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Weibull's theory of brittle fracture is applied to the determination of strength of Douglas-fir 
wood in longitudinal shear. Ultimate stresses, at a given survival probability, are derived for 
beams under different loading conditions. The theory allows an explanation for the difference in 
shear strength between beams and the standard American Society for Testing Materials shear 
block, as well as for the dependence of shear strength upon beam size. The theory is verified by 
comparing theoretical predictions and test results on Griplam nailed connections loaded parallel 
to the grain and shear tests on torque tubes. Very good agreement is shown. Finally, allowable 
shear stresses for beams under different loading conditions are derived. 

Les auteurs appliquent la thCorie de la rupture fragile de Weibull B la determination de la 
resistance au cisaillement longitudinal du pin Douglas. Pour une certaine probabilite de survie 
donnee, ils calculent la contrainte de rupture pour des poutres sollicitCes de diverses fa~ons.  L a  
thCorie permet d'expliquer, d'une part, les differences constatees dans la resistance en cisaille- 
ment entre les poutres mises I'essai et le diagramme standard prCconisC pour les cisaillements 
par les prescriptions American Society for Testing Materials, et d'autre part, la relation observee 
entre la resistance en cisaillement et les dimensions d'une poutre. On vtrifie la theorie en  
comparant les resultats derives par des calculs et les rksultats tires d'essais de cisaillement 
realisks sur des assemblages agoussets clouCs du type B Ctrilles charges parallelement auxfibres 
et sur des pikes  tubulaires sollicitees en torsion. On constate alors une tres bonne concordance 
des deux groupes de rksultats a la lumiere desquels les auteurs proposent des taux de travail 
appropries en cisaillement pour les poutres appelCes a travailler dans differentes conditions de 
chargement. 

Can. J. Civ. Eng., 3, 198 (1976) [Traduit par la revue] 

Introduction 
Two problems are to be considered in study- 

ing the shear strength of timber beams: (1)  
the magnitude of the shear stresses induced 
by the applied loads and (2)  the level of 
shear stresses for failure to occur. 

Although, based on a parabolic distribution, 
maximum shear stresses could be approx- 
imately estimated by the simple formulae from 
elementary strength of materials, the magnitude 
of the maximum shear stress in timber beams 
has been computed by a formula developed 
by Newlin et al. (1934) which is supposed to 
take into account the effect of checks. Newlin's 
approach, known as the "two-beam theory", 
has been adopted by codes of design practice 
both in Canada and the United States. Based 
on the same theory, the codes also recommend 
a "worst" position for a load near the support 
where it must be assumed to act for the deter- 

has been a tendency towards using the simple 
formula v = 3V/2A from elementary beam 
theory. From a practical point of view, the 
differences between Newlin's approach and 
the elementary beam theory are not great al- 
though, for example, Newlin's "shear force" 
does not satisfy conditions of beam equilib- 
rium. Whether one approach or the other is 
used, the main problem in shear strength of 
beams is that of determining the level of shear 
stress that produces failure and how this level 
is influenced by beam geometry and the ap- 
plied loads. 

It has been found that the shear strength 
of large beams is usually lower than that ob- 
tained from the American Society for Testing 
Materials (ASTM 1973) standard shear block 
test. Furthermore, it has been observed that 
the strength of beams depends upon the geom- 
etry of the beam and different authors have 

mination of shear stresses. Lately, however, expressed this effect in terms of different in- 
both in Canada and the United States there dependent variables. Thus, Huggins et al. 
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FOSCHI AND BARRETT 199 

( 1966) used the shear span-to-depth ratio, 
while, more recently, Keenan and Selby 
(1973) used a "shear area" defined as the 
product of shear span and width. All these 
variables are, of course, related to the size of 
the beam and the underlying rEsult is that the 
shear strength is size-dependent. 

The present study shows the results of a 
stress analysis of beams near supports and an 
evaluation of the adequacy of the elementary 
beam theory to predict the magnitude of shear 
stresses. Further, it is shown that the introduc- 
tion of brittle fracture concepts to shear failure 
of wood is useful in that it helps to explain 
the size-dependence observed in tests and 
allows the derivation of ultimate and allow- 
able shear stresses for beams. 

Stress Analysis 
Consider Fig. 1. A finite element analysis 

was carried out for the deformations and 
stresses induced by the loading shown. The 
finite element used was a quadratic isopara- 
metric element (Zienkiewicz 1971 ) and non- 
linear material properties were considered. In 
particular, nonlinear laws were assumed for 
compression parallel and compression per- 
pendicular to the grain, while purely elastic 
behaviour was assumed in tension and in shear. 

The results of this study may be summarized 
as follows: 

(1)  High shear stresses develop near the 
corners A of Fig. 1, where the beam meets 
the support and loading plates. These shear 
stresses, however, diminish quite rapidly to- 
wards the mid-depth of the beam and only 
contribute to localized bearing-type failure. 

(2)  Maximum shear stresses away from the 
support and loading plates are conservatively 

FIG. 1 Beam geometry, finitc element analysis. 

estimated by the formula v = 3V/2A of ele- 
mentary beam theory. The formula is more 
exact the longer the distance a ("shear span"). 

(3)  The distribution and magnitude of shear 
stresses near the mid-depth of the beam is 
almost independent of the type of nonlinear 
law assumed for compression perpendicular to 
the grain. 

(4) Maximum bending stresses are accu- 
rately estimated by the elementary beam 
formulae. 

Brittle Fracture and Shear Strength 
Shear failure in wood with a moisture con- 

tent of about 12% may be considered as brittle 
and the theory of brittle fracture, as developed 
by Weibull (Bolotin 1969), may be used to 
study the conditions under which failure may 
develop. This theory has already been used 
to study the tension perpendicular to grain 
strength of Douglas-fir in different structural 
applications (Barrett et al. 1975). 

Briefly, consider a volume V of wood under 
a distribution of shear stresses 7. Weibull's 
theory allows the computation of the prob- 
ability of failure of the volume V when the 
stresses are known. This probability is given 
by 

1 
~ 1 1  F ,  = I - enp {- J, (7) dv) 

where m, k, and T~ are material constants, V* 
is a reference volume, and T~ corresponds to 
the minimum strength of the material. Since 
three material constants are involved, [ I ]  is 
referred to as a 'three-parameter' Weibull 
model. A simpler, 'two-parameter' model may 
be used by assuming T, = 0. The assumption 
of zero minimum strength may appear to be 
unrealistic, but it will be shown that, for prac- 
tical purposes, both models give approximately 
the same results at probabilities of failure 
larger than or equal to 0.05. The parameter 
k is related to the coefficient of variation of 
the material for a given geometric and loading 
configuration. For coefficients of variation of 
the order of 0.20 commonly encountered with 
wood, k is of the order of 5. 

Assume then a two-parameter model and, 
for simplicity, consider the reference volume 
V* as a unit volume (V* = 1 in.3 o r  1 m3) 
under a uniform stress T* . V* and the volume 
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200 CAN. J .  CIV. ENG. VOL. 3, 1976 

V  of [ I ]  will have the same probability of . 4  - 
failure if the following relationship holds be- -._._._._ - 
tween the stress T* and the stresses T :  

t-21 S, rk do = T*' 

If the system of stresses T is expressed as 

[31 T = T N ~ [ X , Y , ~ I  
Campuler Pamnl 1k=5 001 

where T,, is a characteristic stress of the system, 
[2]  may be written o 2 4 6 8 10 12 

[41 

with 

o l d  

FIG. 2. Coefficient I, [a/d]-concentrated load. 

[51 I[kI = ~1~(6[x ,y , z l ) "dv  

Thus, if the strength of the unit volume under 
uniform shear is known at different levels of 
survival probability, and if the system of shear 
stresses T is known so that [5]  can be inte- 
grated, the strength of the volume V  at dif- 
ferent levels of survival probability can be 
computed from 

theory. Accordingly, I ,  approaches the value 
obtained when the function B[x,y,z] in [5] is 
made to coincide with that corresponding to 
the parabolic distribution. The computer re- 
sults may be approximated by regression equa- 
tions and, for example, the curve for k = 5  
may be expressed as 

[91 I , [ a / d ]  = 0.369 [1.0 

To study the shear strength of beams, we This regression curve is shown in Fig. 2. Equa- 
consider V  to be the total beam volume and tion [ 4 ]  may now be written for the entire 
T,, to be the shear stress given by the ele- beam of Fig. 2: 
mentary beam theory, 

[lo1 T,," ( b  d aI ,[a/dl  
[71 T31 = 3 v 3 1 / 2 ~  + (a/ (L-a)) ' ;  b  d  ( L - a )  I, [ ( L - a ) / d ] )  = T " ~  

with V,,  being the maximum shear force, in 
absolute value, and A  the cross-sectional area from where, defining 

of the beam. The integration of [5]  requires a 
detailed shear stress distribution. In the cases 
considered herein, Eq. [5]  was evaluated by 
direct numerical integration of finite element 
results. 

Shear Strength of Beams 
CASE I: Single Concentrated Load 

This case corresponds to that of Fig. 2. The 
integration of [5]  over the distance a  can be 
expressed as 

where I ,  depends on k and on the ratio a / d .  
Figure 2  shows, for example, the variation of 
I ,  with a / d  for k = 5. For large a / d ,  the shear 
stresses are approximated quite closely by the 
parabolic distribution of elementary beam 

and letting V  = b  d  L  be the total beam 
volume, 

[ 121  T>[  = ,& (T*/V1IL 1 
Equation [12] gives the mean failure shear 
stress for the beam, for example, if the mean 
failure stress for the unit volume under uniform 
shear is used. The factor P, is plotted in Fig. 
3  for k = 5. It is seen that two ratios control 
p,, namely, L / d  and a / L .  The first is the 
aspect ratio for the beam and the second gives 
the position of the load. For a given beam, 
Fig. 3  shows the manner in which the shear 
span a  influences p, and, in turn, the shear 
strength of the beam. 
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FOSCHl AND BARRETT 20 1 

FIG. 3. Coefficient pa---concentrated load. 

FIG. 4. Worst position a /L  or a/d for a concen- 
trated load, as a function of L/d. 

of motion must be entered into [4] ,  and this 
CASE 11: Worst Position o f  a Stationary will be discussed in Case V. 

Concentrated Load 
The load P that a beam can carry in shear CASE III: Uniformly Distributed Load 

with a given probability of survival can be This case corresponds to that of Fig. 5. The 

obtained from [12] by expressing T,, according integration of [5] over the entire beam volume 

to 171 
V = b d L can be expressed as 

or, defining 

[13] may be written 

When the shear span a increases, the factor 
p, from Fig. 3 decreases. But so does the de- 
nominator ( L  - a )  in [13],  tending to increase 
P. Both effects oppose each other and one may 
ask whether a position exists for which the load 
P that may be carried is a minimum. This can 
be answered by studying the function ,8* of 
u41. 

The value at which p* is a maximum cor- 
responds, from [ I S ] ,  to the minimum of P, and 
may be obtained for different aspect ratios 
L / d .  Figure 4 shows the values a / L  and a/d  
corresponding to the minimum P (worst posi- 
tion for P )  for different L / d .  

If a load is going to act on a beam and the 
position is not known a priori, the load must 
be assumed to act at a point given by a / L  of 
Fig. 4 and the corresponding allowable stress 
must be obtained from the information in 
Fig. 3. The load must remain stationary after 
it has been applied, for if it moves, the effect 

where Ffl depends on k and on the aspect ratio 
L/d .  Figure 5 shows, for example, the varia- 
tion of im with L / d  for k = 5. For large L / d ,  
the shear stresses are closely approximated by 
the parabolic distribution of elementary beam 
theory. Accordingly, i(l approaches the value 
obtained when the function B[x,y,z] in [5] is 
that corresponding to the parabolic distribu- 
tion. Again, computer results may be ap- 
proximated by regression equations and, for 
k =  5,  

- exp (-0.0022(L/d)2.3w)] 

,/- 
. cornp",., Poi"! 1k.S.001 

.02 ./' 

FIG. 5. Coefficient in [L/d]-uniformly distributed 
load. 
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202 CAN. J. CIV. E 

This regression curve is shown in Fig. 5. 
Equation [4] may now be written 

or, defining 

the strength of the beam in shear under uni- 
formly distributed load can be computed from 

where T,, is the shear stress from [7] using as 
V,, the maximum shear force in absolute value. 
The coefficient PI. is plotted in Fig. 6 for 
k = 5 and different values of the aspect ratio 
L/d.  

CASE IV: N Concentrated Loads 
This case is shown in Fig. 7. If V 1  is the 

maximum shear force in absolute value, let 
the stress q1 of [7] be defined as 

The integration required by [5] may be per- 
formed, in this case, as follows. Near supports, 
that is, over the segments a and c, of Fig. 7, 
the information of Case I is used; between 
loads, the conservative assumption is made 
that the shear stresses can be approximated by 
the parabolic distribution of elementary theory, 
and thus, I,, of Case I for n /d  approaching in- 
finity is used. Equation [4] may be written, 
therefore, 

+ (1.5 *)* b deN In [F] = r * ~  

or, defining 

- l l k  

x " L ~ " [ m ]  + (9) " I, [%I} 
the shear strength of the beam, as given by the 
stress of [21], can be computed from 

ING. VOL. 3, ,1976 

0 2 4 6 8 10 12 14 16 18 2 0  22 

L / d  

FIG. 6 .  Coefficient 6"-uniformly distributed load. 

i 
I 

Shear Forcer  

I 
t ... 

FIG. 7. Case of N concentrated loads. 

Again, V is the total beam volume V = b d L. 
It is seen that the information developed for 
Case I may be used, together with the shear- 
force diagram, to develop [4] for any situation 
of concentrated loads. This includes the case 
of cantilevered beams, with the shear-force 
diagram for the cantilevered part just added 
to the rest of the shear-force diagram and con- 
sidered in writing [22]. 

CASE V :  Moving Single Concentrated Load 
This is the situation in which a single Ioad 

moves across the beam, as in the case of a truck 
axle travelling a bridge. In the integration of the 
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FOSCHI AND BARRETT 203 

shear stresses needed in [2] ,  it is required to 
[31] T = 1.5{1 - e- l .  l S(x/d) P(L - X) 

consider now the maximum shear stress that Lbd 
occurs at any point in the beam as the load 
moves over it. Consider Fig. 8. The shear force 

x { 1  - (%) 2} ; at x will be given in terms of the position of 
the load P by the following equations: if x / L  3 0.5, 

[261 V [ x ]  = P ( L - [ ) / L  if [ > x 

It can be shown, from [25] and [26], that 
\ \ , /  

the maximum shear force at x occurs when the 
load p passes over that point (6 = x )  and that The result of the integration can be expressed 

this maximum is given by as 

C331 
T* 

[27] V,,, ,,;, = P ( L  - x )  / L  if x < L / 2  T~ = PmovF 
[28] V ,,,,,,, = P x / L i f x 3  L / 2  with the stress T~~ defined as 

The maximum shear force V,,,,,, induces [34] T,, = 3P/2A 
shear stresses at x given by 

The coefficient P,,,,, is determined from 

where it has been assumed that the stresses - e-1.15L(1+<)/4d I 
are distributed, over the cross section, accord- I' 
ing to a parabolic law. The coefficient y [x /d]  

x (7) dd}-lik takes into account the dependence of the maxi- 
mum shear stress upon the closeness of the 
cross section at x to the support. This coeffi- and, together with [331 and [341, it allows the 

cient was derived from the finite element analy- computation of the maximum load that can tra- 

sis of Case I and may be expressed by vel across the beam for it to have a given sur- 
vival probability in shear. Another approach to 

1301 y [x/dl = 1.50 l1.0 - exp (-1.15 x/d)l this calculation is to consider the load P at the 

Hence, the shear stresses T to be considered worst position as a stationary load, according 

in the integration of [2] are given, from [27], to Case 11, and modify P, of Case I by a factor 

[28], [29], and [301 by: n to obtain the same result as that of [33]. 
Thus. if for the asvect ratio L/d  of the given 

FIG. 8. Factor a-moving concentrated load. 

" 
beam the worst position of a stationary load 
is at a / L ,  one has, from Case I, 

from which, by introducing [33] and [34], it 
can be concluded that 

The factor a depends upon the ratio L/d 
as shown in Fig. 8. It is apparent that, for most 
beams, the value of T J I  of [12] computed for 
the worst position of the stationary load must 
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204 CAN. J. CIV. ENG. VOL. 3. 1976 

results of experiments by considering the mean 
of failure stresses for a given configuration. If 

Moving  LOO^ N such configurations are available, with V? 
and T, being, respectively, the volume and the 
mean failure stress for the ith configuration, 
the parameters k and T"[0.5] can be found 
by minimization of the following sum of 
squares : 

Lower Bound = 1.5;;-1-- 

0 2 4 6 8 10 12 14 16 18 20 22 

L l d  

FIG. 9. Coefficient p,,,,,-moving concentrated load. 

be n~ultiplied by approximately 0.8 if  the load 
is moving across the beam. The coefficient 
,B ,,,,,,. is shown in Fig. 9 for k = 5. 

Shear Strength of the ASTM Specimen 
Equation [2] may also be cvaluated for the 

shear stress distribution in the shear block test 
specimen (ASTM 1973). A finite element 
analysis was carried out for this case and the 
integration of [2] was performed numerically 
from the finite element results. The calculation 
was carried out for several values of k, and 
the results may be summarized as follows: 

where T, is the mean strength of the ASTM 
specimen. The coefficient pi must adopt the 
form corresponding to the test configuration, 
that is, p,, PI., p,,,,,, etc. 

The expression of [41] is highly nonlinear 
in k, as this parameter enters in the coefficients 
pi, for example. For any k, however, T*:[0.5] 
corresponding to the minimum of [41] is given 
by 

11381 
7 * 

TO =- The value of k corresponding to  the mini- 
PI mum of [41] can be determined by an iterative 

where procedure and T:s[0.5] can then be computed 

i /I, = 1.333 + 0.336 (k - 4) from [42]. 
if 4 < k < 8 For  a unit volume under uniform shear T*, 

[I] becomes 
[391 pr  = 2.678 + 0.251 (k - 8) 

[431 F - 1 - e - ( ~ * / l f l ) k  

if 8 < k < 1 0  v - 

If P  is the applied load, T,, is defined as the and, using FI  = 0.5 and T"[0.5], the  value of 

average stress over the sheared area A , :  m is found to be 

C441 111 = 
T* [0.5] 

r401 T,, = P I A .  [- 111 (0.5)]11k 

Unit Volume Strength and Evaluation 
of Parameters k and m 

It is very difficult to experimentally deter- 
mine the unit volume strength T:!: under a situ- 
ation of uniform shear. Equations [12], [20], 
[24], [33], and [38] can be used to predict the 
median strength of a particular beam configura- 
tion, if the value of unit volume strength 
~:"[0.5] corresponding to a survival probability 
of 0.5 is used. Thus, the value T*:[o.s] may be 
obtained by fitting the theoretical model to the 

Finally, using [44], the value of T* for a 
survival probability of 0.95 can b e  obtained 
from [43]. The result may be expressed as 
follows : [:n, (yo.] l i k  [45] ~*[0.95] = ~*[0.5] - 

In obtaining the parameters ~'::[0.5] and k 
by least-squares fitting, it is important that a 
good estimate for the mean strength be avail- 
able for each configuration tested. Thus, it is 
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FOSCHI AND BARRETT 205 

7, . psi 

FIG. 10. Comparison of two and three parameter 
Weibull regressions with experimental beam test 
rcsults. 

necessary that a rather large sample be con- 
sidered for each configuration and that, in the 
case of beams, most of the beams in the sam- 
ple actually fail in shear. If only a few do so, 
while all others fail in bending, it is apparent 
that only the weaker portion of the shear 
population would have been tested. 

  he parameters k and m can also be ob- 
tained from a direct fitting of [ I ]  to the ex- 
perimental data for a given test configuration. 
Figure 10 shows such a fit for 27 tests with 
shear failures in a glued-laminated Douglas-fir 
beam with cross-sectional dimensions b = 3.0 
in (0.076 m) and d = 10.5 in. (0.267 m).  
The beams were loaded with a symmetrical 
two-point loading system and the ratio a /d  
was 2.0. The broken curve corresponds to a 
simpler two-parameter model. It is apparent 
that, for the number of replications in this test, 
it is difficult to distinguish which of the two 
models gives the best fit of the data. In fact, 
from a practical point of view, stress levels at 
different probabilities of failure given by both 
models can be considered to be identical. The 
two-parameter model (solid curve) assumes 
zero minimum strength and therefore goes 
through the origin. The three-parameter model 
assumes a non-zero minimum strength and, 
therefore, the two models can give very dif- 
ferent answers at small probabilities of failure. 
The differences are normally small at the 0.05 
probability of failure level at which allowable 
stresses are referred. 

To  determine the parameters k and T*[0.5] 
by means of [41], five beam configurations 

were tested. Thirty replications were carried 
out for each configuration, for a total of 150 
tests. All beams were loaded with a symmetri- 
cal two-point loading system and all had a 
ratio a/d = 2.0. All beams were loaded to col- 
lapse which occurred by either shear or bend- 
ing. These tests were performed by the Strilc- 
tural Laboratory of the Civil Engineering De- 
partment of the University of Alberta (Long- 
worth 1975). Table 1 shows ihe dimensions 
of each beam configuration, the beam volume 
under shear stresses, the number of shear fail- 
ures obtained in the sample of 30 replications, 
and the mean shear failure stress. 

The data from these beams were used in 
[41], together with the mean strength of the 
ASTM specimen for Douglas-fir at about 12% 
moisture content (Kennedy 1965), to deter- 
mine the values of k and T:'[O.5]. 

Equations [44] and [45] were used to deter- 
mine m and ~*[0.95]. The results obtained for 
unit volumes of 1 in.%nd lm3 are as follows: 

V* = 1 i n 3  V* = 1 m 3  

k = 5.53 k = 5.53 

171 = 2700 psi m = 2540 kN/m2 

r*[0.5] = 2526 psi 

r*[0.5] = 2377 kN/m2 

r*[0.95] = 1578 psi 

r*[0.95] = 1485 kN/m2 

Figure 11 shows the correlation between 
mean test results and the theoretical strengths 
for a probability of survival of 0.5. 

Having determined the parameter k of [46], 
the values of p,, p,;, p ,,,,,. and can now be 
evaluated for k = 5.53 by using the following 
regression results for I ,  and ia corresponding 
to k =  5.53: 

\ 0.354 [I - exp (-0.139 (a/d)1.753)] 

( 0.0548 [I - exp (-0.0013 ( ~ l d ) ' . ~ ~ ' ) ]  

These regression curves are plotted, respec- 
tively, in Figs. 2 and 5. 
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TABLE 1. Beam tests results (all glued-laminated Douglas-fir; moisture content = 12%) 

Volume 
Width Depth Length under shear 

(in .) (in.) (in.) 

3 . 0  4.5 32.0 243.0 
3 .0  10.5 68.0 1323.0 
8.75 10.5 68.0 3858.8 
3 .0  28.5 176.0 9747.0 
5 .0  28.5 176.0 16245.0 

Number 
of shear 
failures 

25/30 
27/30 
26/30 
24/30 
28/30 

Mean 
failure 

shear stress 
(psi)* 

1280.4 
1027.1 
813.8 
684.2 
705.4 

Coefficient of 
variation 

0.109 
0.145 
0.138 
0.137 
0.151 

NOTE: 1 in. = 25.4 mm;  1 psi = 6.9 kNIm2. 
*Mean over the number o f  shear failures in the 30 re~l icat ions.  
t ~ > l u m e  = 26 do .  

1500 - (Foschi and Longworth 1975). Keenan and 
Selby (1973) and Madsen (1 972) have used 
torque tubes to determine the shear strength 
of clear Douglas-fir. Good agreement between 
the predicted and measured mean strength of 

.- 1000 - Griplam nail connections and the clear torque 
,I is shown in Fig. 12. Keenan and Selby (1973) 
z 
6 

also cite a number of references from which 
W 

z beam strength results were obtained for evalu- 
+ V) ating their shear area model. A comparison 

between the predicted strength using 1241 and 
test values is also shown in Fig. 12. The test 
values are generally lower than the predicted 
strengths. The tests cited were generally de- 
signed to assess bending strength and, accord- 

0 500 1000 1500 ingly, less than 25% of beams tested actually 
failed in shear. Mean strength results from 

TM[o.s1 , psi these tests must, therefore, be lower than would 
FIG. 11. Comparison of theoretical and test results. be in tests where the the 

Experimental Verification 
2000 - GRIPLAM NAILED CONNECTION 

The suitability of the theoretical model Forchl and 

which incorporates the constants k = 5.53 and TORQUE TUBE 
T*[0.5] = 2526 psi derived from the beam tests 
must be evaluated using other shear strength 
results. It is hypothesized that k and ~*[0 .5]  - 
are material constants which can be used to Z o Keenan and 

predict shear strength independently of shear 2 1000 
- 

stress distribution. A verification of the theo- 
retical model can be obtained by examining 
strength data obtained from other tests where 500 - 
shear was the mode of failure. 

For this purpose, results of Griplam nail 
connection, torque tube, and beam tests will 
be considered. An examination of failure 0 500 1000 1500 2000 

modes of Griplam nail connections showed 
T M [ o . 5 1  , psi 

that failure occurred by nail bending or by 
wood failure in shear around the nail cluster FIG. 12. Experimental verification of model. 
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FOSCHI AND 

beams failed in shear. However, the majority 
of these beam results do fall above the pre- 
dicted strength level corresponding to a 0.95 
survival probability. 

Allowable Stresses 
Allowable shear stresses in the case of a 

single concentrated load, for example, can be 
obtained by using [12] with k = 5.53 and 
~*[0.95] from [46]. The stress thus obtained 
will correspond to a 0.95 probability of sur- 
vival, and allowable stresses can finally be 
obtained by dividing by a capacity factor +0.95 

to account for duration of load effects and the 
possibility of overload. Of course, the factor 
p, in [12] should also be determined for k = 
5.53. 

It is possible to correlate the factors p,, for 
example, corresponding to k = 5.53 and to 
k = 5.0. Thus, it is possible to use [12], [20], 
[24], and [33] with k = 5.0 and correct the 
factors to account for the fact that k is 5.53 
and not 5.0. This correlation analysis was per- 
formed over 5616 different beam configura- 
tions, varying the width from 3.0 to 12 in. 
(0.076 to 0.305 m) ; the depth from 9 to 72 in. 
(0.229 to 1.830 m); the spans from 8 to 60 ft 
(2.44 to 18.29 m); and considering both uni- 
formly distributed and single concentrated 
loads. In the latter case, the load was posi- 
tioned at different points along the span. From 
all the different beam configurations thus ob- 
tained, it can be concluded that, with a high 
degree of linear correlation, (r2 = 0.996), 

where ps[5.53] corresponds to k = 5.53 and 
ps[5.0] corresponds to k = 5.0 and it is given 
in Fig. 3. The same relationship can be used 
for PI-, PI,,, PI1lOv for [201, 1241, and [331. 

Allowable stresses for normal duration of 
load can thus be expressed as follows: 

BARRETT 207 

V is the total beam volume and the coefficient 
p is given by 

(1) p = p, of Fig. 3, single concentrated 
load; 

(2) p = pu of Fig. 6, uniformly distributed 
load; 

(3)  p = p, of [23] for several concentrated 
loads ; 

(4)  p = p ,,,,, of [33] and Fig. 9, for single 
moving load. 

Very little information is available on dura- 
tion of load effects in shear, but, as a first ap- 
proximation, it would be reasonable to assume 
that the same factors apply for shear as for 
bending. Thus, a factor of 1.62 should be a p  
plied to reduce short-term strength to normal 
load-duration strength. If an overload factor 
of 1.3 is considered, a total reduction factor 
+o.n5 = 2.1 should be taken to obtain, from 
short-term strength values, those applicable to 
normal duration of load. 

Implications 
The CSA-086 (1970) code recommends a 

uniform allowable shear stress of 165 psi for 
air-dry glued-laminated Douglas-fir. Accord- 
ing to the results presented here, this allow- 
able should vary with beam size and with type 
of loading. The following are examples illus- 
trating the implications of the present study. 

Consider a beam of the following dimen- 
sions: L = 20 ft = 240 in. (6.096 m) ; b = 
6 in. (0.152 m); d = 24 in. (0.610 m);  and 
+o.n5 = 2.1. Thus, L/d = 10. Consider now 
the following load cases: 

( 1 ) Single Coizcentrated Load, a/L = 0.1 0 
Using [9], [I I], and [I21 (or Fig. 3) ,  P, = 

2.80 and thus, from [49], the allowable shear 
stress is T:, = 303.52 psi (2094.3 kN/m2) for 
normal load duration. The allowable load is, 
therefore, P ,  = 32.4 kips (144.2 kN). 

(2) Single Concentrated Load, a/L = 0.30 I T, = (0.116 + 1.125 p) a, = 1.69, T, = 187.47 usi (1293.5 kN/m2). 

X 
1578  he- allowable" load is, therefore, P, = ' 25.7 

), psi, (V in in.3) 
4 0 . 9 5  d- kips ( l 14.4 kN) . 

i or T, = (0.094 + 0.911 p) (3) Single Cotzcentrated Load, a/L = 0.50 

1485 p, = 1.25, T:, = 141.47 psi (976.1 kN/m2). 
X 

40 .95  p kN/m2, ( V  in m3) The allowable load is: P, = 27.1 kips 
(120.6 kN) . 
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( 4 )  Worst Position for Single Concentrated therefore, that the model presented allows 
Load the calculation of ultimate short-term shear 

For L/d  = 10, from Fig. 4, a / L  = 0.30 cor- strength values for very different structural 
responds to the worst position for a single components. This unifying characteristic is an 
concentrated load. This result is verified by encouraging result, and it represents a feature 
the calculations ( 1 ) through (3  ) , as the mini- previously lacking in timber design. 
mum load P, occurs for a / L  = 0.30. 

AMERICAN SOCIETY FOR TESTING MATERIALS. 1973. 
(5)  Single Concentrated Moving Load ASTM Stand. D143. Philadelphia. Pa. 

From Fig. 8, for L / d  = 10, = 0.80. Thus, BARRETT. J .  D., FOSCHI, R. o . ,  and FOX, S. P. 1975. 
Perpendicular-to-grain strength of Douglas-fir. Can. J. using the result of (2)  and (41, P, = 0.80 Civ,  Eng. pp, 50-57, 

x 25.7 kips = 20.6 kips (91.7 kN). BOLOTIN, V. V. 1969. Statistical methods in engineering 
science. Holden-Day Inc., San Francisco, Calif., pp. 

(6 )  Uniformly Distributed Load 49-53. 
From Fig. 6, PI. = 2.076, which, using CANADIAN STANDARDS ASSOCIATION. 1970. Code of rec- 

[20], gives the allowable stress st, = 277.83 ommended practice for engineering design in timber. 

psi ( 1572 kN/m" ). 

Stand. CSA-086. 
FOSCHI, R .  0. and LONGWORTH. J .  1975. Analysis and 

The load is, design of griplam nailed connections. ASCE,  J .  Struct. 
P ,  = 43.7 kips (194.5 kN). Div. 101 (ST 121, pp. 2537-2555. 

HUGGINS, M. W., PALMER, J . ,  and APLIN, E. N.  1966. 
Conclusions Evaluation of the effect of delamination. Eng. J .  49(2), 

pp. 32-4 1. 
The distribution of shear stresses in beams KEENAN,  F. J .  and SELBY, K.  A. 1973. The shear strength 

near their supports has been studied and the of ~ouglas - f i r  glued-laminated timber beams. ~ u b l .  
stress analysis has been used in conjunction 73-01, Dep. Civ. Eng., Univ. Toronto. Toronto, Ont. 

with a brittle-fracture model developed by K E N N E D Y ,  E.  I. 1965. Strength and related properties of 
woods grown in Canada. Pub. 1104, Can. Dep. For., Weibull to predict the probability of failure For. Prod, Res. Branch, 

of beams of different geometry and under dif- LONGWORTH. J .  1975. Longitudinal shear strength of 
ferent loading conditions. It has been shown timber beams. (to be submitted for publication, Can. J .  

that this model allows a rational interpretation Civ. 
MADSEN, B. 1972. Duration of load tests for  dry lumber 

of size effects in shear, as as of the dif- subjected to shear. Struct. Res. Ser. Rep. No.  6, Dep. 
ference in strength values between small shear c i v .  Eng., Univ. B.c., V ~ ~ C O U V ~ ~ ,  B.C. 
block and beam tests. Allowable stresses have NEWLIN,  J .  A., HECK, G. E.,and MARCH, H. W. 1934.New 

been derived for different loading conditions, methods of calculating longitudinal shear in checked 
wood beams. Trans. Am. Sac.  Mech. Eng., pp.  739-744. and the predictions of the have been ZIENKIEWICZ, 0 .  C .  1971. T h e  finite element method in 

verified with test results on Griplam nailed engineering science. M C G ~ ~ W - H ~ I I  Publishing CO. ~ t d . ,  
connections and torque tubes. It is apparent, Lond., Engl.,pp. 103-110. 
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