Dissimilar Weld Decision Matrix

Procedure

- 1. List information for Material A & B columns and identify similarities and differences.
- 2. List details for a proposed weld metal. If a proper transition of properties or repair scenario cannot be done, consider buttering one or both materials or use a pup or transition piece.
- 3. A transition piece is usually required when substantially different material strengths or PWHT/lower critical transition temperatures are involved.
- 4. Buttering is oftentimes used when joining two materials of substantially different properties such as a CrMo to Stainless Steel.
- 5. When all the materials and details are listed above, review will either suggest that design, operation and fabrication or installation goals have been achieved or that a different approach is required.

	Material A	Butter	Pup or Transition	Weld Metal	Butter	Material B
Alloy						
P or A No,						
Thickness						
Yield, RT						
Coef Exp						
Lower Critical Trans. Temp.						
Operating Temp						
Yield Stress						
Allowable Stress						
Creep Range						
Toughness						
Corrosion						
Groove Geometry						
Restraint						
PWHT, Code						
Temp						
Time						
Restrictions						
Strain/Bending						
Carbon Migration						
Sensitization						
Hardness						

Definitions: Intent for the technical details are as follows:

- Alloy: ASTM, ASME, AWS, ISO, EN, designation for the alloy or weld metal.
- P-No. or A-No.: Designation assigned per ASME IX.
- Thickness: Thickness of weld metal. Sharp transitions should be considered.
- Yield, RT: Room Temperature yield strength.
- Coefficient of Expansion: Behavior at operating temperature.
- Lower Critical Transformation Temperature: Also referred to as the AC₁.
 PWHT should not exceed this value.
- Operating Temperature: System design operating temperature.
 - a. Yield Stress: Yield stress at design operating temperature.
 - b. Allowable Stress: At operating temperature, per ASME Section II, Part D or other applicable code.
- Creep Range: Is the material operating in it's creep range? If not, then alternate considerations may apply.
- Toughness: Is ductility needed during startup or shutdown or code?
- Corrosion: Will the choice of weld metal or transition materials impact corrosion considerations?
- Groove Geometry: Are welding process chosen and access to the groove affected?
- Restraint: Geometry will affect restrain which will affect issues such as crater and root cracking.
- PWHT, Code: ASME I, PW-39 or ASME B31.1, etc.
 - a. Temperature: Code required temperature
 - b. Time: Code minimum versus actual
- Restrictions
 - a. Strain/Bending: Will PWHT have an adverse effect on material that has been strained?
 - b. Carbon Migration: Given time and temperature, may be an issue.
 - c. Sensitization: An issue where austenitic stainless steel involved.
 - d. Hardness: Normally limited to weld metal or heat-affected zone where stress corrosion cracking is an issue.