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Abstract--The evolution of internal stresses and strains in the microstructure of a single crystal nickel-base 
alloy during annealing and during creep in [001] direction has been calculated using a visco-plastic model. 
Two limiting conditions are considered: an "overloading" case where the internal stresses reach the critical 
resolved shear stress of the whole ~' volume and an "underloading" case where the critical resolved shear 
stress of the ~' precipitate is reached only at distinct areas. During creep deformation a triaxial stress state 
evolves in the microstructure and large pressure gradients are built up. The influence of an initial coherency 
misfit is shown to be negligible after short times of creep. The calculations allow the prediction of flow 
patterns in the microstructure, creep-induced lattice parameter changes, type and arrangement of 
interfacial dislocations and of the dependence of the stationary strain rate on the cube or plate morphology 
of the ~/' phase. 

Zusammenfassung--Die Entwicklung von inneren Spannungen und Dehnungen in der Mikrostruktur 
einer einkristallinen Nickelbasislegierung w/ihrend des Anlassens and w/ihrend des Kriechens in [001] 
Richtung wurde mit einem viscoplastischen Modell berechnet. Es k6nnen zwei Grenzf/ille unterschieden 
werden: der "~berlastfall", bei dem die inneren Spannungen gr6Ber als die kritische Schubspannung des 
gesamten y' Volumens werden, und der "Unterlastfall", bei dem die kritische Schubspannung nur in 
bestimmten Bereichen der Ausscheidung erreicht wird. WS, hrend der Verformung baut sich in der 
Mikrostruktur ein dreiachsiger Spannungszustand mit hohen Druckdifferenzen auf. Der Einflu8 der 
koh/irenten Gitterfehlpassung auf das Kriechverhalten nimmt schnell ab. Die Berechnungen erlauben die 
Vorhersage der FlieBprofile in der Mikrostruktur, von kriechinduzierten ,~nderungen der Gitterparameter, 
des Typs und der Anordnung von Grenzfl/ichenversetzungen und der Abh/ingigkeit der station/iren 
Dehnrate vonder Wiirfel- bzw. Plattenmorphologie der 7' Phase. 

1. INTRODUCTION 

Modern nickel-base superalloys are strengthened by 
a high volume fraction of  hard cuboidal 7'  precipi- 
tates embedded coherently in a softer matrix. 

Due to the misr ,  atch in lattice parameters of  the 
phases high coherency stresses build up in the micro- 
structure. Finite element methods (FEM) have been 
used by several authors in order to calculate their 
distribution [1-8] and different experimental tech- 
niques have been applied for their measurement 
[9-12]. F E M  calculations of  the strain distribution in 
the microstructure were also successfully compared 
with neutron diffraction spectra of  the lattice par- 
ameter distribution in a coherently-stressed nickel- 
based superalloy [12]. In addition, calculations of  the 
strain energy stored in the ~/y '  microstructure were 
shown to determine the equilibrium shape of  the 7'  
precipitates in the underformed state and under 
external load [3-5, 8]. 

2D and 3D calculations were compared in [8]. 
In order to compare theoretical with experimental 

tSRR99 is a trademark of Rolls-Royce plc. 

results it is necessary to make 3D calculations [8, 12]. 
2D are only useful to get a quick and qualitative 
survey of  the stress field in the microstructure. 

Calculations of  the development of  the internal 
stresses during creep deformation have so far been 
restricted to two-dimensional analysis and square 
precipitates which were not  permitted to deform 
plastically [7]. 

In the present paper we will calculate the internal 
stress distribution and the macroscopic strain curve 
for cubic 7'  morphology during creep deformation 
using the FEM-technique.  Analytical results will be 
presented for the 3:' plate morphology.  The calcu- 
lations were done using the parameter set of  SRR99t ,  

Our calculations will be compared with experimen- 
tal results such as lattice parameter measurements 
[11, 13-15], T E M  investigations [16-18] and creep 
curves [19, 20]. 

2. MICROMECHANICAL MODEL 

After standard heat treatment of  $RR99 the y '  
cuboids have a volume fraction of  70% and an edge 
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length of 0.5/~m [2, 21, 22]. They are coherently and 
periodically embedded in the matrix with a channel 
width of approximately 50 nm. The Y/Y' interfaces are 
aligned parallel to the {001} cube planes. 

For  the calculation a volume element containing 
one eighth of the y '  cube surrounded on three sides 
by its matrix channels is chosen. The y and y'  
materials are connected compatibly at the phase 
interface. The unit-cell method, the corresponding 
boundary conditions and the introduction of the 
misfit into the model are described in [1, 2, 6-8]. 

We will make two and three-dimensional calcu- 
lations. 2D calculations allow for a quick overview 
over the stress distribution in the microstructure, 
whereas 3D calculations are necessary to obtain 
quantitative results. Choosing 62 , 102 , or 202 finite 
elements for 2D and 33, 4 3, 53 or 63 for 3D elements 
has only minor influence on the numerical results for 
total elongations less than 3%. The finite element 
meshes and the choice of finite elements were already 
presented in [2, 8]. 

Due to the small dimensions of the two phases in the 
superalloy, both phases deform completely different 
in composite as compared to bulk y and ~,' material. 

From TEM results [7, 16, 17] it is known that at 
elevated temperatures the creep deformation starts in 
the matrix phase. Only at later stages of creep 
deformation the y '  precipitate is sheared by dislo- 
cations. 

Consequently, the matrix is permitted to deform 
both elastically and by creep. We chose a creep power 
law relating the equivalent strain rate ~e with the 
equivalent von Mises stress crra~e s 

~ = , 4  • " ( l )  O" Mises 

where n is the creep exponent. The equivalent von 
Mises stress arais~ is defined by 

deform elastically and perfect-plastically according to 
the von Mises yield criterion, when the local stress 

y~ level reaches the y '  yield stress O'yield. 
Diffusion controlled morphological changes during 

creep or inhomogeneous deformations of the speci- 
men are not considered. 

2.1. lnput data 

The input data required for the calculations were 
taken from the literature concerning SRR99 or re- 
lated superalloys. They are listed in Table 1. 

As the value of y '  yield stress in composite is 
unknown we have chosen two different values for the 
y '  yield stress in parameter sets I and II in order to 
study two different deformation mechanisms, called 
overloading and underloading case. The exponent n 
is taken from a creep investigation of SRR99 [19]. 

The pre-exponential factor A was arbitrarily cho- 
sen to be equal to A = 1.472.10-42pa -4"7 for all 
model calculations. 

In order to compare calculations and experiment 
one has to shift the creep time in such a way that the 
calculated creep curve has the same stationary creep 
rate (or approximately the same quasi-stationary 
creep rate) as the experimental curve. For  example, 
using parameter set /, 100 normalized time units 
equal 430 h in a creep experiment of SRR99 at 
T = 1123 K [19] as shown in Fig. 9(a). This is the time 
scale for all other model calculations at 1123 K with 
other morphologies and other loading conditions. 

Another possibility would be to choose the n and 
A values of  the bulk matrix phase as done in [7]. The 
7 bulk material shows a value of n = 4.7, similar to 
the one we choose. Using the A value of the bulk 
matrix material one does not take into account the 
high creep resistance of y material forced into small 
channels as discussed in [7]. 

O'Mise s "~- % / 0 . 5  " [(0"11 - -  0"22) 2 "~ (0"22 - -  0"33) 2 "Ji- (0"22 - -  0"11) 2] ")1- 3" (a~= + 0"~3 + 0"21) (2) 

where air are the components of  the stress tensor. The 
equivalent strain is defined according to the von 
Mises stress state. The y'  precipitates were allowed to 

Parameter set III  will be used for the analytical 
calculations made to obtain the stationary stress state 
in the plate morphology after creep deformation at 

Table  I. I npu t  da t a  used for  calculat ions 

Pa rame te r  set I Pa ramete r  set II Pa rame te r  set III 

Case  Over load ing  Unde r load ing  Unde r load ing  

Tempera tu re  1123 K 1323 K 
Youngs '  modu lus  E r' [8, 23] 108 G P a  85 G P a  
Shear  modu lus  G r' 98 G P a  85 G P a  
Poissons '  ra t io  v r' 0.40 0.41 
Youngs '  modu lus  E r [8, 23] 88 G P a  77 G P a  
Shear  modu lus  G r 97 G P a  87 G P a  
Poissons '  rat io  vr 0.40 0.41 
Coherency  misfit d; ¢°h [12] - 0 . 1 4 %  or  0 o r  + 0 . 1 4 %  - 0 . 2 %  
~," volume f rac t ion  (3D) [24] 70% 62% 
7 '  a rea  f ract ion (2D) [2, 8] 73 .5% - -  
y' yield stress tr~ic~ d 650 M P a  750 M P a  > 4 8 4  M P a  
External  load  o'ex t 490 M P a  0 to 300 M P a  
L o a d  axis [001l 
Creep  exponent  n [19] 4.7 > 1 
Pre-exponent ia l  fac tor  A 1.472- 10 -45 Pa -4"7 - -  
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T = 1323K. For the sake of simplicity, the elastic 
constants of the matrix will be used for both phases 
in our analytical considerations. 

FEM calculations were done simulating: 

(i) a long-term annealing experiment at T = 1123 K 
without external load; 

(ii) tensile creep in [001] direction under a constant 
load of 490 MPa at T = 1123 K; 

(iii) tensile creep in [001] direction at T = 1323 K for 
a ~/' plate morphology. 

In fact, scaling the time and stresses involved in the 
calculation according to the creep power law our 
results can be transformed to other temperature and 
load parameters. 

All FEM analysis were performed using ABAQUS 
finite element code [25]. 

3. RELAXATION OF COHERENCY STRESSES 
DURING LONG-TERM ANNEALING 

Using parameter set I (3D) but with zero external 
load and a coherency misfit of 6~oh___ --0.14% the 
stress and strain distributions for an annealing tem- 
perature of T = 1123 K have been calculated as func- 
tion of time. 

Plastic deformation of the matrix channels due to 
the coherency stress field is calculated using the power 
law of equation (1). The time dependence of stresses 
and strains will be discussed for selected points in 
matrix and ?'  phase as depicted in Fig. 1. 

As can be seen from Fig. 2(a) at the beginning of 
annealing the matrix channels as points A and B are 
highly loaded (247 MPa von Mises stress). The matrix 
crossing point G and the interior of the precipitate 
around point C are on a low von Mises stress level 
with 40 and 20 MPa, respectively. 

During long-term annealing under zero external 
load the high coherency stress in the small matrix 
channels decrease drastically. The matrix crossing 
point G remains on its low level; the 7' interior on 
30 MPa. At the normalized time tnorm of 1800 units 
the von Mises stress level in the whole microstructure 
is on the same low stress level (~25 MPa). Now the 
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Fig. 1. 7' cube with its adjacent matrix. Open circles mark 
matrix points and closed circles precipitate points. Point A 
and point B are the midpoints of the horizontal and vertical 
matrix channels, respectively. Point C marks the center of 
the 7' cube. Point D is located near the edge of the 7' cube. 
Point E is on the 7' side opposite to the channel point A. 
Point G marks the crossing point of three matrix channels. 
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Fig. 2. (a) Evolution of von Mises stress for a cubic 7' 
morphology with an initial misfit value of 6~o h = -0.14% 
over time. No external stress is applied. (b) Plastic strain 
built up in the matrix channel parallel to the ?/7' interface, 

stresses decrease slowly towards zero for infinite 
times. 

The reduction of the coherency stresses is ac- 
companied by the build-up of plastic strain in the 
matrix parallel to the ?/? '  interface [Fig. 2(b)]. The 
algebraic value of plastic strain 5 p~ral~e~ drops quickly 
at the beginning. At t,orm = 1800 the plastic strain 
value is 6Pa'a"a=--0.128% and approaches slowly 
the initial coherency value 6coh= --0.14%. 

An interfacial edge dislocation network with a 
continuum distribution of infinitesimal small Burgers 
vectors causes such a continuum plastic strain 5 para,,~ 
and stresses of opposite sign to the coherency field in 
the narrow matrix channels. Taking into account 
crystallographic aspects, a quadratic dislocation net- 
work with finite Burgers vector and extra half planes 
inserted in the 7' phase is building up, which compen- 
sates the coherency misfit stresses [Fig. 3(a)]. 

4. SIMULATION OF CREEP DEFORMATION 
UNDER AN EXTERNAL CREEP LOAD 

4.1. 2D calculation o f  the internal stresses 

2D calculations are used for a quick survey of the 
stress distribution in the ?/7'  microstructure. The 
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Fig. 3. Schematic depiction of interfacial dislocation net- 
works on the faces of a 7' cube. We only consider, for the 
sake of simplicity, the edge component of dislocations with 
<001> line vectors lying at the Y/7' interface. Full and 
broken lines correspond to line vectors where the extra half 
plane is inserted on the 7' and Y side, respectively. (a) During 
long-term annealing under no external load the initial 
(negative) coherency misfit can be compensated by 
quadratic dislocation meshes. (b) Under a tensile load in 
[001] direction (and no coherency misfit) interfacial dislo- 
cation networks develop which reduce the von Mises stress 
level in the soft matrix phase. (c) Adding the coherency 
dislocation meshes in (a) to the creep-induced meshes of (b) 
one gets the network configuration for a negative misfit 

alloy under [001] tensile load. 

calculations were done with parameter  set I for 
square precipitates under 490 MPa [001] tensile load 
(parameter set I) and plane stress condit ion (stresses 
in the third dimension are zero.) 

Figure 4(a) presents the von Mises stress distri- 
bution after tnorm = 8.0 creep deformation under 
490 MPa load. At this late stage of  deformation the 
internal stress distribution is independent of  the 
initial coherency misfit. The von Mises stress level in 
the matrix phase is reduced as compared to the 
external load of  490 MPa. The horizontal channel is 
on a homogeneous stress level of  440 MPa. In the 
vertical channel the von Mises stress level increases 
from 200 MPa at the midpoint  of  the matrix channel 
up to 410 MPa at the matrix crossing point. No  
significant stress gradient perpendicular to the 7/~" 
interface is observed in the matrix. At  the shaded 
por t ion the ~,' material is flowing plastically as the 
stress level of  0.~ieid = 650 Mpa  is reached. The y '  
phase adjacent to the center of  the horizontal matrix 
channel is on a stress level of  520 MPa only. 

Tensile stresses have been built up parallel to 
the ~,/y' interfaces in order to reduce the yon Mises 
stress level. The stress state (0.u, 0.22, 033, 012, O'13, 0"23) 
in the horizontal channel is approximately 
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Fig. 4. 2D calculation of the von Mises stress distribution 
in the 7/7' microstructure during creep deformation. Lines 
of constant equivalent von Mises stresses in MPa are 
depicted after a normalized time of 8.0. One quarter of a y' 
square is shown. The broken line depicts the 7/7' interface. 
(a) 490 MPa tensile load are still acting perpendicular to the 
upper bond. The shaded area corresponds to the deforming 
7' phase. (b) Von Mises stress distribution just after remov- 
ing the external load. (c) Schematic depiction of the edge 
dislocation network which produces the long-range residual 

stresses. 
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(250 MPa, 0, 520 MPa, 0, 0, 0). At the midpoint of 
the vertical channel the stress state is 
(120 MPa, 0, - 8 0  MPa, 0, 0, 0). 

Upon unloading the matrix relaxes to a nearly 
homogeneous and high von Mises stress level of 
about 220 MPa [Fig. 4(b)]. A complex stress state 
characterized by steep stress gradients remains in the 
7' cube. The maximum (240 MPa von Mises stress) 
and minimum (30 MPa von Mises stress) are located 
at the neighbourhood of the 7' tip. 

Residual stresses of 250 MPa tension in the hori- 
zontal channel and 200 MPa compression in the 
vertical channel remain parallel to the y/? '  interfaces. 
Microscopically these internal stresses parallel to the 
interfaces are produced by interfacial edge dislo- 
cation networks as discussed in Section 3. The sign of 
the Burgers vector relative to the interface changes 
from the horizontal to the vertical channel as indi- 
cated in Fig. 4(c). 

4.2. 3D calculation o f  the creep-induced stresses 

The complex stress state in the cubic precipitate 
will be compared with the homogeneous stress state 
of the plate morphology during creep. 

Two different cases are distinguished. They are 
denoted "overloading" and "underloading" case 
which differ in the 7' yield behavior. 

The creep-induced stresses will be studied in Sec- 
tions 4.2.1 and 4.2.2, whereas the influence of an 
initial coherency misfit will be examined separately in 
Section 4.2.3. 

4.2.1. Overloading case. First, we will discuss the 
overloading case. In this state the external load tr~, is 
larger than the product of the equivalent 7' yield 
stress O'~iel d and 7' volume fraction V r' 

cro~, > ~ i o , ~  " V~' (3) 

7' Cubes. At t = 0  under the external load of 
490 MPa and 5 ¢°h = 0 the elastic stiffer ? '  phase takes 
approximately 510MPa, the horizontal matrix 
channel 460 MPa and the vertical channel 420 MPa 
[Fig. 5(a)]. Then the yon Mises stress in the horizontal 
and vertical channel decreases rapidly up to a station- 
ary value of ~,135 MPa. The y'  precipitate starts 
flowing at Point D near the vertical channel and the 
7' tip. The flow behavior of the 7' cube is similar to 
that of the 7' square in 2D where the maximum yon 
Mises stress is located near the vertical channel and 
the 7' tip. As soon as the yon Mises stress has reached 
the ? '  yield stress of 650 MPa, the whole 7' precipitate 
is deforming plastically. 

Figure 5(b) presents the principal stresses in the 
horizontal and vertical channels during creep defor- 
mation. In the horizontal channel a triaxial tensile 
stress state has built up. Finally, the stress component 
perpendicular to the ? /? '  interface is nearly equal to 
the 7' yield stress of 650 MPa, whereas the stress 
components parallel to the ?/7 '  interface are equal to 
the external load of 490 MPa. In the vertical channel 
the stress component parallel to the load axis de- 
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Fig. 5. (a) Evolution of the yon Mises stress within the cubic 
?' microstructure over time undcr overloading condition 
(parameter set I, &cob = 0). Note that thc precipitate regions 
C (precipitatc center) and the edgc point D start flowing at 
different times. (b) Evolution of thc principal stresses in the 
horizontal (point A) and vertical channel (point B). No 

significant shear stresses are observed in both points. 

creases rapidly to a stationary amount of 50 MPa 
tension. The two other stress components are on a 
low compressive stress load of approximately 50 and 
70 MPa, respectively. 

The edge dislocations which produce these in- 
ternal stress fields are displayed in Fig. 3(b). The 
networks in the horizontal channels have quadratic 
meshes, whereas in the vertical channel the ar- 
rangement consists of parallel dislocations with line 
vectors perpendicular to the load axis. The extra 
half planes are situated in the 7' phase at the 
horizontal channels and in the matrix at the vertical 
channels. 

The different triaxial stress states developed during 
creep deformation result in a large stationary press- 
ure gradient from the vertical towards the horizontal 
channel 

P v e r t  - -  Pho r i z  ~ 566 MPa. (4) 

7' Plate morphology. A 7' plate morphology, as 
shown in Fig. 6, is used to simulate the microstructure 
that is known as ? '  rafting. 
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Fig. 6. Plate morphology. Alternating plates of ? and V' 
phases are infinitely extended in [010] and [100] directions. 

For  the plate morphology the stationary stress 
state after creep deformation is obtained taking into 
account that the soft matrix tries to lower its von 
Mises stress level. Equilibrium conditions for the 
stress field were given in [8, 12,22]. Due to the 
symmetry the stresses are homogeneously distributed 
in 7 and ? '  plates, respectively. In the plate mor- 
phology the build-up of shear stresses is not sup- 
ported [8, 12, 22]. 

During a tensile creep test tension stress parallel to 
the interface is built up in the matrix plate, whereas 
the corresponding compressive stresses are found in 
the ~' plate. Consequently, the yon Mises stresses in 
the 7' phase increase up to the yield stress of the 
precipitate in the overloading case. 

The stationary stress state (all ,  an,or33) in both 
plate phases is given by: 

o-, = V ;  (o'~,;o~d - o-o,,,), TSv (o-~,;o,,, - o-°,,,), o-o,,, (5)  

a r' = (a,xt - ayieldr', a,,t -- ayi,l,,~" Cr,,,). (6) 

Qualitatively, the matrix plates, with their phase 
interfaces orientated perpendicular to the load axis, 
behave similar to the horizontal matrix channels of 
the cube morphology. Large tensile stress com- 
ponents are observed parallel to the phase interface. 
The stationary yon Mises stress level in the matrix 
plate is given by 

a re"t's - (a,xt - a~]eld " Vr')/V y (7) M i s e s  -- 

when V ~ is the matrix volume fraction. For  parameter 
set I we obtain a ~ i ~  ~ ~ 116 Mpa which is just smaller 

~ . t ~  135 MPa of  the than the yon Mises stress O M ~  

matrix channel in the cube morphology. 
4.2.2. Underloading case. Now we will discuss the 

deformation in underloading condition which is 
defined by 

O ' e x  t < O"~,;d d ' V y ' .  ( 8 )  

The calculations were performed with parameter set 
II with a ? '  yield stress of  750 MPa. The coherency 
lattice mismatch was considered to be zero. 

~" Cubes. The yon Mises stress in the matrix 
channels and the cube interior decreases rapidly 
towards zero as depicted in Fig. 7. 

The plastic deformation of  the V' precipitate begins 
at Point D. But then the stress level in Point D 
decreases below the y'  yield value of 750 MPa and 
other parts of the y '  precipitate deform plastically, 
e.g. point E after t,o~m ~ 3" 105. The stress level in the 
centre of the ~' cube increases rapidly up to 700 MPa, 
but then drops down to 600 MPa. The average von 
Mises stress level of the ~,' precipitate is approxi- 
mately 700 MPa. Consequently, only distinct parts 
of the 7' precipitate are deforming at the same time. 

The principal stress state in the horizontal and 
vertical matrix channels approaches ~rhorz ~ 650 MPa 
(1, 1, 1) and crvert ~ ( - 7 0  MPa, - 7 4  MPa, - 6 4  MPa), 
respectively. The stationary pressure difference 
between the vertical and horizontal channel is given 
by 

Pvert --Photo ~ 720 MPa < cr~'iejd. (9) 

y' Plate morphology. 7' plates do not flow under 
underloading conditions. The stationary stress state 
in the matrix and 7' plate is 0"ext'(1, 1, l)  and 
O ' e x  t " (-- Vy/Vy t, - -  VT/VV' , 1) respectively. 

4.2.3. Relaxation o f  coherency stresses under an 
external load. Now we study how initial coherency 
stresses influence the creep behavior of a specimen. 
The calculations were done with parameter set I and 
different coherency misfit values. 

Now we look at the yon Mises stress distribution 
for different coherency misfit values at 4o~m = 0 under 
the external load of 490MPa (Fig. 8). For  
6 = - 0 . 1 4 %  and 6 = 0 the von Mises stresses are 
larger in the horizontal channel with 680 and 
460 MPa than in the vertical channel with 560 and 
420 MPa, respectively. For  6 = + 0.14% the situation 
is vice versa. The von Mises stress in the horizontal 
channel is 240MPa vs 360MPa in the vertical 
channel. 

The von Mises stresses in the matrix phase coincide 
after a short time tnorm ~ 0.5 for different coherency 
values. The misfit stresses in the horizontal and 
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Fig. 7. Evolution of the von Mises stresses in the cubic 
morphology over time in underloading conditions. The 
arrow indicates that during a small time interval the 7' phase 
is flowing at point D. Point E starts flowing at a later stage 

of deformation. 
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Fig. 8. Variation of the von Mises stress (a) in the hori- 
zontal and (b) in the vertical channel with different 
initial coherency misfit values (parameter set I, 
g¢oh= _0.14%,0,0.14%) over the first normalized time 
unit. The curves coincide after the first normalized time unit. 

vertical channel have nearly the same value of ap- 
proximately 190 MPa. 

Consequently, one would predict that for alloys 
with negative misfit the deformation should start in 
the horizontal matrix channels. At a later stage the 
deformation should also spread into the vertical 
channels. 

During creep deformation under an external load 
of 490 MPa the coherency stresses are compensated 
approximately 1000 times faster than under zero load 
[compare Fig. 2(a) with Fig. 8]. The stationary stress 
state during creep deformation as shown in Figs 4, 5 
and 7 is independent of the amount of coherency 
misfit. 

5. CALCULATION OF THE CREEP STRAIN 

5.1. Overloading case 

Figure 9(a) shows the macroscopic creep strain 
in [001]-direction of the composite specimen versus 
normalize time. The strain rate increases rapidly 
in the first two time units staying constant there 
after. The steady state strain rate of the composite 

with cubic precipitates is 1/500 as compared to the 
steady state strain rate of the isolated matrix under 
the same load of 490 MPa. The value of the amount 
of coherency misfit 6coh has only minor influence 
on the creep curves. The calculated and ex- 
perimental creep curves coincide up to 0.5% plastic 
strain. After ~0.5% plastic strain the experimental 
strain rate accelerates and terminates the tertiary 
part, whereas our model remains in the stationary 
state. Alternating plates of 7 and 7' phase as shown 
in Fig. 6 have half the strain rate than a morphology 
with 7' cubes. 

5.2. Underloading case 

Figure 9(b) shows the plastic elongation of speci- 
mens with cube or plate morphology during creep 
deformation under underloading conditions. Please 
notice the different time scale of t . . . .  - ~ - 2 '  106 as 
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Fig. 9. (a) Calculated creep curves for cube and plate 
morphology for differential initial misfit values in overload- 
ing conditions. An experimental creep curve is shown for 
SRR99 at T = 1123 K under 490 MPa tensile load in [001] 
direction [19]. 100 normalized time units equal 430 h. (b) 
Calculated creep curves for the plate and cube morphology 
under underloading conditions. Note the larger time scale 

than in (a). 
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compared to Fig. 9(a) with tnorm-~-100. Both creep 
curves asymptotically approach the strain rate zero. 
The deformation stops at a macroscopic plastic strain 
of 0.22% for the plate morphology and of 0.95% for 
the cube morphology. 

5.3. Creep-induced lattice-mismatch of the plate mor- 
phology 

During creep deformation the 7' morphology of 
negative misfit superalloys changes to a directionally 
coarsened raft-like structure perpendicular to the 
stress axis [16, 17]. Now we will discuss the amount 
of the creep-induced lattice mismatch in underloading 
conditions for the idealized plate-morphology of 
Fig. 6. 

Formulas relating the stress and strain state with 
the coherency misfit were given in equations (2-8) [8] 
and equation (2) in [12]. Inserting the creep-induced 

Creep lattice mismatch 6 p a r a l l e l  parallel to the 7/7' interface 
instead of 6 ~°h, one can utilize these formulas for our 
problem. The stationary creep-induced lattice mis- 
match parallel and perpendicular to the 7/7' interface 
are then given by 

(1 - v )  
creep - -  . O . e x  t (10) 

£ ~ p a r a l l e l -  E" V y' 

- 2v c~p . x crop (11) 
(7  perpend -~" ( 1  - -  V )  t ,  parallel" 

The Youngs' modulus E and Poissons' ratio v are 
assumed to be equal for both phases. The equations 

creep are valid only for underloading conditions. 6~rpe,d 
is the creep-induced lattice mismatch perpendicular 
to the phase interface. V ¢ is the 7' volume fraction. 

Under overloading conditions Xer~p and xcr=p , / p a r a l l e l  v pe rpend  

depend linear on the equivalent 7' yield stress ~' O" yield ' 

One can use formulas (10) and (11) for an overload- 
~' instead of ing case by inserting O'yield O'ex t . 

In the same way, one can calculate the creep- 
induced lattice mismatch for plates (Fig. 6) under an 
[100] external load, parallel to the 7/7' interface. The 
creep-induced lattice mismatch is zero in the [010] 
direction, perpendicular to the load axis. The lattice 
mismatch for [100] and [001] directions are given by 
equations (10) and (11) by replacing the factor (1 - v) 
with 1. 

The total lattice mismatch 0 t°tal is the sum of the 
creep-induced and coherency lattice mismatches. 

6. C O M P A R I S O N  W I T H  E X P E R I M E N T  

6.1. X-ray analysis of creep-induced lattice parameter 
changes 

The 7/7' lattice mismatch of specimens of the 
monocrystalline nickel-base superalloy SRR99 was 
measured by X-ray diffraction after high temperature 
creep with different tensile loads [11, 13, 14]. The 
X-ray measurements were made at room temperature 
under zero load. 

Figure 10 shows the experimental mismatch paral- 
lel (side case) and perpendicular (axial case) to the 
~'/7' rafts after creep till rupture at 1323 K taken from 
[14]. The room temperature value of the coherency 
misfit 5c°h~ --0.14% was chosen for zero external 
load. The measured misfit depends linearly on the 
external creep load. The total axial misfit decreases 
with increasing creep load, whereas the side case 
misfit increases. 

Making use of equations (10) and (11) for the 
underloading case (parameter set III) and the uncon- 
strained coherency misfit value 5c°h~--0.2% at 
1323 K [12] we get the theoretical curves in Fig. 10 for 
the total lattice mismatch 6 t°tal. Qualitatively, the 
theoretical calculations are able to describe the exper- 
imental measurements. However, the amount of the 
creep-induced lattice mismatch seems to be theoreti- 
cally overestimated. 

Two reasons for the discrepency between theoreti- 
cal predicted and the measured lattice parameter 
changes will be discussed: 

First, unloading the creep specimen, the von Mises 
stress level in the matrix increases from nearly zero 
up to the large value of w/2. aoxt. Interfacial dislo- 
cations can combine to reduce the creep-induced 
misfit values. 

Second, it was shown [22] that interfacial networks 
cannot completely compensate the von Mises stress 
level in the matrix as will be discussed further in 
Section 6.4.2. 

Our FEM calculations show that under [001] load 
the creep-induced stress builds up within a macro- 
scopic plastic deformation of 1% and remains nearly 
constant during further deformation. Indeed it was 
measured that during subsequent deformation the 
internal stress did not change significantly beyond 
1.5% strain until rupture [14]. 

- -  - -  Theory,  a x l a l c a s e  
- -  Theory, s ide  case  
. . . .  Exper iment ,  axial c a s e  

Exper iment ,  s ide case  

d ..4" 
°.°-" d 

- 4 -  - 

- 5  ' I ' I ' I 
0 100 200 300 

CREEP TENSION in MPa 

Fig. 10. Total 7/7' lattice mismatch versus applied stress for 
the plate morphology crept at 1323 K. Measured values are 

taken from [14]. 
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6.2. TEM investigations 

6.2.1. Start of  the matrix deformation. It has been 
observed that the deformation of negative misfit 
alloys starts in the horizontal matrix channels under 
[001] tensile load [7, 16] due to the high yon Mises 
stress level as shown in Fig. 8. At later stages of 
deformation the plastic deformation also spreads in 
the other channels as predicted in Section 4.2.3. 

6.2.2. Interfacial networks. Interfacial dislocation 
networks which build up during annealing or under 
creep load have been extensively studied [16-18]. The 
spacing d of the individual dislocations in these 
interfacial networks was correlated to the magnitude 
of the lattice mismatch by Brooks formula [26] 

d = b / 6  (12) 

where b is the magnitude of the Burgers vector. 
Dislocation networks cannot compensate entirely the 
stresses in narrow matrix channels [22]. For matrix 
channels smaller than 100 nm and for our total misfit 
values Brooks formula must be modified [22]. How- 
ever, in our continuum model the stress field in the 
matrix channels is permitted to relax totally. This 
deficit of our model can be avoided by introducing a 
modified creep law as will be done in Section 6.4.2. 

As predicted in Section 4.2.3 an external load 
accelerates the formation of interfacial networks. At 
1253 K the build-up of the neworks is finished after 
500 h at zero load and after 40 h under 170 MPa [001] 
tensile load [16]. 

At high temperatures > 1123 K and under low load 
values directional coarsening occurs rapidly during 
primary creep and produces raft-like structures which 
remain essentially unchanged from the beginning of 
the secondary creep until late stages of deformation 
[16, 17]. After their formation during primary creep, 
the 6ff and edge type dislocations remain stable 
during subsequent creep deformation [7, 16, 17]. In- 
deed, according to our calculations the build-up of 
the internal stresses in the microstructure was finished 
shortly after the primary creep. 

The creep-induced interfacial dislocation spacing 
increases with decreasing creep load [20] according to 
equations (10) and (12). Als0 zero misfit alloys exhibit 
a finite creep-induced lattice spacing as measured [17] 
in accordance with Fig. 3(b). 

The change of the sign of the Burgers vector 
relative to the phase interface from the horizontal to 
the vertical phase interface as shown in Figs 3(b) and 
5(c) was observed [18]. 

Adding the dislocation networks caused by co- 
herency misfit and creep-induced lattice mismatch 
for negative misfit alloys under tensile load, inter- 
faces normal to the stress axis should be coated 
more densely by dislocations than those parallel to 
the exterior load [Fig. 3(c)]. The stationary mesh 
spacing of dislocation networks of SRR99 in the 
horizontal and vertical sections of the rafts were 
dhorizontal ~ 60 nm and dvertical ~ 90 nm, respectively, 

under 170MPa [001] tensile load [16]. In order to 
compare these experimental values with our theoreti- 
cal considerations we use, for the sake of simplicity, 
Brooks formula of equation (12) and our idealized 
plate model for the horizontal and vertical matrix 
channels (see Section 5.3). We assume that the spec- 
imen is under underloading conditions. 

Making use of the results in section 5.2 for the 
parameter set of SRR99 at 1253 K (E = 82 MPa, 
v = 0.4 [8, 23], V;" = 0.68% [24], ~oh "~ - 0 . 1 9 %  [12]) 
one can predict the mesh spacings "theoretical.4h°riz°ntal ---- 65 rim, 

Avertical'[001] ~- 200 nm. Consid- ~theoreticalAVertical'[010] ~--- 132 nm and ~theoretical 

ering the fact that it was experimentally not 
distinguished between ~theoretical.4vertical'[010] and "theoretical.4vertical'[001], the 
theoretical values are in accordance with the 
measured ones. 

6.2.3. Shearing of  7' cubes. Based on the von 
Mises stress distribution under [001] load as shown in 
Figs 4(a), 5(a) and 7 one would expect that the first 
matrix dislocation should enter the 7' cube near Point 
D where the 7' phase starts to flow. An example of 
such a penetration was shown in Fig. 17 in [7]. 
However, no systematic study have been made of the 
area where the matrix dislocations enter a 7' cube. 

6.3. Creep curves 

Figure 9(a) shows the comparison of an experimen- 
tal curve compared with calculated ones for cubic 1" 
morphology. Up to a macroscopic plastic strain of 
0.5% our theoretical creep curve follows the exper- 
imental one of SRR99 at 1173 K under 490MPa 
[001] load. The stationary creep rate of the theoretical 
curve was made equal to the experimental one as 
discussed in Section 2.1. The macroscopic plastic 
strain where the experimental and theoretical curves 
leave the primary part is nearly equal in both cases. 
Up to a plastic strain of 0.5% the calculated creep 
strain decreases rapidly to a stationary value during 
subsequent deformation, whereas the experimental 
creep strain again increases during further defor- 
mation in the tertiary part. 

Our model is strongly based on the compatibility 
of the two phases and cannot show creep mechanisms 
based on the total loss of coherency which seems to 
be important for the tertiary part of the creep curve 
[16, 201. 

The (first) minimum creep rate ~min appears after 
strains lower than 1% [19, 20]. Our calculations show 
that the internal stresses are built up for macroscopic 
strains lower than 1%. It seems likely that the first 
minimum in the strain rate is related to the build-up 
of long-range internal stresses. 

Our FEM calculations indicate that plates should 
have better creep properties than -;" cubes, especially 
under underloading conditions. The question, 
whether the presence of well-developed 7/7' raft 
morphology has a beneficial or an adverse effect on 
the creep properties, has been discussed controversely 
[20, 27]. The problem in comparing the creep proper- 
ties of cube and raft morphologies is that rafts can 

AM 41q2 F 
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only be produced by creep experiments at high 
temperatures. Then the creep properties of specimen 
with cubic morphology were compared with pre- 
rafted specimen at lower temperatures. According to 
the high experimental pre-deformation of 3% [20] 
compared to the lower plastic strains dealt with in our 
calculation (Fig. 9), a reliable comparison between 
the two morphologies, initial coherently embedded 7' 
plates and cubes, is not possible. 

6.4. Estimation o f  7' and 7 yield stress in composite 

Due to the small dimension and morphology of the 
microstructure, 7'  and ), phases have different ma- 
terial parameters in composite as compared to the 
bulk states. Comparing experiments with our theor- 
etical results one can estimate the material parameters 
of both phases in composite. 

6.4.1. 7" yield stress. The linear dependence of the 
creep-induced lattice mismatch for raft structures 
versus applied stress from zero up to 300MPa 
at 1323 K as shown in Fig. 10 indicates that the 
composite was under underloading condition for 
these parameters. Using the experimental values 

crop = 300 MPa at T = 1323 K parallel ~ - 0 . 1 6 %  for agext 
(Fig. 5 in [13]) one might estimate utilizing equations 
(2), (10) and (11) for parameter set III 

E '  V r 
~' > agext - . ~c~eep ~ 365 MPa. (13) agyield,1323 K -t- ~ - - ~  parallel 

At 1033 K (SRR99, 750 MPa [001] load [28]) the 7' 
cube is cut by stacking faults even at an early stage 
of deformation, whereas at 1253K and 170MPa 
[001] tensile load the 7' rafts remained nearly dislo- 
cation free until shortly before rupture [16]. There- 
fore, according to our considerations in Section 4.2, 
the specimens were "overloaded" at 1033 K and 
"underloaded" at 1253 K. Making use of the defi- 
nitions for the underloading and overloading 
case [equations (3) and (8)] one can estimate an upper 
and a lower bond for the yield stress of the 7' 
precipitate 

agyield.1253 y' K > agext/V ~' = 170 MPa/68% = 250 MPa 

(14) 

agyield,1033 y' K < agext/V y' "~- 7 5 0  MPa/70% = 1070  M P a .  

(15) 

The critical resolved shear stress of Ni3(A1, Ti) and 
the shear stress of 7' phase in composite were com- 
pared in Fig. 6 in [14]. The local shear stress in the 
7' phase for the {111} (T01) glide system is 
Z¢~¢~l=ag~ield/X//6. Our estimated lower bounds of 
"['critical 149 MPa and 102 MPa at T = 1323 K fit 
roughly to the values presented in Fig. 6 in [14] where 
the critical resolved shear stress varied between 50 
and 200 MPa at 1323 K depending on the strain rate. 
z~n~¢.l varied between 300 and 470 MPa at 1033 K in 
Fig. 6 in [14] in accordance with our value of 
437 MPa. It also approximately represents the critical 
resolved shear stress which is needed to produce 

antiphase boundaries in the 7' phase at lower tem- 
peratures [29]. 

6.5. Matr ix  yield stress 

We assumed a simple creep-power law for the 
matrix phase in equation (1). Due to this creep law 
the coherency stress and the external load can be 
completely compensated in the underloading case 
during creep deformations as we see in Fig. 7. 

However, theoretically it was shown [22] that the 
yield stress ag o of the 7 phase forced into narrow 
matrix channels increases rapidly with decreasing 
channel size. The local von Mises stress level in the 
matrix channel must be greater than ag o in order to 
start matrix deformation. On the other hand ag o is also 
stress level in the small matrix channels, which cannot 
be relaxed by dislocation networks, which is demon- 
strated in [22]. 

Taking into account these two effects we can 
introduce a modified creep power law 

£e = A • (agMi~s -- ag0) n (16) 

where ago is the threshold stress for the onset of  matrix 
creep. 

Using the modified creep law instead of the creep 
law of equation (1) our former calculations can be 
used further, if one transforms the external load agext 
to agext -- agO and the Y' yield stress ag yieldr' to ag~ield - ago, 
respectively. Now the lowest possible value in the 
matrix channel is ago during creep deformation under 
underloading conditions. General features of the 
threshold stress ago have been discussed in [30]. We 
will propose three different options to get this import- 
ant material data. 

First, it is shown that creep curves can be better 
described with the creep law of equation (16) than 
with the simple law of equation (1) [19]. 

Second, by making use of the X-ray measurements 
of the lattice mismatch [13, 14] ago is the difference 
between the von Mises stress values of the 7 phase 
predicted by continuum mechanics, as done in Sec- 
tion 4, and the experimentally determined von Mises 
stress in the 7 phase after creep deformation. 

Third, one can calculate the threshold stresses ago of 
the matrix by calculating the Orowan resistance that 
has to be overcome by dislocations moving through 
the matrix channel using the numerical program 
described in detail in [22]. The interfacial dislocations 
in nickel-base superalloys are created by dislocation 
gliding on octahedral planes through channels leav- 
ing 60 ° segments in the {001} interfaces as shown in 
Fig. 7 in [16, 22]. 

Utilising these three options one gets the equivalent 
ag0-values of SRR99 to be 60, 67, and 70 MPa for a 
channel width of 160 nm at 1323 K, respectively. 

7. SUMMARY 

The stress and strain distributions in the micro- 
structure of a two phase single crystal nickel-base 
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superalloy have been calculated after annealing and 
after creep in [001] direction using FE M and an 
elasto-plastic model. 

Under  zero load due to the lattice mismatch of the 
two phases the matrix channels are highly loaded 
while the channel crossings and the y '  phase are on 
low stress levels. 

During long-term annealing under  zero load the 
high coherency stresses in the matrix decrease drasti- 
cally until  a low stress level is reached for the whole 
microstructure. 

A complex triaxial stress state builds up in the 
~/7'  microstructure during creep. The von Mises 
stress level in the soft matrix decreases, whereas the 
stresses in the 7' precipitate can reach the 7'  yield 
stress. 

Two limiting cases can be distinguished: (i) the 
overloading case where during deformation the criti- 
cal resolved shear stress is reached for the whole 7'  
volume, so that finally the material flows in total, (ii) 
the underloading case where the critical resolved 
shear stress is reached only at distinct and varying 
parts of the 7'  particles. 

The 7' plate morphology is predicted to have better 
creep properties than the 7' cube morphology. For  
the underloading conditions the critical resolved 
shear stress of the ~,' phase is reached at no time 
during deformation. 

Simulating creep deformation the long-range in- 
ternal stresses were found to build up for plastic 
strains smaller than 1% and to remain constant  
during subsequent deformation. The coherency 
stresses are compensated at an early stage of creep 
deformation. 

General  features of the creep as the (first) min imum 
of the strain rate can be correlated with the build-up 
of internal stresses. 

From the comparison of experimental results and 
theoretical predictions material parameters as the 
threshold stress a0 of the matrix and the yield stress 
of the 7'  phase in composite can be obtained. 
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