$$Q = \dot{m} \times Cp \times \Delta T$$

 $\begin{array}{l} Q = \text{heat load} \\ \dot{m} = \text{mass flow rate of the fluid} \end{array}$ Cp = specific heat of the fluid

 ΔT = temperature difference between the liquid in and the liquid out

mcan be calculated for water and air using the following equations:

Water:
$$\dot{m}(\frac{lbs}{hr}) = \dot{V}(\frac{gal}{min}) \times (\frac{60 \text{ min}}{hr}) \times \rho (\frac{lbs}{ft^3}) \times (\frac{ft^3}{7.5 \text{ gal}})$$
 where $\dot{V} = \text{volumetric flow rate}$

Water:
$$\dot{m}(\frac{kg}{hr}) = \dot{V}(\frac{liters}{min}) \times (\frac{60 \text{ min}}{hr}) \times \rho(\frac{kg}{m^3}) \times (\frac{m^3}{1,000 \text{ liters}}) \text{ where } \dot{V} = \text{volumetric flow rate}$$

Cooling requirement	1500	(w)		5,118	(BTU/hr)
Temperature difference	4.00	(C°)	Fluid-∆T	39.20	(F°)
Volume Required flow	1.50	(L/min)		0.26	(gpm)
Cp Heat Capacity H₂O	4.182	(J/g*C°)		0.99885	btu/lb/ °F
Density	998.29	(kg/m³)		62.321	(lb/ft ³)