,, and V. collapse from their
normal positions to vertical phasors at a solid fault point where V,.=0. I,
and I, are normally equal and opposite and lagging is 90°, as shown in
Figure 4.29c.

The two-phase-to-ground fault (see Figure 4.29c) results in the faulted
phase voltages collapsing along their normal position until, for a solid fault,
they are zero. Thus, at the fault, V;,,=V_.=0, which is not true for the phase-
to-phase fault (see Figure 4.29d). I;, and /. will be in the general area, as
shown. An increasing amount of zero-sequence current will cause I, and 1.
to swing closer to each other; contrarily, a low zero-sequence current com-
ponent will result in the phasors approaching the phase-to-phase fault
in Figure 4.29d. This can be seen from the sequence network connections
of Figure 4.15. For a phase-to-phase fault, if Z; becomes infinite (essentially
ungrounded system), the interconnection becomes as indicated in Figure 4.14.
On the other hand, for a very solidly grounded system where Z, approached
zero relatively, the negative network becomes shorted, and this fault becomes
similar to the three-phase fault as shown in Figure 4.12.

Total fault current in per unit

Based on V=1 pu; Z; =2, =1 pu; and Z, =X, pu

[00 = 0866u
Fault Xop pu: 0.1 0.5 1.0 2.0 10.0
10 Gnd 1.43 1.2 1.0 0.75 0.25
00 Gnd 1.52 1.15 1.0 0.92 0.87
3100 Gnd —2.5 -1.5 -1.0 —0.6 —0.143
Angle of Ty Gn —145.29° ~130.89° ~120° ~109.11° 94.69°
Angle of 1.9 Gna 145.29° 130.89° 120° 109.11° 94.69°

For the phase-to-phase fault:

I =—L=1/14+1=05.1, =dl, + al, = (a* — a)l, = —j/3(0.5)
= —j0.866.

In some parts of a loop network it is possible for the zero-sequence current to
flow opposite the positive- and negative-sequence currents. In this area /. may
lag the V. phasor, rather than lead it as shown, correspondingly with /7, leading
the position, as shown.
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FIGURE 4.30 Comparison of solid shunt-type faults.

These trends are further amplified by Figure 4.30, which compares the
various solid shunt faults. The effect of the zero sequence for ground faults is
illustrated by various values of X, reactances relative to X; = X,. As has been
indicated, the zero-sequence network is always different from the positive-
and negative-sequence networks. However, X, can be approximately equal to
X1, X, for secondary bus faults on distribution feeders connected to large
power systems. In these cases, the systems X, X, are very small relative to
the primary delta-secondary wye-grounded distribution transformer. Thus, the
case of X; =X, =X is quite practicable.

4.16.2 SYSTEM VOLTAGE PROFILES DURING FAULTS

The trends of the sequence voltages for the various faults in Figure 4.29 are
illustrated in Figure 4.31. Only the phase a sequence voltages are shown for
an ideal case where Z; =Z, =Z,. This makes the presentation less complex
and does not affect the trends shown.

With the common assumption of no load, the system voltage is equal
throughout the system, as indicated by the dashed lines. When a solid three-
phase fault occurs, the voltage at the fault point becomes zero, but as
indicated earlier, does not change in the source until the regulators act to
change the generator fields. Meanwhile, the fault should have been cleared by
protective relays. Thus, the voltage profile is as shown in Figure 4.31a.

For phase-to-phase faults (see Figure 4.31b), the positive-sequence volt-
age drops to half value (Z, =2,). This unbalance fault is the source of
negative sequence and the V, drops, which are zero in the generators, are as
shown.

For two-phase-to-ground faults (see Figure 4.31c) with Z; =7, =7, the
positive-sequence voltage at the fault drops to one-third of V. The fault
at this moment generates both negative and zero sequences that flow
through the system, producing voltage drops as shown. The voltage V,
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Source transformer Transformer source

G H
% Fault g
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()

FIGURE 4.31 System sequence voltage profiles during shunt faults: (a) three-phase faults;
(b) phase-to-phase faults; (c) two-phase-to-ground faults; (d) phase-to-ground faults.
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becomes zero in the generators, whereas V( is zero at the grounded
transformer neutral point.

The fault voltage for a phase-a-to-ground solid fault is zero and as docu-
mented in Figure 4.31d, the sum of the positive-, negative-, and zero-voltage
components at the fault add to zero. Thus, the positive-sequence voltage drops to
2/3V, when Z; =Z, =7, at the fault point, where —1/3V, and —1/3V,, are
generated. Subsequently, they drop to zero in the generator or source for the
negative sequence and to zero at the grounded transformer bank neutral.

The fundamental concept illustrated in Figure 4.31 is that positive-
sequence voltage is always maximum at the generators and minimum at
the fault. The negative- and zero-sequence voltages are always maximum
at the fault and minimum at the generator or grounded neutral.

It is common to refer to the grounded-wye—delta or similar banks as
“ground sources.” This is really a misnomer, as the source of zero sequence
is the unbalance, the ground fault. However, thus designating these trans-
formers as ground sources is practical, since, by convention ground (3/;)
current flows up the grounded neutral, through the system, and down the
fault into ground.

4.16.3 UNBALANCED CURRENTS IN THE UNFAULTED PHASES
FOR PHASE-TO-GROUND FAULTS IN LOOP SYSTEMS

A typical loop system is illustrated in Figure 4.32. A phase-a-to-ground
fault occurs on the bus at station E, as shown in Figure 4.33. The fault
calculation was made at no-load; therefore, the current before the fault in
all three phases was zero in all parts of the system. However, fault current is
shown flowing in all three phases. This is because the current distribution
factors in the loop are different in the sequence networks. With X, not equal

Station D
Equivalent
source
q 1600 MVAg.
A 9%
40 mi 25 mi
Station R I b Station E
Xy =0.242 pu X;=0.150 pu
E Xg = 0.830 pu Xy = 0.500 pu }_%
70 mi 30 mi ;
X=Xy = j20% <] A § ™ 8 X=X =j25%

X, = 0.420 pu
7% X, =1.250 pu

X;=0182pu
X,=0.640 pu /8%

Reactance values on 100 MVA, 115 kV base <]

station K

FIGURE 4.32 A typical loop-type power system.
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0 0 0l
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FIGURE 4.33 Currents for a phase-a-to-ground fault at station E bus in Figure 4.32.

to X, =X5, I, = a211 +al, +1y=—I; + Iy. Likewise, I.= —I; + I,. These are
the currents flowing in phases b and ¢ as shown in Figure 4.33.

This will always occur in any system or part of a system in which there are
positive-sequence sources or zero-sequence sources at both ends. In ground
fault studies, 3/, values should be recorded because the ground relays are
operated by 3/, not the phase-fault currents, which can be quite different, as
seen in Figure 4.33. Thus, there is little or no use in recording the phase
values. These differences make fuse applications on loop systems quite
difficult, because the fuse is operated on phase current, but the ground relays
are on 3/, currents.

For radial lines or feeders (positive-sequence source and a wye-grounded
transformer at the same end, and no source or grounded transformer at the
other end) 7, and /. will be zero for all phase-a-to-ground faults. With the
same phase and 3/ ground currents, it is easier to coordinate ground relays
and fuses.

4.16.4 VoOLTAGE AND CURRENT FAULT PHASORS FOR ALL
COMBINATIONS OF THE DIFFERENT FAULTS

The sequence phasors from a different perspective are presented in Figure
4.34 and Figure 4.35. The voltages and currents generated by the sources can
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FIGURE 4.34 Sequence voltages and the voltage at the fault point for the various
fault types. Solid faults with Z, = Z, = Z, for simplicity. Magnitudes are not to scale.
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FIGURE 4.35 Sequence currents and the fault current for the various fault types:
Solid faults with Z; = Z, = Z, for simplicity. Magnitudes are not to scale.
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only be positive sequence by design, and nothing else. Yet the unbalanced
faults require unbalanced quantities. How can this difference be resolved to
satisfy both requirements: balanced quantities by the generators and unbal-
anced quantities at the faults? The resolution can be considered as the
function of the negative-sequence quantities and for ground faults the zero-
sequence quantities. This can be seen as indicated in Figure 4.34 and Figure
4.35. Considering the voltages as shown in Figure 4.34, the voltage developed
by the source or generator is the same for all faults. For three-phase faults no
transition help is required because these faults are symmetrical; hence, there
are no negative or zero sequences. For the phase-to-phase faults, negative
sequence appears to provide the transition. Note that for the several combin-
ations, ab, bc, and ca phases, the negative sequence is in different positions to
provide the transition. The key is that for, say, ab fault, phase ¢ will be
essentially normal, so V; and V., are basically in phase to provide this normal
voltage. Correspondingly, for a bc fault, V,; and V,, are essentially in phase,
and so on.

The two-phase-to-ground faults are similar; for ab-G faults, the unin-
volved phase ¢ quantities V., V.,, and V.o combine to provide the uncollapsed
phase ¢ voltage. In the figure, these are shown in phase and at half magnitude.
In actual cases, there will be slight variations because the sequence imped-
ances do not have the same magnitude or phase angle.

For single-phase-a-to-ground faults, the negative (V,,)- and zero (V,)-
sequence voltages add to cancel the positive-sequence V,;, which will be
zero at a solid fault. Correspondingly, for a phase b fault, V},, and V,, oppose
V1, and similarly for the phase ¢ fault.

The same concept is applied to the sequence currents, as shown in Figure
4.35. The positive-sequence currents are shown in the same for all faults and
for 90° lag (X-only system) relative to the voltages in Figure 4.34. These will
vary depending on the system constants, but the concepts illustrated are valid.
Moreover, for three-phase faults, no transition help is required; hence, there is
no negative- or zero-sequence involvement.

For phase-to-phase faults negative sequence provided the necessary tran-
sition, with the unfaulted phase-sequence currents in opposition to provide
either a zero or a low current. Thus, for the ab fault, /., and [, are in
opposition.

Similarly for two-phase-to-ground faults; for an ab-G fault, /., and I
tend to cancel /., and so on. For single-phase-to-ground faults the faulted
phase components tend to add to provide a large fault current, because
Ian+1lo+1lo=1.

4.17 SUMMARY

A question often asked is “Are the sequence quantities real or only useful in
mathematical concepts?” This has been debated for years, and in a sense they

© 2006 by Taylor & Francis Group, LLC.



are both accepted. Yes, they are real; positive sequence certainly because it is
generated, sold, and consumed; zero sequence because it flows in the neutral,
ground, and deltas; and negative sequence, for example, cannot be measured
directly by an ammeter or voltmeter. Networks are available and commonly
used in protection to measure V, and /,, but these are designed to solve the
basic equations for those quantities.

In either event, analyses of symmetrical components is an extremely
valuable and powerful tool. Protection engineers automatically tend to think
in its terms when evaluating and solving unbalanced situations in the power
system.

It is important to always remember that any sequence quantity cannot exit
in only one phase; this is a three-phase concept. If any sequence is in one
phase, it must be in all three phases, according to the fundamental definitions
of Equation 4.2 through Equation 4.4.
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Appendix 4.1
Short-Circuit MVA and
Equivalent Impedance

Quite often short-circuit MVA data are supplied for three-phase and single-
phase-to-ground faults at various buses or interconnection points in a power
system. The derivation for this and conversion into system impedances are
as follows:

THREE-PHASE FAULTS

V3LkV

MV Agc = 3¢ fault-short-circuit MVA = 1000

(A4.1-1)

where I3 is the total three-phase fault current in amperes and kV is the
system line-to-line voltage in kilovolts. From this,

1000 MVA
2p = — (Ad.1-2)
V3kV
V) 1000kV  kV?
Zg =N~ = . (A4.1-3)
I3y V3L,  MVAgc
Substituting Equation 2.15, which is
MVAbaseZQ
=, 2.15
P kV2 ( )
the positive-sequence impedance to the fault location is
MVAbase
2y =——— Ad.1-4
L= MV Asc pu, ( )

Z, =27, for all practical cases. Z; can be assumed to be X; unless X/R data are
provided to determine an angle.
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SINGLE-PHASE-TO-GROUND FAULTS

MVA 4Gsc—4G fault-short-circuit MVA = \/§I¢GkV
1000 ’

(A4.1-5)

where /4 is the total single-line-to-ground fault current in amperes and kV is
the system line-to-line voltage in kilovolts.

1000 MVAy6sc

¢G = J3kV (A4.1-6)

However,

3VLN o 3V]_N
Zi+Z+2Zy 7,

Iygg=L+L+1)= R (A4.1-7)

where Z, =Z, + Z, + Zy. From Equation A4.1-3 and Equation A4.1-7,

3kV?
= A4.1-8
f 7 MVAycscs ( )
- 3MV Apase (A4.1-9)
# 7 MVAgacsc ’

Therefore, Zo=Z2,—Z, — Z,, or in most practical cases, Xo=X, —X; —X>
because the resistance is usually small in relation to the reactance.

Example

A short-circuit study indicates that at bus X in the 69 kV system,
MVAgc =594 MVA
MVA 4Gsc =631 MVA
on a 100 MVA base.
Thus, the total reactance to the fault is

100
X] :X2 :@:01684 pu
300
X, = — =0.4754 pu,
¢~ 63l P

Xy=0.4754 — 0.1684 — 0.1684 = 0.1386 pu, all values on a 100 MVA 69 kV
base.
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Appendix 4.2
Impedance and
Sequence Connections
for Transformer Banks

TWO-WINDING TRANSFORMER BANKS

Typical banks are shown in Figure A4.2-1. H is the high-voltage winding and
L the low-voltage winding. These designations can be interchanged as
required. Zy is the transformer leakage impedance between the two windings.
It is normally designated in per unit or percent by the transformer and
stamped on the transformer nameplate. Unless otherwise specified, this
value is on the self-cooled kVA or MVA rating at the rated voltages.

It can be measured by shorting one winding and applying voltage to the
other winding. This voltage should not cause the transformer to saturate.
From Figure A4.2-2,

Vv 27

Zr = — =12, .
T=7 H+ZL+ZE

(A4.2-1)

Because unsaturated Z. is very large compared with Z;, the term
Z1Z./Zy +Z. approaches and is approximately equal to Z;, so that for
practical purposes

1%
In=S=Zutn. (A4.2-2)

Zt is measured in practice by circulating rated current (/r), through one
winding with the other shorted and measuring the voltage (V) required to
circulate this rated current. Then.

Z ="V, (A4.2-3)
IR

This test can be done for either winding or as convenient. On the measured
side, the base impedance will be
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Transformer Positive and Zero
bank negative sequence
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connections

L N, or N, No
a hoa L Z
—  ~~v— | H 1 L
Open
L N; or Ny No
Z
b H T L ZT 3ZN
Z : f L
N Open
L N1 or N2 No
Z

L
L Ny or Ny No
. JIt H Zr L 82w Zy 32w
— "N —— M v e
2 N
L N, or N, No
Z
f )\ H T L I
— """ |H— t—L
Open

; '_
T
% N
-
T
|
N
|
L

>—I >—I ||H—I ||Z,}:~>—I ||H—I VI |Hw,>—1 ||H—::

—r
T
N
-
[N
-

H _rvwm_)_

A Open

FIGURE A4.2-1 Sequence connections for typical two-winding transformer banks.
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Iy = Yk Q, (A4.2-4)
IR

where Vg and Iy are the rated voltage and current, respectively.
Then, the per-unit impedance from Equation 2.1 is

_Zr(Q) _ Vwlr _ Vw

T = = = .
"TZ@) LRVe Wk Py

(A4.2-5)

For three-phase—type transformer units, the nameplate should specify this Zr,
usually in percent, on the three-phase kVA (MVA) rating, and the kV line-
to-line voltages. When several kVA (MVA) ratings are specified, the normal
rating, without fans, pumps, and such (lowest) rating, should be used as one of
the impedance bases.

For individual single-phase transformers, the transformer impedance is
normally specified on a single-phase kVA (MVA) and the rated winding
voltages (kV) of the transformer. When three such units are used in three-
phase systems, then the three-phase kVA (MVA) and line-to-line voltage
(kV) bases are required, as outlined in Chapter 2.

Thus, when three individual single-phase transformers are connected in
the power system, the individual nameplate percent or per-unit impedance
will be the Zt leakage impedance, but only on the three-phase kVA (MVA)
base, and the system line-to-line kV.

Example: Impedance of Single-Phase Transformers in Three-Phase Power
Systems

Consider single-phase transformers, each with a nameplate rating of
20 MVA, 66.5 kV: 13.8 kV, X = 10%. Considering the individual transformer
alone, its leakage reactance is

X1 =0.10 pu on 20 MVA, 66.5 kV or (A4.2-6)
—_ A~ ~
ZH ZL
v z

FIGURE A4.2-2 Simplified equivalent diagram for a transformer: Zy and Z; are the
components of the transformer leakage impedance and Z, is the exciting impedance.
All values are in per unit or primary H side ohms.
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Xt =0.10 pu on 20 MVA, 13.8 kV.

Converting these to actual ohms using Equation A4.2-5, Vyy=0.10 Vgy =
0.10 x 66,500 = 6650 volts on the high side, where Igy=20,000/66.5=
300.75 amperes primary.

Then, we obtain from Equation A4.2-3,

6650

Xy = ——
™ ™ 300.75

=22.11 Q primary (A4.2-7)

or on the secondary side, Vywp=0.10x13,800=1380 V, and
Irp =20,000/ 13.8 =1449.28 amperes secondary.

1380

= 144978 0.952 () secondary. (A4.2-8)

TL

Check:

2
(%) x 0.952 =22.11 Q) primary.

Now consider two possible applications of three of these individual trans-
formers to a power system. These are intended to demonstrate the fundamen-
tals; do not consider if the transformer windings are compatible or suitable for
the system voltages shown.

Case 1

Connect the high-voltage windings in wye to a 115 kV system and the low-
voltage windings in delta to a 13.8 kV system. As indicated previously, the
leakage impedance of this transformer bank for this application is

Xt = 0.10 pu on 60 MVA, 115kV,
Xt =0.10 pu on 60 MVA, 13.8 kV. (A4.2-9)

Now Let us check this. From Equation 2.17,

115% x 0.1
Xt = % = 22.11 Q) primary,
13.82 x 0.10
XL = + = 0.317 Q) secondary. (A4.2-10)

It will be noted that the individual transformer reactance per Equation A4.2-8
is 0.952 (), but this is the reactance across the 13.8 kV because of the delta
connection. The equivalent wye impedance can be determined by the product
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of the two-delta branches on either side of the desired wye branch divided by
the sum of the three-delta branches. Thus, the wye equivalent is

(0.952)0.952 _ 0.952 _ 0.317 Q as before

(30952 3
Check
115\?
(m> x 0.317 = 22.1 Q) primary
Case 2

Connect the high-voltage windings in delta to a 66.5 kV system and the low-
voltage side in wye to a 24 kV system. Now the transformer bank impedance
for this system application is

Xt =0.10 pu on 60 MVA, 66.5kV or
Xt =0.10 pu on 60 MVA, 24 kV. (A4.2-11)

Now to check this by converting to ohms, using Equation 2.17

66.5% x 0.10

50 = 7.37 Q primary (A4.2-12)

XtH =

is obtained.

Now this primary winding of 22.11 ohms (Equation A4.2-7) is connected
across the 66.5 kV system because of the delta. Accordingly, the equivalent
wye reactance is 22.11 x 22.11/3 x 22.11 =7.37 ohms line-to-neutral on the
primary side.

On the secondary side, Xq; =247 x 0.10/60 =0.952 Q) is secondary as
Equation A4.2-8.

Check

66.5\
<7> x 0.952 = 7.37 Q) primary.

The connections of two-winding transformers in the sequence networks
are documented in Figure A4.2-1. Note that the connections for positive
and negative sequences are all the same and are independent of the bank
connections. This is not true for the zero sequence with different connections
for each type of bank.

© 2006 by Taylor & Francis Group, LLC.



Neutral impedance is shown for several connections. If the blanks are
solid-grounded, the neutral impedance is zero, and the values shown are
shorted-out in the system and are zero-sequence diagrams.

THREE-WINDING AND AUTOTRANSFORMER BANKS

Typical banks are shown in Figure A4.2-3. H, M, and L are the high-,
medium-, and low-voltage windings. These designations can be interchanged
as required. Normally, the manufacturer provides the leakage impedance
between the windings as Zyny, Zpr, and Zyy, usually on different kVA or
MVA ratings and at the rated winding voltages.

To use these impedances in the sequence networks, they must be con-
verted to an equivalent wye-type network, as shown. This conversion is

Zy = 5(Znw + Znw — Zw), (A4.2-13)
Zn = 3 (Ziam + Zwi — Zy), (A4.2-14)
ZL =5 (Zu + Zne — Zuw). (A4.2-15)

It is easy to remember this conversion, for the equivalent wye value is always
half the sum of the leakage impedances involved, minus the one that is not
involved. For example, Zy; is half of Zyys, both involving H and minus Zy,
that does not involve H.

After determining Zy, Zy, and Z;, a good check is to see if they add
up as Zy+Zym=Zuywm,--.- If these values are not available, they can be
measured as described for a two-winding transformer. For the three-winding
or autotransformers: Zyyy is the impedance looking into H winding with
M shorted, L open; Zy is the impedance looking into H winding,
with L shorted, M open; Zyy is the impedance looking into M winding, with
L shorted, H open.

This equivalent wye is a mathematical network representation valid for
determining currents and voltages at the transformer terminals or in the
associated system. The wye point has no physical meaning. Quite often, one
of the values will be negative and should be used as such in the network. It
does not represent a capacitor.

The positive- and negative-sequence connections are all the same
and independent of the actual bank connections. However, the connec-
tions for the zero-sequence network are all different and depend on the
transformer bank connections. If the neutrals are solidly grounded, then
the Zy and 3Zy components shown are shorted-out in the system and
sequence circuits.
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Transformer

Positive and

H
a
ﬁ

VANVAS

' Zero
bank negative sequence
connection sequence connection
connections
Ny or N, No

If solid

/N

If solid
grounded

grounded \L
Zy=0 — YV —M
M No
H
— L
Z 0
NM Open
b
Z,
NH L

Zyy and/or Zy, =0

ot

y M Ny or N, No P
32y
Z - '
z,
[ Zy L P H Open
Zy
= If solid
M grounded l
Zy=0 M
Ny or N, No

M

FIGURE A4.2-3 Sequence connections for typical three-winding and autotransformer

banks.
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Appendix 4.3
Sequence Phase Shifts
through Wye-Delta
Transformer Banks

As has been indicated, positive and negative sequences pass through the
transformer bank, and in the sequence networks, the impedance is the same,
independent of the bank connection. This is shown in Figure A4.2-1 and Figure
A4.2-3. In these networks the phase shift is ignored, but if currents and voltages
are transferred from one side of the transformer bank to the other, these phase
shifts must be taken into account. This appendix will document these relations.
For this the standard ANSI connections are shown in Figure A4.3-1.

From Figure A4.3-1a, all quantities are phase-to-neutral values, and in
amperes or volts; for per unit, N=1, n = 1/\/5

In=n(,—1.)and V, = n(Vy — Vp).
For positive sequence (see Equation 4.2),
Iny = nla — aly) = n(1 — a)ly
= \3nl,, [=30° = NI, /=30° (A4.3-1)

Va = n(Var — @®Vay) = n(l — a*)Va,
=30V /+30° — NV /+30°. (A4.3-2)

For negative sequence (see Equation 4.3),

Ino = (g — @l1) = n(1 — @)l
— 3l [430° = Np , /4307 (A4.3-3)

Vo = n(Vaz — aVaz) = n(1 — a)Vay, (A4.3-4)

=3nVar /=30° = NVar /=30°. (A4.3-5)
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High side Low side High side Low side

_>Ia n 1 — —_— n 1 _>l
a \ 4 A @ ® AA
)
L 31, 3¢t
]
— — g 5 — )
b b BD b ® BB
I 3¢t Ly
n,b F
/
— — -5 —
¢ § = C c—e CC
I}
b3t k]3¢
[ ]
- A a A
)\C :] : b/k
c b B c C B
Turns ratio n:1 Turns ratio n:1
Voltage ratio N:1 Voltage ratio N:1
KV, V3 kV,
n= —— =
V3 KV, KV
\ K, N e
= KV, kVa
n
- N=—
(a) N=n/3 (b) 73

FIGURE A4.3-1 ANSI-connected wye—delta transformer banks: the high-voltage side
phase a leads the low-voltage side phase a for both connections illustrated: (a) wye
(star) on high side; (b) delta on high side.
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