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ABSTRACT: Concrete is a material that changes volumetrically in response to moisture and temperature vari-
ations. Frequently, these volumetric changes are prevented by restraint from the surrounding structure, resulting
in the development of tensile stresses. This paper provides a method for computing the stress and displacement
fields that develop in response to this restraint by considering the concrete slab as a plate resting on an elastic
foundation. The interface between the slab and the foundation is capable of simulating all cases between complete
perfect bond and perfect compression/zero tension bond to permit debonding. In addition, stress relaxation is
considered in the concrete to account for the reduction in stress due to creep/relaxation-related phenomena. For
this reason, the stress-strain relationship and equilibrium equations have been considered in the rate or differential
form. The history-dependent equilibrium equations are obtained by integrating the differential equations with
respect to time. An example is presented to illustrate the favorable correlation that exists between the predicted
behavior of the plate model and finite-element modeling.
INTRODUCTION

Concrete contracts in response to water loss or temperature
reduction. The amount of shrinkage incurred depends on sev-
eral factors including material composition, temperature, rel-
ative humidity, material maturity, and structural size. It should,
however, be noted that free shrinkage alone is not sufficient
to predict whether concrete will crack in service. Restraint
from the surrounding structure prohibits the concrete from
moving freely, and tensile stresses develop. The level of stress
that develops is dependent on several factors, including degree
of restraint, material stiffness, shrinkage rate, and amount of
stress relaxation, whereas the potential for cracking is influ-
enced by the stress level, specimen geometry, and the mate-
rial’s resistance to cracking. The development of tools capable
of predicting cracking due to drying and thermal shrinkage in
concrete structures is necessary, since cracks provide a path
for corrosive agents to enter the concrete, thereby reducing the
overall durability of the concrete structure. Recently, research
in shrinkage cracking has attracted a great deal of interest, as
illustrated in several theoretical and experimental studies (Ba-
zant 1986; Springenschmid 1994; Blam and Bentur 1995;
Yang et al. 1996; Bradford 1997; Shah et al. 1998; Weiss et
al. 1998).

Recent research has focused on predicting the cracking be-
havior of thin laboratory specimens assuming uniaxial stress
development for ring (Yang et al. 1996; Shah et al. 1998) and
thin slab (Weiss et al. 1998) specimens. These models exhib-
ited favorable correlation between the predicted age of crack-
ing and experimentally observed trends for various concrete
mixtures based on first principles that related the aging ma-
terial properties with stress development and cracking behav-
ior. This paper presents a modeling approach that is currently
being developed to predict the stress development in thin-flat
structures restrained by the foundation, in which early-age
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shrinkage cracking is often a problem. Examples of such struc-
tures include highway pavements, industrial floors, and bridge
decks.

BACKGROUND

Due to the complexity of the aforementioned problem, re-
searchers have solved shrinkage or temperature displacement
and stress fields by introducing different simplifications. In the
1920s, Westergaard (1927) developed a thoretical treatment for
dealing with a concrete slab resting on an elastic subgrade in
which the reaction force was proportional to the deflected
shape. Al-Nasra and Wang (1994) conducted a parametric
study for concrete resting on an elastic foundation using a
finite-element approach that permitted debonding and concrete
softening; however, it did not include aging or stress relaxa-
tion. Mohamed and Hansen (1996) treated the pavement slab
as a beam resting on an elastic foundation of a two-dimen-
sional half plane using an ordinary differential equilibrium
equation to describe the bending moment on an arbitrary cross
section. Hong et al. (1997) established and solved the ordinary
differential equation for the deflection of a beam resting on an
in-plane Winkler’s foundation (Nowacki 1962). In addition,
many commercially available finite-element analysis packages
can be used to compute stress and displacement fields of a
viscoelastic material under thermal loading. These programs
can be used to approximately compute shrinkage stress; how-
ever, since concrete exhibits aging viscoelastic behavior, the
creep compliance is a function of both loading age and dura-
tion of loading. To simulate the behavior of concrete properly,
the existing numerical packages must be modified.

MODELING APPROACH

The present research considers the concrete slab as an aging
viscoelastic material resting on a semi-infinite elastic founda-
tion, as shown in Fig. 1(a). Since the thickness of the slab is
assumed to be small in comparison with the other two dimen-
sions (thicknss/shortest width < 1/8), the slab can be consid-
ered as a plate. Eccentric restraint and nonlinear shrinkage
gradients cause the slab to experience both bending and axial
shortening. As a result, superposition has been used to com-
bine pure bending and pure stretching as shown on an infini-
tesimal element in Fig. 1(b).

In general, the neutral plane of the plate experiences non-
uniform bending deflection; as a result, the vertical component
of stretching forces do not vanish and therefore contribute to
the moment equilibrium equation of an infinitesimal element.
Consequently, the products of the stretching forces and bend-
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FIG. 1. (a) Concrete Slab Resting on Elastic Subgrade Consid-
ered as Semi-Infinite Half-Space; (b) Forces Applied on Arbi-
trary Differential Plate Element Can Be Separated as Superpo-
sition of Bending and Stretching Loads (* = Moments Caused by
Frictional Tractions on Slab Bottom Surface Are Included)

ing curvatures appear in the differential equation and the prob-
lem becomes nonlinear. In the current solution, the writers
neglect the nonlinear terms, since the deformations and cur-
vatures are small.

The program computes the stress and displacement fields
for a slab restrained from shrinkage based on first principles.
Moisture and temperature strains were considered in a general
manner. Stress relaxation was considered using a general aging
compliance function of the form proposed by Müller (1994).
The material properties needed for the programming include
the elastic modulus (age-dependent) and Poisson’s ratio of the
concrete and subgrade. In addition, information is required to
define the rate of free shrinkage strain as a function of depth
and time.

FUNDAMENTAL EQUATIONS

As a result of stress relaxation, the shrinkage strain (εij) is
both age and history dependent. In previous research (Yang et
al. 1996; Shah et al. 1998; Weiss et al. 1998), the incremental
strain was considered to be composed of an instantaneous,
time-dependent, and shrinkage strain-rate component. The in-
cremental strain at any time t caused by a differential incre-
ment of stress sij at time j (0 # j # t) can be expressed as

1 w(t, j)
dε (t, j) = C ds (j) 1 C ds (j) 1 d a dj (1)ij ijkl kl ijkl kl ij

E (j) Ecs

In this equation, Es = elastic modulus at any time j; w = creep
function; Ec = reference elastic modulus (at 28 days); a = time
rate of expansion/shrinkage; dij = Kronecker delta; and the
isotropic matrix Cijkl is given by the following expression, in
which n is Poisson’s ratio, which has been assumed to be
constant with respect to time:

C = 2nd d 1 (1 1 n)(d d 1 d d ), i, j, k, l = 1, 2, 3 (2)ijkl ij kl ik jl il jk

The creep function w has been assumed to follow the form
proposed by Müller (1994). The expansion rate for the free
shrinkage (expansion) can be divided into two components,
thermal and moisture shrinkage, as shown in the following:

dε (j) dT(j)moist˙a(j) = a 1 a T = 1 a (3)S T T
dj dj
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FIG. 2. Horizontal Force Components on Differential Plate
(Slab) Element

where as = moisture-related shrinkage rate at time j; aT =
coefficient of thermal expansion; and = derivative of tem-Ṫ
perature with respect to time. (Eq. (1) can be expressed in the
rate form as

1 w(t, j)
ε̇ = C ṡ (j) 1 C ṡ (j) 1 a(j)d (4)ij ijkl kl ijkl kl ij

E (j) ECs

where the strain and stress rates are given as = [­ε(t, j/­j]ε̇
and = [ds(j)/dj], respectively.ṡ

The stress rates must satisfy the sufficient and necessary
conditions for equilibrium (assuming stress free initial condi-
tion). The equilibrium equations are

ṡ = 0, (i, j = 1, 2, 3) (5)ij, j

In addition, the following relationship is needed to ensure
compatibility for the strain components:

1
ε̇ = (u̇ 1 u̇ ), (i, j = 1, 2, 3) (6)ij i, j j,i2

SUPERPOSITION OF BENDING AND STRETCHING

As previously mentioned, the deformation of a slab is gen-
erally caused by a combination of the bending and stretching
components. Mansfield (1989) systematically described me-
chanical analysis of elastic plates under such loading condi-
tions. In the following two subsections, the discussion is ex-
tended to bending and stretching of a concrete slab with aging
viscoelastic material behavior.

Stretching Equations

As the slab shrinks, the in-plane stretching accounts for a
large degree of the strain in the concrete slab. Fig. 2 describes
both the resultant force on the side of the element acting on
the neutral plane of the concrete slab (N) and the shear stress
acting between the bottom surface of the slab (V) and the
subgrade. The subscripts represent the corresponding direc-



tions. Applying equilibrium conditions to the Ox1x2 plane re-
sults in the following expression:

˙ ˙N 1 V = 0 (7)ij, j i

If straining of the midplane of the plate due to deflection of
the plate is ignored, the strains in the midplane are related to
the forces per unit length as follows:

2 ˙u̇ 1 u̇ = C N 1 d a (8)i, j j,i ijkl kl ij
cH

where H = depth of the slab; and c = stress relaxation function.
To better consider aging behavior of concrete, the writers
adopt the inversion of creep compliance that was proposed by
Bazant and Kim (1979), which can be written as

¯1 2 D 0.115 J(j 1 t, j)0
c(t, j) = 2 2 1 (9)F GJ(t, j) J(t, t 2 1) J(t, t 2 j)

In this case, J = (1/Es) 1 (w/Ec); = (1/2)(t 2 j); and D0 ist̄
a variable coefficient.

By solving (8) for Ṅkl, substituting the expression for Ṅkl

into (7), and integrating the equations with respect to time, the
fundamental stretching equations can be obtained:

t
H H H

u̇ 1 u̇ 1 u̇1,11 1,22 2,12E F G21 2 n 2(1 1 n) 2(1 2 n)0

?c dj 1 V (t) = 01 (10a)
t

H H H
u̇ 1 u̇ 1 u̇2,22 2,11 1,21E F G21 2 n 2(1 1 n) 2(1 2 n)0

?c dj 1 V (t) = 02 (10b)

In this expression, the time integral and spatial derivative are
interchangeable and the initial condition of the pavement is
assumed to be stress free.

Bending Equations

Let us now consider the state of stress in a plate with an
arbitrary small deflection u3(x1, x2) [Fig. 3(a)]. A neutral plane
is assumed to exist at the midheight of the slab; therefore, we
shall focus attention on the state of strain, and hence the state
of stress, in a plane at a distance x3 from the mid-plane. The
slopes of the midplane are (­u3 /­x1) and (­u3 /­x2), so the rates
displacements u̇1 and u̇2 in the Ox1 x2 plane at a distance x3

from the midplane are given by

u̇ = 2x u̇ , (i = 1, 2) (11)i 3 3,i

The strain rates in this Ox1 x2 plane are thus given by

1
ε̇ = (u̇ 1 u̇ ) = 2x u̇ , (i, j = 1, 2) (12)ij i, j j,i 3 3,ij2

By inverting (4) and considering the geometrical relationships
represented by (6) and (11), the following expression can be
obtained for the bending stress rate:

1 n
02 21 2 n 1 2 n

ṡ11 n 1
ṡ = 2c 022 2 2H J 1 2 n 1 2 nṡ12

1
0 0

2(1 1 n)

u̇ 13,11

? x u̇ 2 a 1 (13)3 3,22H H J H JJ
u̇ 03,12
FIG. 3. Coordinates and Moments on Differential Plate (Slab)
Element

These stress rate components vary linearly through the thick-
ness of the plate and cause the moment rates per unit length
acting on an element of the plate, as shown in Fig. 3(b). As a
result, the following expressions can be obtained:

(1/2)H (1/2)H
c

Ṁ = x ṡ dx = 2D(u̇ 1 nu̇ ) 1 x a dx11 3 11 3 3,11 3,22 3 3E E 1 2 n2(1/2)H 2(1/2)H

(14a)
(1/2)H (1/2)H

c
Ṁ = x ṡ dx = 2D(u̇ 1 nu̇ ) 1 x a dx22 3 22 3 3,22 3,11 3 3E E 1 2 n2(1/2)H 2(1/2)H

(14b)

(1/2)H

Ṁ = x ṡ dx = 2D(1 2 n)u̇ (14c)12 3 12 3 3,12E
2(1/2)H

where the flexural rigidity of the plate, D, is defined by

3c(t, j)H
D(t, j) = (15)212(1 2 n )

An equation of equilibrium may now be expressed in terms
of derivatives of the moment rates and the applied loading
(such as weight of concrete plate) as

t
H

Ṁ dj 2 V (t) 1 V (t) = q, (i, j = 1, 2) (16)ij, ij i,i 3E 20

where q = weight of the concrete plate plus the superimposed
load per unit area. If we denote

(1/2)H
12 c

k = x a dxs 3 3E3H 1 2 n2(1/2)H

and substitute (14) into (16), the expression for the general
differential equation of a plate under shrinkage and creep can
be obtained:
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t

2 2 4 2[= (D= u̇ ) 2 (1 2 n)L (D, u̇ ) 1 (1 1 n)= (Dk )] dj3 3 sE
0

H
2 V (t) 1 V (t) = qi,i 32 (17)

in which

2 2 2 2 2 4= = ­ /­x 1 ­ /­x , L (D, u̇ ) [ D u̇ 22D u̇ 1 D u̇1 2 3 ,11 3,22 ,12 3,12 ,22 3,11

It should be noted that the spatial differentiation and time in-
tegration in (17) are exchangeable. If the pavement is consid-
ered to be homogeneous with uniform thickness and uniform
shrinkage in horizontal plane (i.e., the free shrinkage rate is
only a function of depth), the bending equation can be re-
written simply as

t
H4D= u̇ dj 2 V (t) 1 V (t) = q, (i = 1, 2) (18)3 i,i 3E 20

These are the differential integral equations the writers used
to represent bending effects. For large deformation problems,
the products of curvatures and stretching forces are not to be
neglected and the nonlinear term will be added tot* N u̇ djo ij 3,ij

the right-hand side of (18) or (17).

SUPPORT FROM ELASTIC FOUNDATION

Some research has been conducted by simplifying the pave-
ment as an elastic or viscoelastic beam resting on an elastic
foundation with a restoring pressure that is proportional to the
deflection [Winkler’s foundation; see, e.g., Nowacki (1962);
Hong et al. (1997)]. Using this approach, the resultant pressure
acting on the plate has the form qres = q 2 kẇ, where k =
foundation modulus (or spring constant). The differential equa-
tion for the deflection of the plate can then be obtained using
preceding analysis by substituting qres for q.

In this paper, the foundation below the pavement has been
assumed to be a three-dimensional, elastic half space. The
bond between pavement and foundation has been incorporated
to include two conditions–either perfect bond or perfect bond
when the normal force is in compression and zero bond occurs
whenever there is tension. In addition, the formulation pro-
vided in this paper is also valid for various degrees of inter-
facial tensile bond; however, it has not been used in the cal-
culations provided below.

The interaction forces can be computed using a Green’s
function approach, as described in the following paragraph.
Consider an arbitrary point X at the top surface of the foun-
dation. The displacements caused by forces transmitted from
the pavement to the foundation can be written as follows:

u (X) = U*(X, Y)V (Y) dS(Y) (19)i ij jE E
A9

where Y = point where the force components Vj dS are applied;
A9 = bond area between the pavement and foundation; and

(X, Y) = Green’s function, which represents the displace-U*ij
ment in the Oxi direction at point X caused by a unit point
load in the Oxj direction at point Y. Green’s functions of this
type can be found in theory of elasticity books (e.g., Xu 1992);
however, for the reader’s convenience, these functions are in-
cluded in Appendix I.

BOUNDARY CONDITIONS

Most commonly, the slab sides are traction free. By denot-
ing the normal and tangential directions at the free edge using
the subscripts n and t, respectively, the boundary conditions
for bending equations can be written as
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M = 0 (no bending moment at free edge) (20a)nn

M = 0 (no twisting moment) (20b)nt

Q = 0 (no shearing force) (20c)n

R = 0 (no concentrated reaction force at corner points) (20d )

The second and the third equations listed above can be sim-
plified to one condition that is derived from considering the
resultant of the shear force flow on the cross section of an
infinitesimal plate element. Representing the conditions men-
tioned above in terms of displacements, the boundary condi-
tions can be correspondingly written as

t t (1/2)H

D(u̇ 1 nu̇ ) dj 1 x ca(x , j) dx dj = 0 (21a)3,nn 3,tt 3 3 3E E E
0 0 2(1/2)H

t

D[u̇ 1 (2 2 n)u̇ ] dj = 0 (21b)3,nnn 3,nttE
0

t

Du̇ dj = 0 (21c)3,ntE
0

In addition to satisfying the boundary conditions at the edges
of pavement, the stretch free conditions are also to be satisfied:

N = 0, N = 0 (22a,b)nn nt

Eq. (22a) represents a zero normal stretching force at the neu-
tral plane, while (22b) signifies that no tangential force exists.
The equivalent forms of these equations represented by dis-
placement components are

t t (1/2)H
c

(nu̇ 1 u̇ ) dj 2 ca(x , j) dx dj = 0 (23a)n,n t,t 3 3E E E1 1 n0 0 2(1/2)H

t

c(u̇ 1 u̇ ) dj = 0 (23b)n,t t,nE
0

These boundary conditions are represented in the differential
form with respect to spatial coordinates, and these are lower-
order derivatives comparable to the differential equations pre-
sented earlier.

NUMERICAL STRATEGY

Two stretching differential equations (10), one bending (18),
and three boundary integral equations (19) were combined to
solve for the six direct unknown functions of space and time.
These functions describe the three displacement components
(ui) and the three traction-interaction components (Vi). The dis-
placement and stress fields were solved numerically by con-
verting the differential and boundary integral equations into a
group of coupled finite-difference and boundary element equa-
tions. The complete set of equations used to solve this problem
includes fundamental stretching and bending differential inte-
gral equations (10) and (18), the inplane stretching boundary
conditions [(23)], the plate free-edge bending conditions
[(21)], and the foundation boundary integral equations [(19)].

Problem Discretization

In the work presented here, time differentiation in all equa-
tions was discretized using a backward-difference method.
Spatial derivatives were discretized using a central-differenc-
ing approach for both differential equations and boundary con-
ditions. The stretching differential equations are second order
[(8)]. Therefore, a fictitious layer of nodes was added beyond
the plate boundary by discretizing the differential equations
into finite-difference equations. The additional unknowns gen-



erated by those fictitious nodes were automatically made solv-
able by introducing the normal and shear traction boundary
conditions [(23)].

Since the differential equations established from bending
equilibrium conditions [(18)] are fourth order, two fictitious
layers of nodes were introduced by converting the bending-
differential equations into linear algebraic equations using cen-
tral differencing. Additional unknowns were compensated for
by introducing free boundary conditions for bending, twisting,
and shear at the regular boundary points and free boundary
conditions for bending, twisting, shear, and concentrated re-
actions at the corner points [(21)].

The surface of the foundation covered by the plate was dis-
cretized into a mesh projected by the finite-difference mesh
used for the stretching and bending equations. Numerical in-
tegration on each four-node isoparametric element was per-
formed by Gauss integration with 10 3 10 interpolation
points.

Debonding is judged by monitoring whether the tensile trac-
tion at the slab-subgrade interface reaches a critical level. Once
the tensile traction at a node point is found in excess of the
given critical value, the numerical computation starts a loop
to release the restraint at that node point, then the released
tractions in all three directions are redistributed to the neigh-
boring nodes. Numerical integration moves on to the next time
step on condition that the tensile tractions at all nodes are
below the critical value.

Convergence

At the current stage, since the writers focused on simulation
of the stress and displacement fields of pavements at early
ages, time differentiation and integration are discretized in
equal ranges. It was confirmed numerically that, for realistic
values of the rate of shrinkage strain and the age-dependent
elastic modulus, for the first 10 days, displacements and
stresses tend to be stable or converge within 30 steps. That is,
an eight-hour increment was found to be sufficient for the first
10 days. After the initial 10 days, the rate of change of shrink-
age strain, elastic modulus, and creep compliance reduces. As
a result, a larger time step can be adopted. Optimizing the
application of this numerical method for long-time calculations
would require variational time increments.

Convergence of this approach in the spatial dimension fol-
lows the general rules of the finite-difference method in 2-
dimensional and the boundary-element method in 3-dimen-
sional senses. Since in many cases, deformation and bottom
interface stress of a pavement do not change severely, elements
having twice the plate depth can provide solutions of sufficient
accuracy.

NUMERICAL EXAMPLES

Simple Thermal Stress Solution Compared with FEA
Results

The numerical approach presented in this paper was com-
pared with a commercially available finite-element solution
(CSA/NASTRAN), by considering a thermal stress analysis.
Creep and aging effects were neglected and the plate was con-
sidered to rest on an elastic subgrade. The plate was assumed
to have a 12 3 12 m2 footprint and a 0.2 m thickness. The
plate was considered to have the properties of a normal
strength concrete with E = 30 GPa, n = 0.2, and aT = 2.0 3
1026/7C. The foundation was assumed to have the properties
of dense sand with E = 50 MPa and n = 0.35. No instantaneous
temperature stresses were applied to the foundtion (i.e.,
aTo foundation = 0). An instantaneous temperature drop (DT =
2507C) was applied to the entire slab, which resulted in the
FIG. 4. (a) Comparison of Horizontal Displacements on Neu-
tral Plane Obtained from Developed Code with FEM; (b) Com-
parison of Normal Stresses, s11, on Top of Slab Obtained from
Developed Code with FEM

development of deformations and stresses. It should be noted
that the bond between the plate and the foundation was as-
sumed to be perfect (i.e., no debonding).

The finite-element analysis computation was conducted by
discretizing a quarter of the plate and the foundation into a
finite-element mesh due to the symmetry of the problem. The
plate was meshed by quadrilateral plate elements with an 8 3
8 grid. The elastic foundation was discretized using three-di-
mensional, eight-node, quadrilateral elements with an identical
size for the elements adjacent to the plate. The size of the
foundation elements was increased gradually as the distance
from the plate surface increased. To approximately simulate
the natural boundary condition at infinity, the foundation is
fixed at a distance of ten times the half-length of the plate.

In the computational analysis, using the code developed
from the present work, schemes of up to 24 3 24 elements
(25 3 25 nodes) were adopted for the horizontal plane. The
computations trials in this analysis have shown that a mesh
finer than 12 3 12 elements (13 3 13 nodes) resulted in a
variation of stresses less than five percent that from the finest
mesh. The comparison of displacement on a line in the mid-
plane and stress at the top surface in the Ox1 direction obtained
from both the proposed method and the finite-element model
(FEM) are shown in Figs. 4(a and b), respectively.

It is seen that the horizontal displacements obtained from
different programs coincided perfectly. On the inner points,
stresses also match reasonably. It should be noted that in the
present approach, boundary stresses are determined by bound-
ary conditions, yet in FEM, stresses are inter- or extrapolated
from node displacement solutions. This is why large stress
differences are observed at slab edges.

Linear Shrinkage Gradient through Depth

To simulate a typical pavement slab, the displacement and
stress fields were calculated using an 8 3 8 m2 footprint with
a 0.33 m thickness. The plate was of normal strength concrete
JOURNAL OF ENGINEERING MECHANICS / JANUARY 2000 / 39



FIG. 5. Displacement Contour Plot of u1 in Quarter of Slab
(Top) and Deflected Surface (u3) of Whole Slab (Bottom)

with E28 = 30 GPa and v = 0.2 at all times. As described by
Müller (1994), the elastic modulus changes over time follow-
ing Es(j) = E28 ?exp[0.5s(1 2(28/(j/t1))

0.5)] with s = 0.25 and
t1 = 1 day. To compute the creep compliance, the compressive
strength and relative humidity of the ambient environment, as
required by the CEB model (Müller 1994), were specified as
30 MPa and 40%, respectively. The free shrinkage rate of the
slab was assumed to be linear through the depth with no free
shrinkage at the plate foundation interface and a shrinkage rate
at the top surface of the form = 1024 2 5 3 1025 ln(t)ε̇shrink

when t [ [1, 10] (days). The mathematical expression for the
shrinkage rate was obtained using regression analysis of free
shrinkage data (Yang et al. 1996; Shah et al. 1998; Weiss et
al. 1998). The foundation was again considered to be dense
sand E = 50 MPa and Poisson’s ratio v = 0.35. It should be
noted that the shrinkage profile can be any function in depth
and in time and the solution presented here is only a simple
example problem to provide a description of the behavior of
a slab under shrinkage. Debonding was considered using a
perfect compression–zero tension bond law.

Fig. 5 shows the displacement of the neutral plane in the
horizontal direction (Ox1) and the displacement in the vertical
direction (Ox3) after 10 days. The results indicate that the hor-
izontal displacement is typically less at the center than at the
edges due to debonding. Vertical deflections are higher near
the free edges, especially at the corners of the slab; however,
the middle of the slab is virtually flat.

The area of the slab that debonded can be determined by
using the interaction-traction plots shown in Fig. 6. The trac-
tions are zero in the debonded region; however, these tractions
are high between the bonded and debonded regions of the plate
and nearly minimal in the case of the frictional tractions, and
the vertical reaction component is similar to the slab weight
in the center of the plate. The increase in tractions at the area
near the debonding region is caused by the interaction force
redistribution after the bond between the slab and the foun-
dation is released.

The stress components of the slab at the top surface are
shown in Fig. 7. All normal stress components in the Ox1-Ox2
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FIG. 6. Contour Plot of Interface Frictional Traction V1 (Top) in
Ox1 Direction of Quarter of Slab and Normal Supporting Com-
ponent V3 for Whole Slab

directions are in tension. As expected, normal and principal
stresses are highest in the center portion of the slab. It can be
seen that, in the center portion of the slab, the results are
relatively constant. Using a systematic solution process for the
slab, the maximum tensile stress development over time can
be predicted. In addition, by maintaining the slab depth and
materal properties constant, the other dimensions of the slab
can be varied appropriately to provide variation of the maxi-
mum tensile stress versus the slab dimension. Coupling this
analysis technique with the age-dependent tensile strength of
the concrete material provides an estimation for the crack or
joint spacing in a concrete pavement; however, future work
will be aimed at incorporating a fracture mechanics failure
criterion with this approach.

SUMMARY AND CONCLUSIONS

In this work, a technique was developed to compute the
stress development in a three-dimensional concrete plate re-
strained by an elastic subgrade. The following list provides a
synopsis of the advantages of this program:

1. Stress relaxation with aging: Time-dependent behavior
results in the inability to integrate the time integration of
the functions appearing in differential equations in a
closed form. For this reason, the solution of differential
equations was carried out incrementally with respect to
time. During the numerical computation, displacement
and traction solutions of all the previous steps need to
be saved to obtain the solution of a new time step. The
present approach only requires meshing in a two-dimen-
sional plane; thus computation time is drastically re-
duced.

2. Elastic subgrade: For the purpose of simulating stresses
in pavements, the foundation is treated as an elastic half-
space. Based on the calculations conducted in this re-



FIG. 7. Contour Plots of Normal (s11, Top Left) and Shear (s12, Top Right) Stresses for Top Surface of Quarter of Slab; Contour Plots
of Maximum (Bottom Left) and Minimum (Bottom Right) Principal Stresses
search, frictional restraint forces provided by the sub-
grade are significant and can not be ignored. Therefore,
in addition to the vertical stiffness of the elastic support,
consideration of stiffness in the horizontal direction is
also important. The discretized boundary integral equa-
tions are linear algebraic equations in which only the
traction components in the pavement-subgrade interface
are involved. Even so, the coefficient matrix is a full
matrix, and its dimension is fairly small compared with
other methods that require further discretization.

3. Debonding: In reality, the bonding strength of the slab-
subgrade interface can vary dramatically. For instance,
in a concrete-soil interface it can be close to zero,
whereas in a concrete-concrete interface it is on the level
of material tensile strength. In many cases associated
with the debonding phenomenon, frictional sliding oc-
curs at the bottom of a slab, so the Columb-Mohr cri-
terion is more suitable for application. To simplify the
numerical analysis at the present stage, avoiding the it-
eration process for nonlinear calculation, a friction-in-
dependent tensile strength criterion is adopted. During
numerical analysis, debonding is tested for every single
time step; i.e., stress redistribution is completed at each
step where debonding occurred.

Analysis of the displacement and stress fields in a three-
dimensional concrete slab considering shrinkage and creep is
a complex task, requiring a thorough understanding of the
time-dependent material behavior. Using the approach pre-
sented in this paper, the stress and displacement fields can be
predicted for a concrete slab restrained by an elastic subgrade
during shrinkage. By properly adjusting slab boundary con-
ditions and the elastic properties of the foundation, this model
can also be extended to simulate stress and displacement fields
of other flat concrete structures, such as floors or bridge decks.

APPENDIX I. GREEN’S FUNCTIONS IN (19)

The Green functions in (19) can be written as [X = (x1, x2),
Y = (x̄1, x̄2)]:

21 1 n (x 2 x̄ )i i
U* = 1 2 n 1 n ,ii F G2pEr r

2 2no sum on i(= 1, 2), r = (x 2 x̄ ) 1 (x 2 x̄ )Ï 1 1 2 2

n(1 1 n)
U* = U* = (x 2 x̄ )(x 2 x̄ )12 21 1 1 2 23pEr

(1 1 n)(1 2 2n)
U* = 2 (x 2 x̄ ), i = 1, 23i i i22pEr

21 2 n
U* = , U* = 2U*, i = 1, 233 i3 3i

pEr

where E and n = elastic modulus and Poisson’s ratio, respec-
tively.

If, for example, ox1 and ox2 are both symmetric axes, with
the following substitutions:

U* = U*(x , x , x̄ , x̄ ) 1 U*(x , x , x̄ , 2x̄ )i1 i1 1 2 1 2 i1 1 2 1 2

2 U*(x , x , 2x̄ , x̄ ) 2 U*(x , x , 2x̄ , 2x̄ )i1 1 2 1 2 i1 1 2 1 2

U* = U*(x , x , x̄ , x̄ ) 1 U*(x , x , x̄ , 2x̄ )i2 i2 2 2 1 2 i2 1 2 1 2

1 U*(x , x , 2x̄ , x̄ ) 2 U*(x , x , 2x̄ , 2x̄ )i2 1 2 1 2 i2 1 2 1 2
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U* = U*(x , x , x̄ , x̄ ) 1 U*(x , x , x̄ , 2x̄ )i3 i3 2 2 1 2 i3 1 2 1 2

1 U*(x , x , 2x̄ , x̄ ) 1 U*(x , x , 2x̄ , 2x̄ )i3 1 2 1 2 i3 1 2 1 2

integration is over the first quarter of the plate footprint.
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