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Chapter 13  

Flat Plates

13.1 Introduction

• Flat plate

– A structural member whose middle surface lies in a plane

– Thickness is normal to the mid-surface plane

– Thickness relatively small to length and width

– May be constant or variable thickness 

Fig. 13.1  Flat plate coordinates
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• Small deflection theory

– The lateral displacement w of the plate in the z direction is less than 

half of the plate thickness, i.e. w < h/2

– If w > h/2, then 2nd order effects become significant

• In-plane membrane forces can be developed

Fig. 13.1  Flat plate coordinates
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• Special notation for 

– In-plane forces (tractions), Nxx, Nyy, Nxy [force per unit length]

– Bending moments, Mxx, Myy [moment per unit length] 

– Twisting moments, Mxy [moment per unit length] 

– Shears, Qx, Qy, [force per unit length]

13.2 Stress Resultants in a Flat Plate

Fig. 13.2  Infinitesimal element of a flat plate

Fig. 13.3  Resultant tractions on a reference surface

4Fig. 13.4  Resultant moments and shears on a reference surface
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• Let U, V and W be the components of the displacement 

vector

• The purpose of plate theory is to reduce the 3D problem to a 

more tractable 2D problem

• Kirchhoff assumed straight-line normals to the undeformed 

middle surface (reference plane) remain

– Straight

– Inextensible

– Normal to the midsurface

 Plane strain

• Kirchhoff assumption

– Not limited to small displacements

– Material independent

– OK for both elastic and inelastic conditions

13.3 Kinematics: 

Strain-Displacement Equations of Plates

Fig. 13.5
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Fig. 13.5  Displacement components in a plate element

• By Kirchhoff approximation, W-w is a second order effect, so 

let W=w

• U, V and W vary through the thickness of the plate

(13.7)
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(13.19)

13.4 Equilibrium Equations for Small-Displacement 

Theory of Flat Plates

(13.23)

(13.25)
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• Stresses vary linearly through the thickness of the plate

13.5.1 Stress Components in Terms of Tractions and 

Moments

(13.35)

13.6 Strain Energy of a Plate

U = Um + Ub + Ut (13.38)
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13.7 Boundary Conditions for Plates

Fig. 13.6

(13.54)

Boundary conditions 

at a reference surface 

edge

• Substituting for Mxx, Mxy and Myy in terms of Eq. 13.25 with 

Bz=0 and Pz=p gives

(13.56)

where
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• Consider 

– simply supported rectangular plate 

– thickness h

– in-plane dimensions a and b

• The function (Levy, 1899)

Where n is an integer satisfies 

the simple support BC @ y=0

and y=b

Fig. 13.7 Simply supported 

rectangular plate

(13.57a)

(13.57b)

13.8.1 Solution of 22 w=p/D for Rectangular Plates
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• Substitution of Eq. 13.57a into Eq. 13.56 yields an ordinary 

4th order DE for Xn(x,y)

• Solution gives four constants of integration that satisfy the 

remaining BCs

– No shear at x=0 and x=a

– No Moment at x=0 and x=a

• The lateral pressure p must be expressed in an appropriate 

form

(13.59)
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13.8.2 Westergaard Approximate Solution for 

Rectangular Plates: Uniform Load

• The stress is always greater in the direction of the shorter 

span than in the larger span

• Consider two strips EF and GH 

– The deflections of the two strips at the center of the plate are equal

– The shorter strip has a smaller radius of curvature

 a greater stress in shorter strip

Fig. 13.8  Longitudinal (EF) and transverse (GH) plate strips
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• Fig. 13.9 is the Westergaard solution for the bending 

moment per unit width across the diagonal at the corner 

(denoted by Mdiag)

Fig. 13.9 Ratio of bending moment M 

per unit width to pb2 in 

rectangular plates with simply 

supported edges.  

Note: Poisson’s ratio is 

assumed to be zero.
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Fig. 13.10 Ratio of bending moment M 

per unit width to pb2 in 

rectangular plates with fixed 

edges.  

Note: Poisson’s ratio is 

assumed to be zero.
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• Other Types of Edge Conditions

– The effect Poisson’s ratio is to increase the bending 

moment per unit width in the plate

– Let Macn and Mbcn represent the values of the bending 

momnets at the center of a rectangular plate when the 

material has a Poisson’s ratio n > 0

(13.69)
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13.8.3 Deflection of a Rectangular Plate: Uniformly 

Distributed Load

• The ODE for plates has been solved only for relatively 

simple shapes and loads

• For rectangular plate (where b is the short span length)

(13.70)
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Fig. E13.2
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13.9.1 Solution of 22 w=p/D for a Circular Plate

• Circular Plate

– Radius, a

– Thickness, h

– Polar coordinates with origin at the 

center of the plate

Fig. 13.11 Simply supported 

circular plate
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• Considering only the axisymmetric case.  Eq. 13.71

• The solution of Eq. 13.72 with p=p0=constant is

where A1, A2, B1 and B2 are constants of integration

• A1, A2, B1 and B2 are found using the boundary 

conditions at r=a and 

• The conditions that w, wr , Mrr and Vr must be finite at 

the center of the plate (r=0)
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• Analogous to the expressions for the rectangular 

plate

(13.74)
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13.9.2 Circular Plate with Simply Supported Edges

• For a solid circular plate simply supported at the edge 

r=a, the BCs are 

• The requirement that the solution be finite at r=0

requires A2=0 and B2=0 in 

No displacement at support

No moment at support
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• Solving the equations for A1 and B1 gives 

(13.75)
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13.9.3 Circular Plate with Fixed Edges

• For a solid circular plate with fixed edges at r=a, the 

BCs are 

• The requirement that the solution be finite at r=0

requires A2=0 and B2=0 in 

No displacement at support

No slope at support
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• Solving the equations for A1 and B1 gives 

(13.76)
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13.9.4 Circular Plate with a Circular Hole at the Center

• For a circular plate with simply supported edges at 

r=a, with a circular hole at r=b and subject to a 

uniform pressure p=p0, the BCs are 

No displacement at support

No moment at support

No moment at free edge

No shear at free edge

(13.77)

(13.78)
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• Solving Eqs. 13.77 and 13.78 for A1, A2, B1 and B2

gives  

(13.79)

• With these coefficients and Eqs. 13.73 and 13.74, the 

displacement and stress resultants may be computed

• e.g., for a/b=2 and n=0.3  

(13.80)
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• Except for simple shapes of plates, the governing 4th

order PDE is complicated to solve

• Results can be reduced to tables or curves of 

coefficients for the maximum bending moments per 

unit width and for maximum displacements

• Eq. 13.56 does not include stiffening due to tensile 

forces   
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13.9.5 Summary for Circular Plates with Simply 

Supported Edges

• The lateral displacement w and the bending moments 

Mrr, Mqq for uniform lateral pressure p are given by 

Eqs. 13.75

• wmax occurs at the center of the plate

• smax occurs at the center of the plate

• The value smax of is tabulated in Table 13.2

42
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13.9.6 Summary for Circular Plates with Fixed Edges

• A circular plate rigidly held (fixed) so that no rotation 

or displacement occurs at the edge

• Under service conditions, the edges of plates are 

seldom completely fixed

• Slight yielding may occur at the fixed edge

• In general, an actual medium-thick plate with a fixed 

edge will be somewhere between fixed and simply 

supported

• Table 13.2 is good for thin and medium-thick plates, 

i.e. h/a < 0.1, and deflections < h/2
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13.9.7 Summary for Stresses and Deflections in Flat 

Circular Plates with Central Holes

• Circular plates of radius a with circular holes of radius 

r0 at the center are commonly used, e.g., thrust-

bearing plates, speaker diaphragms and piston 

heads.

• The max stress is given by formulas of the type

• Likewise, the max deflections are given by formulas 

like 

(13.81)

(13.82)
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Fig. 13.12

Circular plates with 

central holes, various 

loadings and BCs
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(13.81)

(13.82)
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13.9.8 Summary for Large Elastic Deflections of 

Circular Plates: Clamped Edge and Uniformly 

Distributed load

• Consider a circular plate 

– Radius a

– Thickness h

– Lateral pressure p

– With wmax large compared to the thickness h

• Let the edge of the plate be clamped

• Examine a diametral strip of one unit width showing the bending 

moments and the direct tensile forces

• Tensile forces come from:

– The fixed support at the edge prevents the edge at opposite ends 

of the diameter from moving radially  strips stretches as it 

deflects downward

– If the plate is simply supported at the edges, radial stresses arise 

due to the tendency of the outer concentric rings of the plate to 

retain their original diameter
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Fig. 13.13

Large deflections of 

clamped (i.e. fixed) 

and simply supported 

circular plates.



4/27/2010

25

49

• Values of these stresses for 

a plate with fixed edges 

having a radius a and 

thickness h and elastic 

modulus E are given in Fig. 

13.14

– Ordinates are values of stress 

multiplied by the quantity 

a2/Eh2 (to be dimensionless)

– Abscissa is wmax/h

– Bending stress sbe at the fixed 

edge is the largest of the four 

stresses

– Stresses increase 

parabolically w.r.t. wmax/h

Fig. 13.14 Stresses in thin circular plates 

having large deflections and with 

edges clamped.
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13.9.9 Significant Stress when Edges are Clamped

• The max stress is the sum of the bending and tensile 

stresses

• The smax at points in the plate just inside the edge are 

much smaller than the stresses at the edge

• Stresses show another local max at the center of the 

plate

• If failure of the plate is by general yielding, the smax at 

the center of the plate is the significant stress 

because the effect of the smax at the edge is localized

• If failure of the plate is by fatigue crack growth or if 

the plate is brittle, the stress at the edge is the 

significant stress
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13.9.10 Load on a Plate when Edges are Clamped

• The dashed line represents values of load and 

maximum deflection as compared by neglecting the 

effect of direct tensile stress

Fig. 13.15 Maximum stresses and deflections in thin circular plates 

having large deflections and with edges clamped.
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Fig. 13.16 Stresses in thin circular plates having large deflections 

and with edges simply supported.
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No displacement at support

No slope at support



4/27/2010

28

55

56



4/27/2010

29

57


