Chapter 13

Flat Plates
13.1 Introduction
+ Flat plate

— Astructural member whose middle surface lies in a plane
— Thickness is normal to the mid-surface plane

— Thickness relatively small to length and width

— May be constant or variable thickness

Fig. 13.1 Flat plate coordinates

« Small deflection theory

— The lateral displacement w of the plate in the z direction is less than
half of the plate thickness, i.e. w < h/2
— If w> h/2, then 29 order effects become significant
 In-plane membrane forces can be developed

Fig. 13.1 Flat plate coordinates
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13.2 Stress Resultants in a Flat Plate

» Special notation for

In-plane forces (tractions), N,, N, N,, [force per unit length]
Bending moments, M,, M,, [moment per unit length]
Twisting moments, M,, [moment per unit length]

Shears, Q, Q, [force per unit length]

o dy N,

Middle surface
~ of plate
- b

Middle surface
— of plate

dx, dy, dz denote
infinitesimals;
h s finite

| Fig. 13.3 Resultant tractions on a reference surface

3
h/2 h/2 h/2
No= | o, Ny= [ o,d Ny=N,= | o,d
h/2 -h/2 h/2
h/2 h/2
0,= [ o.d, 0, = [ o.a (13.2)
—h/2 -h/2
h/?2 h/?2 h/2
M, = J 20, dz M,=M, = J. 20, dz
) ) -h/2
Middle surface
— of plate
X
M,
Fig. 13.4 Resultant moments and shears on a reference surface 4
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13.3  Kinematics:
Strain-Displacement Equations of Plates

* LetU, V and W be the components of the displacement
vector

* The purpose of plate theory is to reduce the 3D problem to a
more tractable 2D problem

 Kirchhoff assumed straight-line normals to the undeformed

middle surface (reference plane) remain

— Straight

— Inextensible

— Normal to the midsurface

=>» Plane strain

 Kirchhoff assumption

— Not limited to small displacements

— Material independent

— OK for both elastic and inelastic conditions

+ By Kirchhoff approximation, W-w is a second order effect, so
let W=w

« U, VandW vary through the thickness of the plate

W v
< dx, dv denote U = -7 .
infinitesimals;
\ h is finite
W (137)
),
"\T V =yv—-=z F
% W =u

Fig. 13.5 Displacement components in a plate element
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= —-Zw =V —Iw
€ H,—Iw ., € VT Iw,

v vy y

Yoy = 26” = \_\+u‘—2:n‘” (1319)

where we recall that (x, y) subscripts on (u, v, w) denote partial differentiation.

13.4  Equilibrium Equations for Small-Displacement
Theory of Flat Plates

d‘Nn /)N” p WB 0
IRl T8 _
ox dy £ ¥
r7N“ dN” Bk 0
4 +P_+hB_=
ox dy ¥ )
2 d
%¢ .0%+P,+h3_ =0
= N 2 3
oM, M, (13.23)
Ty BetR, =0
aM aM...
R
Ny = N,
2 ~2 2
J M, a M, J M,
—= 422+ L 4hB +Pz = (13.25)

I’ ax oy Ay’

13.5.1 Stress Components in Terms of Tractions and

Moments
» Stresses vary linearly through the thickness of the plate

!VLY 12:1\4{\

G\x = ==—"F 2 :
h h\’

_ h*_ lZ:.’VIU_ (13.35)

»Y h n

N, 12:M,,

O, = —+ -
h n

13.6  Strain Energy of a Plate

U=U,+U,+U, (13.38)
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13.7 Boundary Conditions for Plates

M“ = - D(WU + vw)_\.) b o
° E\amped
.Mn = AD(M‘H +vw ) o :00:| y
My = = =nDw,, ) il
' (13.54) Clamped
V.\ = _D[W\.\.r+(2—V)Wq'\'] 0 [‘zgjl
V}y = JD[M‘”J}. +(2— V)H".Lvy] a

; Fig. 13.6 Boundary conditions
£k . at a reference surface
12(1 - v") edge
* Substituting for M,,, M, and M, in terms of Eq. 13.25 with
B,=0 and P,=p gives

D=

Vv = Vi = L (1356)

22 o4, — ) :
where ‘V_ V<u = v WE W ¥ 211 xxyy * Wiy

13.8.1 Solution of V2V2w=p/D for Rectangular Plates

¥

+ Consider
— simply supported rectangular plate } ’
— thickness h b
— in-plane dimensions a and b

* The function (Levy, 1899) s

=

w(x,y) = X”(,x)sin”Tm (13.57a) _é:_ ' :

Fig. 13.7 Simply supported

Where n is an integer satisfies
rectangular plate

the simple support BC @ y=0
and y=b

w =10 ]

M. 0? aty = 0,6 (13.57b)

—D\n-w +vw ) =

10
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Hence, X, (x) must be chosen to satisfy the boundary conditions at x = 0 and x = a. Simi-
larly, we may also write w(x, y) in the form

w(x,y) = Yn(y}sinnaﬂ( (13.58a)

which, in turn, satisfies the simple support boundary conditions at x = 0 and x = &; that is,

w =0
tx = 0, 13.58b
M = __D(w.\,\'+ VW}‘)') - OJ at x a ( 8b)

Ry

and ¥, (x) satisfies the boundary conditions at y =0 and y = .

‘One advantage of this single-series method (the Levy method) is that the subsequent series solution (see Eq.
13.63) converges quite rapidly compared to a double-series representation for w (the Navier method), that 15, a
solution form of the type

= =
w = z z A sinfTX gin NIy
mn
@ h

m=1n=1

11

« Substitution of Eq. 13.57a into Eq. 13.56 yields an ordinary
4t order DE for X, (X,y)

» Solution gives four constants of integration that satisfy the
remaining BCs
— No shear at x=0 and x=a
— No Moment at x=0 and x=a

* The lateral pressure p must be expressed in an appropriate

form o
pCuy) = pg 2 frsin2 4 g

n=1

12
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In many practical cases, p may be written in the product form
plx.y) = pof(x)gly) (13.60)

Then, Egs. 13.59 and 13.60 yield

p(x,y) = f(x) z p,,sin"%.y (13.6])

n=1

where
b

2pg } . nTy
», :Tjg(y)smT- dy (13.62)
0
Consequently, to satisfy Eq. 13.56, we must generalize w(x, y) to

T Y sin Y
w(x, y) v;[ X”(x)sm—-h- (13.63)
Then substitution of Eqs. 13.61 and 13.63 into Eq. 13.56 yields the set of ordinary differ-

ential equations

s _ o BB ym (AT, ] .
D(X" _2(.7) b +(-b~/‘_ X, =pfx), n=12,.. (13.64) ”

In the treatment of Eq. 13.64, for simplicity, we take f(x) = 1. Then, Eq. 13.64 yields

2 4
x’n"'(x)_z['%‘) x;,'(x)+("7") X, (x) = % (13.65)

By the theory of ordinary differential equations, the general solution of Eq. 13.65 is

A
X, (x) = gf(—b—) |1+ (A +.xA,n)cosh'-Iﬂ(
D\ﬂn’ | £ 2= b (]3.66)
+ (B, +xB,y )sioh %X n = 1,2, ...

The constants Ay, A,,, B,,, and B,, are selected to satisfy the four boundary conditions

w=20

~D(w, . + vw).y) = O} ate =g (136D

X
I
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Substitution of Egs. 13.66 into Eq. 13.63 and then substitution of the results into Eq. 13.67
yield, after considerable algebra (Marguerre and Woernle, 1969),

4 . %
X (x)="n (ij 1 = cosh/EX | ARX oy RIEX
n D \nm 5 B B

1 (. . nma nﬂa] nrmx

i e CEHE%)
- @sinhwcosh"_m
b b b

With X, (x) and hence w(x, y) known, Egs. 13.54 may be used to compute M, M_yy, M_,y,
Vi,and V.

15

13.8.2 Westergaard Approximate Solution for
Rectangular Plates: Uniform Load

» The stress is always greater in the direction of the shorter
span than in the larger span

» Consider two strips EF and GH
— The deflections of the two strips at the center of the plate are equal
— The shorter strip has a smaller radius of curvature

=> a greater stress in shorter strip
G

H

Fig. 13.8 Longitudinal (EF) and transverse (GH) plate strips
16
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* Fig. 13.9 is the Westergaard solution for the bending
moment per unit width across the diagonal at the corner
(denoted by M)

0.12
N
, oiof—{He N
% 0.08
£ ot . . .
8 o6 Y2 o Fig. 13.9 Ratio of bending moment M
3 T — - - -
2 ~— per unit width to pb? in
= 004 - > rectangular plates with simply
= B (et supported edges.
0.02 7
Note: Poisson’s ratio is
& g2 0% 05 a8 10 assumed to be zero.
Ratio short side b =
long side " a
17
0.10
2
M, = ;;h:‘lj
% 008 =
™
2 | Experimental values | . . .
O i e X ™~ Fig. 13.10 Ratio of bending moment M
g b N N per unit width to pb2 in
£ o -~ N rectangular plates with fixed
g M, = !).‘:2.-"3 h"""\\h “'%__-_‘ edges
= I 3+ 4at ” \\
9 (s
0.02 s - . ..
N Note: Poisson’s ratio is
| | bM, assumed to be zero.
] 0.2 0.4 0.6 0.8 1.0
Ratio short side b "
long side @ 18

4/27/2010



» Other Types of Edge Conditions

— The effect Poisson’s ratio is to increase the bending
moment per unit width in the plate

— Let M., and M,, represent the values of the bending
momnets at the center of a rectangular plate when the
material has a Poisson’s ratio v> 0

Mar'v = Mlac' + "’Mht
B (13.69)
M = Mb( + va.

hev

19

13.8.3 Deflection of a Rectangular Plate: Uniformly
Distributed Load

* The ODE for plates has been solved only for relatively
simple shapes and loads

» For rectangular plate (where b is the short span length)

4>
g = 2| pb
Wnax = C(1-v )(;?_11] (13.70)

20
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TABLE 13.1 Formulas Obtained by the Theory of Flexure of Slabs, Giving Approxi Values of
i D i ical Slabs Under U,

per Unit Width and

rm Load (Given by Westergaard)®

Moments in span b Moments in span a Values of C
— = LSS = = - at maximum
At center At center At center Along center & dm_"ct:“’" ':’2') "
of edge -M,,, of slab M, of edge -M,, line of slab M, m.,i‘;h‘lEh’)
" Lo’ 2 )
Rectangular slab, 0 8 0 LY (1 ad) 0.16
four edges simply supported v 48 eI
142« 1+24a
Lyt Lop? )
Rectangular slab, 1" 23" b’ 503 0.032
span b fixed; span a simply supported _ - 0 o (1 +03a) -
1+02c 1 +04a 1+04a
pb ',;/»‘ \
Rectangular slab, 8 8 '1{] 2 2)
3 21+ 0.16
span afixed; span b simply supported 0 —_— — 0.015pb7| 222 ;‘
1+08a" + 6 1.08¢x Liva 1+ +5a
L Low?
Rectangular slab, 12 8 2 ) I |
all edges fixed : Lo 0.009pb(1 + 20 - &) 0032
1+a" i i
- 1 phal ! pniad
Elliptical slab with fixed edges; 7 5 ’
axes aand b, bla= « h, 74 = =
l+Za + 1+ +a
3
*Poisson’s ratio v = 0 (see Eq. 13.69). b = shorter side; a = longer side; b/a = &
21

A square plate is stmply supported on all edges (Figure 13.7)

EXAMPLE 13.1
Square Plate

and 1s loaded by grave! such that

Subject to ply,y) = pnsmﬂsin%, a=h (a)
Sinusoidally a
Distributed (a) Determine the maximum defiection and its location.
Pressure
{b) Determine the maximum values of the moments M, M.,
(¢) Determine the maximum values of the Kirchhoff shear forces V,, V|
Solution | The boundary conditions for simply supported edges are

X

v

3:w/¢9y: = 0 for edges parallel 10 the y axis. Hence, noting t

w=0 M _=0 forx=0.a

(b)

w=0 M =0 fory=20,b

Since w = 0 around the plate boundary, d%w/dx? = 0 for edges parallel to the x axis and likewise

he expressions for M . M,, in Eq.

13.54, we may rewrite the boundary conditions, Egs. (b), in the form (note that b = a)

W =10, (T—tz() forx =0,a
aw
5 ()
w =0, (—9—V:=0 fory = 0.a
ay’
22
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(a) Equations (¢) may be satisfied by taking w in the form

. nIx .omy
w = wg sin=— xm—} (d)
a a

where w 1s a constant that must be chosen to satisfy the plate equation (Eq. 13.56). namely. with
Eq. (a).

4 4 +4
, . Po . my . mv
8 W 2 3 w c) w 0 s X Smﬂ.’) )

dXA 8x2 3y2 ay-i D a a

Substitution of Eq. (d) into Eq. (e) yields

o
wo = Po (£)
4
4D

By Eq. (d). we see that the maximum deflection of the plate occurs atx = y = /2. Thus, the maximum
deflection of the plate is

(g)

R

23

(b) To determine the maximum values of moments M, . M, ., we find from Eqs. 13.54 with Egs. (d)
and (f)

sin® sin (h)

The maximum values of M, and M, occur atx = y = a/2. Thus,

5
poa (1 +v)

a .
Mu.x(max) = /ww(max] = - a2 arx =y = i M
47
(¢) To calculate the Kirchhoff shear forces, we have by Eqgs. 13.54 with Egs. (d) and (f)
a . ,
V.= !1(3 -v) cos ™ gin ™
: 4n a a
()
Pod . y
vV, = - 0—(3 -v) sin™ cos ™
- 4T a d
We see that the maximum values of ¥, and V', occur along the edges of the plate. Thus, by Egs. ().
“’\:mm) = %(3— v) aty = g x=0,a
Pnd ‘k)
- _ Fo¥, _a _
Viimaxy = E“}_ v) atx = 5 V= 0,a 24

4/27/2010
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EXAMPLE 13.2 A water tank 3.60 m deep and 2.70 m square is to be made of structural steel plate. The sides of the
Water Tank | tank are divided into nine panels by two vertical supports (or stiffeners) and two horizontal supports;
that is, each pane! is 0.90 m wide and 1.20 m high, and the average head of water on a lower panel is
3.00 m (Figure E13.2).
(a) Determine the required thickness of the plate for the lower paneis, using a working stress limit of
o, = 124.0 MPa.
(b) Calculate the maximum deflection of the panel.
Solution | The mean pressure on a bottom panel is p = (3.00 m)(9.80 kPa/m) = 29.4 kPa. We assume this pres-
sure to be uniformly distributed over the panel. We also assume that the edges of the panel are fixed
(a) For fixed edges, by Figure 13.10 with h/a = 0.75, we have approximately, using the experimental
curve,
I \- \u
2 AN ) )
M = 0.040pb" = (0.040)| 29.4 x 10" —; {(0.90 m)~
\ m~/
0.90m 0.90m 0.90m =ig5adiem
>t > m
I |
| I
1.20 ! | ;
. ! ! 1 Fig. E13.2
SRS (S SR
I | &
| |
1.20m [ \ S
| | ™
| | l
ey ==
| b—>
1.20m {—F—l‘—
l I | ¢
I LY 25
and hence
c
o=M-=- = éﬂéf
/ k-
Thus
oM [6(953
h= [—= | o) _ 6.79 mm
N Oy N 124

or

probably reduce

(b) To find displacement, we have from Table 13.1, for fixed edges, C = 0.032/[1 + (0.75)"] = 0.0243,
With v =0.29 and £ = 200 GPa, we find

(29.4 x 10" Pa)(900 mm)”

= 0.0243(1 -0.29%) . .
(200 x 10" Pa)(6.79 mm)’

Winax

= 6.86 mm

w
max

This deflection is more than one-half the thickness of the plate. Hence, direct tensile stress would

the value of w, .. See Section 13.9.9.

26
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13.1. Repeat Example 13.1 for the case of a rectangular plate
a# b '

_MTAP éacma’ary conditions are
2

wr=0 and i."—‘:;o ;fm- x.-O)a
:if (1)

wr -0 wnd -';Tq—z:c? Far-cjza)b

/_'_7“47‘/5!)5 (/; may be satisCred 5} fq‘ué:h;

- L TY . Ty
A WO S50 —a'—'- Sk }r" (E)
where <v, /5 a constan? fhat ii chesen fo s5atisfy £a.(13.55)
Y y u i .
Qx@ J_g_,izz_&v_s,nfz,fnﬂ
ad % dx 9!_,4?_ {.‘/’j‘f‘ D 24 b
wer? - Ty /-m/ WY mx 0y spTt, o TY
"—a—q—f.’n*&',ﬂﬁj-}me/ﬁz j’/f\-g-f— 7 5/1’1?{/1'\

" o

m o8 -y
‘b"~50-)’/f7a— $in

; £y 2% 7 _
%'TT"’D(Q Vrza’b*+ by ~

pela-

gy AT =5 and 4=

27

Moments My, and M/pj are fu/}vn rf:'y 1.:?5.(15.54)

2 = 2
_ Db vad) . x oo
)-*——qﬁ?—“)””z h g
2p s @2 vb¥  TX o T
__{??(‘;hiﬁ_d;m z S g

My 2= D4y + Vg
,t“‘fyg C“‘D(“"’/jaq i’l/"“/},r):
7 /
‘ . é
The parimum values fer My andMy, occurs at x=%ane 4z
_TEp(povat) ___poats? _ b a%6qbPya?)
Maxtmaxy = — 3% TID(ar +2a78% +b% " 72ia 9 zatBirk")
M D@z vbY _ pats? _ P67y b’
Fg(may) LI TD(a 142 a%he B — refateatsith’)
The Kirchheff shear forces are ;,u_/en éy Egr (13.5W)

i 7 2 .y 2 ,
Ve z— D[M,,,,L(E-ijyyﬂ = M“%%M{g; _z_.x 5/,;_@

P

3 2 pd] -

\/51 = -D[.ufyyy*{z_y) Wj’rr] - Mﬁgﬁ%@.‘iﬂmgﬁ .{05—-’;‘;—‘g

The meaximum value for Vi occurs for X=ga and 7:%.
bk e-wall  path¥ _ pabieevja’]

Vignay) = =73z TD(a%2a%62+bY ~ TT(a"t2ab2+F7)

The maximan value #or % occars For v= % and y=g b

V, _ ﬁ’D[aZ&(Z-v)bzf Aa? _ poaeéfdz#-(é—y)éf/
Gimay = T FLT Zirrdaa LA - 752 22 5]
_ ass TDla%ea®% by ~ Tiatreah b’

28
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13.7. A rectangular stee} plate (£ = 200 GPa. v = 0.29, and
Y = 280 MPa) has a length of 2 m. width of I m, and fixed
edges. The plate is subjected to a uniform pressure p =
270 kPa. Assume that the design pressure for the plate is
limited by the maximum stress in the plate: this would be the
case for fatigue loading, for instance. For a working stress
limit g, = Y/2, determine the required plate thickness and
maximum deflection.

¥

i

_—.—E'-ég? %}jeg Table 13.1.

IR

13-7 o{_:—g-;-é—

a
2 - 2
_ pb® _oae2w(000)t_ 1904 - - [Bhigo) - 35 1 mm
M‘ra(mof) Tiz(i+0.5Y) =2hleo ’:}’mm 6 ih \/—w/a— 2
_M@f)_gé‘{— v.012(k029 0-370(/00.02.-’——;!. 7mm
“may™ " s ¥ Ef3 T [+0.57 208,000(30,))} e

:0.5; J, =

29

13.8. If the pressure for the plate in Problem 13.7 is increased,
vielding will be initiated by moment M, at the fixed edge of
the plate; however, the pressure—deflection curve for the plate
will remain nearly linear until after the pressure has been
increased to initiate yielding from bending at the center of the
plate. Determine the required plate thickness and maximum
deflection for the plate in Problem 13.7 if the plate has a factor
of safety SF = 2.00 against initiation of yielding at the center of
the plate.

L13.8] p, = SFlpl = 2.00(0.270) 0.5%0 1Mpa; See Table 13.1.

5 y (moa}a
- £ - o.5%0 -
Moc T3(3+49x7] T F[3vd@5)’] T

Mac =0.009 p 65(1+ 2% a*) = 0.009(0530)(1009 " [1+ 2 (057 = 25 | = 990 N.mm

20,770 N.mm

M= Mge+ YMac = 20,770 +0.29(§990) = 22,800 N.mn

_ 6M - _ 6(22,800) _
ye 45 he JEEREE - oo o

y
_ 0032 s o a2} O 2700000)7 _
Wnay = 75 g7 (1-0.2 )zaa,aao(az.:p"j'” mm 30
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13.9.1 Solution of V2V2w=p/D for a Circular Plate

e Circular Plate
— Radius, a
— Thickness, h

— Polar coordinates with origin at the

center of the plate "

e

Fig. 13.11 Simply supported
circular plate

O W SO, PO D 7
¥ 27| = B (13.71)

31

S ) 2\ 52.. '
V”V‘n-=t‘9_+lé L9 |[dw, 1om

\
ol 2
5 Fagmill = = = (13.71)
or” ror r“é?OzJ\()rQ ror r 862) !

Considering only the axisymmetric case. Eq. 13.71

;o2
vivd, o (4, 1d \(d*w , 1aw)

= | o+l 2= 2 13.72
\, 2 rar)\ g2 rdr) T D 72
* The solution of Eqg. 13.72 with p=p,=constant is
4
Por ) 2 20
w = a5 + A+ Aylnr # Byt + Byt lny (13.73)

where A, A,, B, and B, are constants of integration

A, A,, B, and B, are found using the boundary
conditions at r=a and

The conditions that w, @, , M,, and V, must be finite at
the center of the plate (r=0)

32
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* Analogous to the expressions for the rectangular
plate

/ 1

Wy oo |

M = -Dlw,  +V

ri rr - 2 |
L L7 r- /1
[ w w j
. ' 66 ;
Mgg = —D| T +—="+vw, |

T )

M, +Mgg = —D(I+V)V2W (13.74)
d(%e
Y L .
Mg ( V)dr\ r)
e 1 i
/ = -D| =(V " w —_V)m — —
Vi D.ar( WLl )r drk r )
—[)H‘)(Vu)+ l—v)a[“_\
gl 89 al I}
@D. =

Lo s ;
I ;V’BV a)g——n

J

33

13.9.2 Circular Plate with Simply Supported Edges

» For a solid circular plate simply supported at the edge
r=a, the BCs are

w(a) = A + ij + e =10 No displacement at support

[N}

i
|

B

2
1

Pnd
201+ VB, +(3 + v)ig_D =0 Nomoment at support

* The requirement that the solution be finite at r=0
requires A,=0 and B,=0 in

4
- Po"

+A + Ay r +Br" +Bw an (13.73)
641:

34
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+ Solving the equations for A; and B, gives

A
Po? [ (rN\[5+v (1‘\,2'
w = == =i -

64D'L ka/ Il1+v a)
; (13.75)
a )27
M, = -O—(3+ v)| 1 -] '-J
N
2
Pn@ | -\27]
My = — 34 v(1 430"

\a/ |

{
—

35

13.9.3 Circular Plate with Fixed Edges

» For a solid circular plate with fixed edges at r=a, the
BCs are

d

wia) = A, + 5'1(;2 L0y No displacement at support
64D
3
Pod
wgla) = -w (a) = -ZB]uﬁﬁ =0 No slope at support

* The requirement that the solution be finite at r=0
requires A,=0 and B,=0 in

Pyl 2 2
w= —— + A +Aynr+ B+ By Inr (13.73)
640 - -

36
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+ Solving the equations for A; and B, gives

v 64D,]_\a/'_
2
M, = M l+v—(3+ v)!lﬁ\r (13.76)
16 \-a} ]
Mgg = POd | few—{ +3v)/'.)2
16 |

37

13.9.4 Circular Plate with a Circular Hole at the Center

» For a circular plate with simply supported edges at
r=a, with a circular hole at r=b and subject to a
uniform pressure p=p,, the BCs are

e (4B,  poby
V (b) = -L)\‘_'~7_D} =0

b 2 No shear at free edge
M, (b) = —Dl[-»u v)ifnlw + V)

No moment at free edge

(13.77)

24
(3 + V)pyb |

+ B,[3+v+2(l +v)Inh] + ——————
- 16D |

=0
and

Po2

2 2
wla) = A +A,Ina+Ba" +Bya"Ina+ A 0

No displacement at support

M, (a) = -Dg-(1- v»i,1 +2B,(1+V)

o
, > No moment at support
(3+V)pga W _¥

0 | (13.78)

+B,[3+ v+ 2(1 + v)Ina] +

38
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+ Solving Egs. 13.77 and 13.78 for A, A,, B, and B,
gives

f ol 1 \‘:n".f |
Pod 4 (3+v)
s/  (1+w)nfina Ay = 25 T
Pod J : (5-Vv)ina [a-w2) (2] -1] s01-v) 2
A D - 5 3 ~ S 3 hs \b) b/
rfa\2 JRY.
[t -wl211(2) =1] a1-w(S
o) \b) "] \5) (o _—
1% ma-mb  (3+v) (‘_Il-_ll
na | \b \h/ 1
£\ yosa:  u P = ek =5
2V Ina-Inb (3+v) ‘{; 1 | 8D ll‘_' "'/[_'.'71 J(l+;v)(‘.’" |
b/ \b/ Foq | \b) \Bb) b
e £ oy % ’ |
2 2 3 2 16
2/ | tJ b B Po”
) =% (13.79)

* With these coefficients and Eqgs. 13.73 and 13.74, the
displacement and stress resultants may be computed

* e.g., fora/b=2 and v=0.3

w_ . = wih) = (L.682 @ | (1280
Eh I
39

» Except for simple shapes of plates, the governing 4%
order PDE is complicated to solve

* Results can be reduced to tables or curves of
coefficients for the maximum bending moments per
unit width and for maximum displacements

* Eg. 13.56 does not include stiffening due to tensile
forces

40
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13.9.5 Summary for Circular Plates with Simply

Supported Edges

» The lateral displacement w and the bending moments
M,, M, for uniform lateral pressure p are given by

Egs. 13.75

* W, OCcurs at the center of the plate
* O OCcurs at the center of the plate
* The value g, of is tabulated in Table 13.2

a1

TABLE 13.2 Formulas for Val

of the M.

Plates as Obtained by Theory of Flexure of Plates®

Principal Stresses and Maximum Deflections in Circular

Support and loading

Principal stress (0,)

Point of maximum stress

Maximum deflection
(Wnax!

Edge simply supported; load uni-

form iry = a)

Edge fixed; load uniform (r = a)

Edge simply supported;
load at center. P= zrrg p. =0,

but ry>0

Fixed edge; load at center
Px= mgp, rn—0,
butry>0

2

3
=3+ v)p”—,
8 IE

iy
3 p a”
4 h?.

3(1 +V)P‘/ 1
27(/!3 ‘\V+l

( 2
3(1 +v)P In£+'—0-

22>\ o 44?)

a mustbe > 1.7r,

Center

Edge®

Center

Center

i(l -v)(5+ V)Eﬂ-‘

16° Eh

3 (1o vHPe
16 Eh

3

3(1-v)(3 + V)Pa’
axER

3(1—v)Pa’
anEn’

%a = radius of plate; rg = radius of central loaded area; h - thickness of plate; p = uniform load per unit area; v = Poisson’s ratio.

YFor thicker plates (h/r > 0.1), the deflection is Wy, = C ( % (1 - v3)(pa*/En®), where the constant C depends on the ratio h/a as follows.
\18/

C=14+5.72(h/a)
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13.9.6 Summary for Circular Plates with Fixed Edges

« Acircular plate rigidly held (fixed) so that no rotation
or displacement occurs at the edge

« Under service conditions, the edges of plates are
seldom completely fixed

 Slight yielding may occur at the fixed edge

* In general, an actual medium-thick plate with a fixed
edge will be somewhere between fixed and simply
supported

» Table 13.2 is good for thin and medium-thick plates,
i.e. h/a< 0.1, and deflections < h/2

43

13.9.7 Summary for Stresses and Deflections in Flat
Circular Plates with Central Holes

 Circular plates of radius a with circular holes of radius

r, at the center are commonly used, e.g., thrust-
bearing plates, speaker diaphragms and piston
heads.

» The max stress is given by formulas of the type

2 kP
na
Omax = K- or 0., = —— (13.81)

max max 7

h" h™
» Likewise, the max deflections are given by formulas
like
2
L or wo. = k,P_‘% (13.82)

max ~ 2 3 max

Eh’ “En
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Case 1 P

w

=
o

max

Case 3
P

S

Case 4
@j
L——
P

Case 5

—_— _r*"jx

iy

Fig. 13.12

b Circular plates with
central holes, various
loadings and BCs
Case 8 i
S E
Case 9

Case 10

,,

45
TABLE 13.3 Coefficients k, and k; (Eqs. 13.81 and 13.82) for the Ten Cases Shown in Figure 13.12°
2 2128 2515 2.3 2-a 2.5
fo o f T f
Case iy ky k. k Ky Ky K ks K Ky Ky ke
1 110 0341 126 0519 148 0672 188 0734 217 0724 234 0.704
2 066 0202 119 0491 2,04 0902 334 1.220 430 1300 5.10 1310
3 0135  0.00231 0410 00183 104 00938 215 0293 299 0448 369 0564
4 0122 0.00343 0336 00313 074 01250 121 0291 145 0417 159 0492
5 0090  0.00077 0273 00082 071 0.0329 156 0110 223 0179 280 0234
6 0115 0.00129 0220 00064 0405  0.0237 0703 0062 0933 0092 113 one
7 0592  0.184 0976 0414 1440 0664 1880  0.82¢ 208 0830 219 0813
8 0227 0.00510 0428 00269 0753  0.0877 1206 0.209 1514 0203 1745 0350
9 0194  0.00504 0320 00242 0454 00810 0673 0172 1021 0217 1305  0.238
10 0105 000189 0259 00139 0480  0.0575 0657 0130 070 0.162 0730 0175
*Poisson’s ratio v = 0.30.
2>
o =k pa_ or o 42
max 17 max 3 (13.81)
h h
Pa
or w = Ky—s (13.82)
max Z 3
Eh
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13.9.8 Summary for Large Elastic Deflections of
Circular Plates: Clamped Edge and Uniformly
Distributed load

« Consider a circular plate
— Radius a
— Thickness h
Lateral pressure p
— With w,,,, large compared to the thickness h
» Let the edge of the plate be clamped
« Examine a diametral strip of one unit width showing the bending
moments and the direct tensile forces
» Tensile forces come from:

— The fixed support at the edge prevents the edge at opposite ends
of the diameter from moving radially =» strips stretches as it
deflects downward

— If the plate is simply supported at the edges, radial stresses arise
due to the tendency of the outer concentric rings of the plate to
retain their original diameter

47

Fig. 13.13
Large deflections of
(a) (e)

clamped (i.e. fixed)
h and simply supported

h
— circular plates.
1 = 1 P

(b)

f)

p I _"{“ ‘ vy p 13 1{”

()
‘ stress '

(h)
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Values of these stresses for 60 /
a plate with fixed edges 50 /
having a radius a and o | /
thickness h and elastic 3

40
/rm

modulus E are given in Fig.

13.14 30
— Ordinates are values of stress
multiplied by the quantity 20 7/
T,

Stress o multiplied by £

a?/Eh?(to be dimensionless) A g,
B . . 10 / ///
Abscissa is W,,,/h L/ ; [ oy,

— Bending stress o, at the fixed g

edge is the largest of the four 0 1 2 3 4 5
stresses Maximum deflection _ Wiax
— Stresses increase Plate thickness h

parabolically w.r.t. w,,/h
Fig. 13.14  Stresses in thin circular plates
having large deflections and with
edges clamped. 49

13.9.9 Significant Stress when Edges are Clamped

« The max stress is the sum of the bending and tensile
stresses

* The o, at points in the plate just inside the edge are
much smaller than the stresses at the edge

» Stresses show another local max at the center of the
plate

+ If failure of the plate is by general yielding, the o, at
the center of the plate is the significant stress
because the effect of the o,,,, at the edge is localized

« If failure of the plate is by fatigue crack growth or if
the plate is brittle, the stress at the edge is the
significant stress

50
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13.9.10 Load on a Plate when Edges are Clamped

» The dashed line represents values of load and
maximum deflection as compared by neglecting the
effect of direct tensile stress

60 / 120 /
50 100 Fired od
At edge ixed edges.
% e Tf Direct stress}
28 a0 z 80 considered
o
g / 3 /
a 30 S 60
E / A € /
= 20 = 40 / Direct stress{
& o
5 / 4center b3 / neglected ]
/ ] S
10 Vi 20 / -
/ ””
0 1 2 3 4 5 0 1 2 3 4 5
Maximum deflection _ Wmax Maximum deflection _ Wmax
Plate thickness h Plate thickness h

(a) (b)
Fig. 13.15 Maximum stresses and deflections in thin circular plates
having large deflections and with edges clamped.

51
16 B4
14 // 56
o [ 12 p / . 48 “
‘-'| ki) '“7 “-:| ] Simply supported edges /
F 10 z 40 |
/T] ./
= = Direct stress
= 8 /J g 2 considered
; Nx') : :
: 6 / ;—- 24
2 / Y4 / 8 /
& 4 "7 16 |— Direct stress —
/ e r'.ey_',lec_ted
2 // 8 : 4 —
Aot
0 1 2 3 4 5 0 1 2 3 4 5
Maximum deflection _ Wi Maximum deflection _ W
Plate thickness Plate thickness
() ()
Fig. 13.16  Stresses in thin circular plates having large deflections
and with edges simply supported.
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13.11. With Egs. 13.73 and 13.74 and the boundary conditions
for a solid circular plate simply supported at the outer edge, r =
a. derive the results of Eqs. 13.75.

MLV L LS IO U L. L

13.12. Repeat Problem 13.11 for the case of the solid circular
plate with fixed edge at r = a; that is, derive Eqs. 13.76.

y ) 2
= Po + A+ Ayl + BT+ B, Inr

T Zan 1 2

64D

(13.73)

53
4
wia) = A, +B]az Lt g No displacement at support
64D
3
Poa
wgla) = -w (a) = _213]“-? =0 No slope at support
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L3l T For @ solid circular plare A= B,20 i g (1373)

il
""}':Fj”.‘j*"%"'ﬁnrz o)

From Eij. (13.74),

o= e = + u( e 238 2(141) B, +(5w)/ffb e

But =M, z0 at rza

13.12 ] Eos. 1) and & of Problem i3.1jare valid,

A (a) = é'b;D+A + B,a°:

| “e(a): gj*ag,a:o

Solve Ffor A, and B,.

B -- By ppay poa’ _ Eaaq
, = Lo . feo

05 AT 3D T 69D T 9D

5ubf‘f/ra fe these Into 4.[7—{_ @ and (2) above and inTo Znd of !:?f- (}3‘7‘5}-

_ Bt pa? 2pa%? . pat
el ry, My 7, Sl 2y 225 -+ ]

P20 2010 35" e 5 ] 5 Lo -0 ']
Moo =- D[ Py ] - ALE 258% | JPr? 2y ia®

320 e 0 72D
55
[/H/ -(1+39)(%) ]
13.14. The cylinder of a steam engine 1s 400 mm in diameter,
and the maximum steam pressure 1s 690 kPa. Find the thickness
of the cylinder nead that is a flat steel plate, assuming that the
working stress is o, = 82.0 MPa. Determine the maximum
deflection of the cylinder head. The plate has fixed edges. For
the steel, £ = 200 GPa and v = 0.29.
M 3pal
Omay = T = <hE (Fro:n Table [3.2)
_ [rpa? _ [3(0090)200° -
h = e - W - /5.9 mm
2
. 3 2y p2f _ 3(1-0.29%0s30(200”
A max = /6 (1-v ).{-‘/73 T J6(200y000)(i59)7 =0ciemm
56
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13.16. A circular plate is made of steel (£ = 200 GPa, v = 0.29,
and ¥ = 276 MPa). has a radius a = 250 mm, and has thickness
h =25 mm. The plate is simply supported and subjected to a
uniform pressure p = .38 MPa.

a. Determine the maximum bending stress in the plate and
maximum deflection,

b. Determine the pressure py required to initiate yielding in the
plate and the factor of safety agaimnst initiation of yielding n the
plate.

Ld.06 | From Table 132,

F(25)2

2
@) Oy - (H V)fg 3(3+0.29)(138)(250) " _ 176 MPa

3(/-0.29)(s+0.29)(1. 38 )(250)*

Aimay = 7o (1) £ Ha . 16020, 0007(25) 3

(b)U—may = Y < 3;3-(31")/)‘%2

_ 8Ynt  _ gl276)29)°  _
Py = 5T = 3(sioeqasa - LLd Mfe

e

- L2/ mm
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