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Structures formed of bars that are rigidly connected are referred to as frames, while
those of bars that are pin connected are trusses. Analytically, trusses are treated as
being a special case of frames. For the frames of this chapter, it is assumed that
there is no interaction between axial, torsional, and flexural deformations (i.e., the
responses are based on uncoupled extension, torsion, and bending theory).

Formulas are provided for several simple frame configurations with simple load-
ings. Also, structural matrices required for more complicated frames are listed. Many
commercially available general-purpose structural analysis computer programs can
be used to analyze complicated frames.

Entries in most of the tables of this chapter give salient values of reactions, forces,
and moments. Also, a moment diagram is shown. This moment can be used to cal-
culate the bending stresses using the technical beam theory flexural stress formula.
Formulas for buckling loads and natural frequencies are tabulated.

Special attention is given to gridworks, which are flat networks of beams with
transverse loading. Collapse loads are provided for plastic design.
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13.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F
for force, M for mass, and T for time.

e = h/L, where h is the length of the vertical members and L is the
length of the horizontal members

E Modulus of elasticity of material (F/L2)

H Horizontal reaction; HA is horizontal reaction at location A (F)

I Moment of inertia of member about its neutral axis (L4)

Ih Moment of inertia of horizontal members (L4)

Iv Moment of inertia of vertical members (L4)

Ix Polar moment of inertia, = r2
p A (L4)

J Torsional constant (L4)

L Length of member (L)

M Bending moment (L F); a bending moment is taken as positive when
it causes tension on the inner side of the frame and compression on
the outer side; opposing bending moments are taken to be negative

p Applied distributed loading (F/L)

R Vertical reaction; RA is vertical reaction at location A (F)

ũ, ṽ, w̃ Displacements in x , y, and z directions, respectively

uX , uY , uZ Displacements in X , Y , and Z directions, respectively

v Displacement; vAx is displacement at location A in the x (horizontal)
direction; other displacements defined similarly (L)

x, y, z Local coordinates

X, Y, Z Global coordinates

β = Ih (horizontal beam)/Iv (vertical member)

θ = θy Rotation angle of cross section about y axis

θz Rotation angle of cross section about z axis

ω Natural frequency

Notation for Gridworks

g, s Index for girders and stiffeners, respectively

Ig, Is Moments of inertia of girders and stiffeners, respectively (L4)

Lg, Ls Length of girders and stiffeners, respectively (L)

ng, ns Total number of girders and stiffeners, respectively

ps Loading intensity along sth stiffener (F/L)

Pg, Ps Axial forces in girders and stiffeners, respectively (F)
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wg, θg, Mg, Vg Deflection, slope, bending moment, and shear force of gth girder
Wsg Concentrated force at intersection xs, yg (F)

ρg, ρs Mass per unit length of girders and stiffeners, respectively (M/L,
FT 2/L2)

13.2 FRAMES

Formulas

Tables 13-1 to 13-3 provide formulas for the static response of simple frameworks.
More complicated loading configurations can be obtained by superimposing the for-
mulas for cases given in the tables. This is illustrated in Example 13.5. Formulas for
frames of more complicated geometries are to be found in standard references (e.g.,
[13.1, 13.2]). Readily available structural analysis computer programs can be used to
find the forces and displacements as well as buckling loads and natural frequencies
in frameworks of any complexity.

Example 13.1 Statically Determinate Frame with Concentrated Force The
frame of Fig. 13-1 is hinged at the lower end of the left-hand member and is roller
supported at the lower end of the right-hand member.

Figure 13-1: Statically determinate frame.

From case 1 of Table 13-1,

RA = RB = 1
2 W = 5000 lb, Mmax = 1

4 W L = 45,000 ft-lb

Example 13.2 Statically Indeterminate Frame with Concentrated Force Sup-
pose for the frame of Fig. 13-1 that the lower end of the right-hand member is hinged
(no roller). Then the frame is statically indeterminate, so that case 1 of Table 13-2 ap-
plies. Use a = 1

2 L = 108 in., e = h/L = 8
18 = 0.444, β = Ih/Iv = 719

1890 = 0.380.
From Table 13-2,
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HA = HB = 3Wa

2hL

L − a

2βe + 3
= 2528 lb

RA = RB = 1
2 W = 5000 lb

MC = MD = 3Wa

2L

L − a

2βe + 3
= 242,700 in.-lb

MK = Wa(L − a)

2L

4βe + 3

2βe + 3
= 297,300 in.-lb

The moment diagram is sketched in case 1 of Table 13-2.

Example 13.3 Frame with Fixed Legs If the lower ends of the legs of the frame
of Fig. 13-1 are fixed, the reactions and moment distribution can be calculated using
case 6 of Table 13-2. As in Example 13.2, a = 108 in., e = 0.444, and β = 0.380.
The reactions are

RA = RB = 1
2 W = 5000 lb

HA = HB = 3W L/[8h(βe + 2)] = 3891 lb

MA = MB = W L/[8(βe + 2)] = HAh/3 = 124,497 in.-lb

MC = MD = W L/[4(βe + 2)] = 2MA = 248,995 in.-lb

MK = W L

4

βe + 1

βe + 2
= 291,005 in.-lb

Case 6 of Table 13-2 illustrates the moment distribution.

Example 13.4 Laterally Loaded Frame Suppose that the vertical load is re-
moved from the frame of Example 13.2 and replaced by a lateral load acting at half
height, as shown in Fig. 13-2.

Figure 13-2: Statically indeterminate frame of Example 13.4. The dimensions and section
properties are given in Fig. 13-1.
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Use the formulas of case 3 of Table 13-2 with W = 8000 lb, h = 96 in., a =
1
2 h = 48 in., β = 0.380, and L = 216 in. Define a constant

A = aβ(2h − a)/[h(2hβ + 3L)] = 0.0379494

Then we find that

RA = RB = W (h − a)/L = 1778 lb

HA = (W/2h)[h + a − (h − a)A] = 5924 lb

HB = [W (h − a)/2h](1 + A) = 2076 lb

MC = HBh = 199,296 in.-lb

MD = 1
2 W (h − a)(1 − A) = 184,714 in.-lb

MK = (h − a)HA = 284,352 in.-lb

The moment diagram is given in Table 13-2, case 3.

Example 13.5 Superposition of Solutions for a Frame with Several Loadings
Suppose that the frame of Fig. 13-2 is subjected to the loads of Examples 13.2 and
13.4 simultaneously. This configuration is shown in Fig. 13-3.

Figure 13-3: Frame of Fig. 13-2 with horizontal and vertical loading.

Since these frame formulas are based on linear theory, superposition holds. See
cases 1 and 3 of Table 13-2 for the directions of the reactions. Superposition gives,
for the frame of Fig. 13-3,

HA = 5924 − 2528 = 3396 lb, HB = 2076 + 2528 = 4604 lb

RA = 5000 − 1778 = 3222 lb, RB = 5000 + 1778 = 6778 lb

The directions of these reactions are shown in Fig. 13-3.
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The moment diagram can be obtained by superimposing the moment diagrams of
cases 1 and 3, Table 13-2, with due regard being given to the signs of the moments.
Alternatively, the moment diagram can be calculated using the applied loading and
the computed reactions. Thus,

MC = HBh = 441,984 in.-lb

MK1 = −HBh + 1
2 RB L = +290,040 in.-lb

MK2 = HA × 48 = 163,008 in.-lb

MD = W2 × 48 − HAh = 57,984 in.-lb

Figure 13-4: Moment diagram for frame of Fig. 13-3.

The combined moment diagram is illustrated in Fig. 13-4.

Buckling Loads

The buckling loads for some frames are given in Table 13-4. Reference [13.3] pro-
vides more cases. Methods for obtaining buckling loads of simple frames are de-
scribed in Ref. [13.4]. For more complicated frames, use the matrix methods given
in Section 13.4.

Natural Frequencies

Table 13-5 provides the fundamental natural frequencies for some simple framework
configurations. The computational methods of Section 13.4 can be used to obtain the
natural frequencies for more general frames.

Plastic Design

As in the case of beams, the concept of plastic design can be applied to frames.
The primary objective of the design is to find the collapse load and the location
of the plastic hinges. Normally, these plastic designs are restricted to proportional
loading such that all loads acting on a frame remain in fixed proportion as their
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magnitudes are varied. The common factor that multiplies all loads as they vary in
fixed proportion is called the load factor. The procedure for finding the load factor
is as follows [13.5]:

1. Find the locations of the plastic hinges in each component of the frame using
the same method as for beams.

2. Form possible failure modes called mechanisms by different combinations of
plastic hinges. The number of hinges in each mechanism is equal to the number
of redundancies plus 1.

3. Calculate the collapse load factor for each mechanism.
4. Calculate the moments in the frame for each collapse load factor to determine

the correct load factor. The true load factor should be such that the moment in
the frame due to this load should not exceed the plastic moment Mp .

In addition to the collapse load factors that can be determined, a safe-load region
can be established. Table 13-6 shows safe-load regions for several frameworks. In
Table 13-6, a combination of forces applied on the frame define a point on the xy
plane. When this point falls inside the safe region, no collapse occurs. When the
point falls on the boundary of the region, collapse occurs and the collapse mode is
identified by the location on the boundary, as indicated by the figures in Table 13-6.
Loadings leading to points outside the region correspond to a collapsed framework.
In fact, an attempt to increase the applied loads beyond that necessary to reach the
boundary results in further movements of the plastic hinges without an increase in
the collapse loads. See Ref. [13.5] for techniques for calculating the safe-load region.

13.3 GRIDWORKS

A special case of frames is a gridwork, or grillage, which is a network of beams
rigidly connected at the intersections, loaded transversely. That is, a gridwork is a
network of closely spaced beams with out-of-plane loading. It may be of any shape
and the network of beams may intersect at any angle. These beams need not be
uniform.

The gridworks treated here are plane structures (Fig. 13-5), with the beams lying
in one direction called girders and those lying in the perpendicular direction called
stiffeners. Either set of gridwork beams can be selected to be the girders. In prac-
tice, the wider spaced and heavier set is usually designated as girders, whereas the
closer spaced and lighter beams are stiffeners. For a uniform gridwork, the girders
are identical in size, end conditions, and spacing. However, the set of stiffeners may
differ from the set of girders, although the stiffeners are identical to each other. The
treatment here is adapted from Ref [13.6].

For the formulas here, the cross section of the beams may be open or closed, al-
though torsional rigidity is not taken into account. For closed cross sections this may
lead to an error of up to 5%. Stresses in the girders and stiffeners can be calculated
using the formulas for beams in Chapter 11.
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Figure 13-5: Typical gridwork.

For gridworks not covered by the formulas here, use can be made of a framework
computer program. The structural matrices, including transfer, stiffness, and mass
matrices, for a grillage are provided in Section 13.4. The sign convention of the
transfer matrix method for displacements and forces for the beams of Chapter 11
apply to the gridwork beams here.

Static Loading

The deflection, slope, bending moment, and shear force of the gth girder of the grid-
work are given in Table 13-7. The ends of both the girders and stiffeners are simply
supported. Table 13-8 provides the parameters K j for particular loadings. Sufficient
accuracy is usually achieved if only M terms, where M � ∞, are included in the
formulas for Tables 13-7 and 13-8; that is,

∞∑
j=1

=
M∑

j=1

Example 13.6 Deflection of a Gridwork with Uniform Force The grillage of
Fig. 13-6 is loaded with a uniform force of 10 psi. Use the formulas of Tables 13-7
and 13-8 to find the deflections at the intersections of the beams. Assume that the
axial forces in both the girders and stiffeners are zero.

As indicated in case 3, Table 13-8, only a single term is needed in the summation
of the formulas of Table 13-7. It is reasonable to assume that the loading inten-
sity along either of the stiffeners will be ps = (10 psi)Lg/(ns + 1) = 10( 100

3 ) =
333.33 lb/in. Use one term of case 1, Table 13-7:

wg = sin
πg

ng + 1
K1 sin

πx

Lg
= K1 sin

πg

3
sin

πx

100
(1)

where from case 3 of Table 13-8, since Pg = Ps = 0,
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Figure 13-6: Grillage for Examples 13.6–13.8.

K1 =
4L4

s
E Isπ5

2∑
s=1

ps sin πs
3

3
2 + 3

2

=
4L4

s ps

E Isπ5 (
√

3/2 + √
3/2)

3
2 + 3

2

= 4L4
s ps

E Isπ5

√
3

3
(2)

Then

w1|x=Lg/3 = w2|x=Lg/3 = w1|x=2Lg/3 = w2|x=2Lg/3

= 4L4
s ps

E Isπ5

√
3

3
sin

π

3
sin

π

3
= 0.062886 in. (3)

Example 13.7 Moment in a Gridwork with Uniform Force and Axial Loads
Find the maximum bending moment in the grillage of Fig. 13-6. The grillage is
loaded with a transverse uniform force of 10 psi. In addition, the girders are subject
to compressive axial forces of 5000 lb.

The bending moments in the girders are given by case 3, Table 13-7. As noted in
case 3 of Table 13-8, only one term in case 3, Table 13-7, is required. Thus

Mg = E Ig sin
πg

ng + 1
K1

π2

L2
g

sin
πx

Lg
(1)

The coefficient K1 is taken from case 3, Table 13-8. Use the data Ls = Lg =
100 in., E = 3×107 psi, Is = Ig = 100 in4, Ps = 0, Pg = 5000 lb, ns = 2, ng = 2,
ps = 333.33 lb/in (Example 13.6).

Pe = π2(3 × 107)100

1002
= 2,960,881 = Pc,

Pg

Pc
= 1.69 × 10−3 (2)

K1 =
4L4

s ps

E Isπ5

2∑
s=1

sin πs
3

3
2 (0.99831) + 3

2

= 4L4
s ps

E Isπ5
(0.57784) (3)
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It follows from symmetry that the maximum moment occurs at x = 1
2 Lg. Then,

for g = 1,

M1,max = Mg|x=Lg/2 = E Ig sin
(π

3

) 4L4
s ps

E Isπ5
(0.57784)

π2

L2
g

= 215,190 in.-lb (4)

Example 13.8 Deflections Due to Concentrated Forces Consider again the
grillage of Fig. 13-6. Assume that there are no distributed or in-plane axial forces.
Suppose that concentrated forces of 10,000 lb act at each intersection.

With equal concentrated forces, sufficient accuracy is usually achieved with one
term of the formulas of Table 13-7:

wg = K1 sin
πg

3
sin

πx

100
(1)

with (case 1 of Table 13-8)

K1 =
2L3

s
E Isπ4 × 10,000

2∑
s=1

2∑
g=1

sin πg
3 sin πs

3

3
2 + 3

2

= 2L3
s

E Isπ4
× 10,000 (2)

Substitute (2) into (1):

w1|x=Lg/3 = w2|x=Lg/3 = w1|x=2Lg/3 = w2|x=2Lg/3 = 0.0514 in. (3)

Buckling Loads

The buckling or critical axial loads in the girders of uniform gridworks are given
in Tables 13-9 and 13-10. That is, these are formulas for Pg = Pcr. The formulas
that apply for girders and stiffeners with fixed or simply supported ends are accurate
for gridworks with more than five stiffeners. In some cases, the formulas will be
sufficiently accurate for as few as three stiffeners.

Example 13.9 Buckling Loads Compute the critical axial forces in the girders
of the gridwork of Fig. 13-7 if the girders can be simply supported or fixed. The
stiffeners are simply supported. Suppose that Ig = Is and Lg = Ls = L. From
Fig. 13-7, ng = 3 and ns = 12.

The girder buckling loads Pcr are given by the formulas of Table 13-9 for gird-
ers with fixed or simply supported ends. These formulas involve the constant C1,
which is taken from Table 13-10 according to the stiffener end conditions. To use
Table 13-9, first calculate D1. For simply supported stiffeners and ng = 3, the con-
stant C1 is given as 0.041089 in Table 13-10. Thus,

D3 =
√

C1Lg L3
s Ig/[Is(ns + 1)] =

√
C1L4/13 = L2

√
C1/13
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Figure 13-7: Example 13.9.

and

D1 = 0.0866L2
g/D3 = 0.0866

√
13/C1 = 1.54

D2 = 0.202L2
g/D3 = 3.5930

Since D1 > 1, cases 2 and 4 in Table 13-9 are used. These give Pcr = D2 Pe =
3.5930Pe for simply supported girders and Pcr = 6.5930Pe for fixed girders.

Natural Frequencies

Designate the natural frequencies of a gridwork as ωmn , where the subscript m in-
dicates the number of mode-shape half waves in the y (stiffener) direction and n
indicates the number of half waves in the x (girder) direction. Figure 13-8 illustrates
typical mode shapes associated with ωmn .

For a uniform grillage with simply supported stiffeners, the lower natural frequen-
cies (radians per time) are given by

ω2
mn =

E Is Lg

(
πm
Ls

)4 + E Ig
ng+1
Cn L3

g
− Ps

(
mπ
Ls

)2
Lg

ρs Ls + ρg Lg
(13.1)

where ng is the number of girders; Ig, Is are the moments of inertia of girders
and stiffeners, respectively; Lg, Ls are the length of girders and stiffeners, respec-
tively; ρg, ρs are the mass per unit length of girders and stiffeners, respectively
(M/L , FT 2/L2); and E is the modulus of elasticity. The stiffener axial force Ps

Figure 13-8: Mode shapes corresponding to frequencies ωmn .
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is simply set equal to zero if the stiffeners are not subject to axial forces. The pa-
rameter Cn is given in Table 13-11 for girders with fixed or simply supported ends.
Recall that either set of grillage beams can be selected to be the girders.

If each of the girders is subjected to an axial force Pg , Eq. (13.1) still provides the
natural frequencies if Cn is replaced by

Cn
Pe

Pe − Pg
(13.2)

where Pe = π2 E Ig/L2
g.

Example 13.10 Natural Frequencies of a Simply Supported Gridwork Find
the lower natural frequencies of a 3 × 3 grillage for which all beam ends are simply
supported. For this grillage, ng = ns = 3, Ig = Is = 100 in4, ρg = ρs =
1 lb-s2/in2, Lg = Ls = 100 in., and E = 3 × 107 psi. There are no axial forces
(i.e., Ps = 0, Pg = 0). From Eq. (13.1),

ω2
mn = (3 × 107)100[m4π4 + (3 + 1)/Cn]/1003

2 × 100
= 15

(
m4π4 + 4

Cn

)
(1)

To calculate ω11, ω21, ω12, and ω22, enter Table 13-11 for ns = 3 and find C1 =
0.041089 and C2 = 0.0026042. Use (1):

ω2
11 = 15(π4 + 4/C1) = 2921.37 or ω11 = 54 rad/s

ω2
21 = 15(16π4 + 4/C1) = 24,838.347 or ω21 = 157.6 rad/s

ω2
12 = 15(π4 + 4/C2) = 24,500.831 or ω12 = 156.5 rad/s

ω2
22 = 15(16π4 + 4/C2) = 46,417.89 or ω22 = 215 rad/s

(2)

Other frequencies can be calculated in a similar fashion.

General Grillages

The formulas for uniform gridworks are provided in this section. Since gridworks
are a special case of frameworks, use a computer program for the analysis of frames
to find the response of complicated grillages. The structural matrices for grillages are
listed in Section 13.4 under plane frames with out-of-plane loading.

13.4 MATRIX METHODS

Frames and trusses (both generally referred to as frames) can be considered as as-
semblages of beams and bars. As a consequence, they can be analyzed using the ma-
trix methods (transfer and displacement) of Appendix III. The displacement method
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can be employed to obtain the nodal responses, while the displacements and forces
between the nodes along the members can be obtained using the transfer matrix
method. Such references as [13.7]–[13.10] contain frame analysis formulations.

Frames are often classified as being plane (two-dimensional) and spatial (three-
dimensional) in engineering practice.

Transfer Matrix Method

The transfer matrices provided in Chapters 11 and 12 can be combined to obtain the
transfer matrices for the analysis of frames or frame members. See Appendixes II
and III.

Stiffness and Mass Matrices

In general, the analysis of plane frames requires the inclusion of the axial effects
(extension or torsion) as well as bending in the stiffness matrix. As discussed in
Appendix III, the analysis also requires a transformation of many variables from local
to global coordinates. Then the global system matrix can be assembled. For dynamic
problems, the mass matrices can be treated similarly to establish the system mass
matrix. The nodal displacements are found by introducing the boundary conditions
and solving resulting equations. See the examples in Appendix III.

The stiffness matrices for plane and space trusses and frames are presented in
Tables 13-12 to 13-15. Mass matrices for frames are listed in Tables 13-16 and 13-17.
All of these matrices use sign convention 2 of Appendix II. Use a frame analysis to
analyze a truss for dynamic responses. Stiffness matrices for more complex members
can be constructed from the general stiffness matrices of Chapter 11. For example,
it is possible to introduce a 4 × 4 beam stiffness matrix that includes the effect of an
axial force on bending. Also, if thin-walled cross sections are of concern, the 4 × 4
structural matrices of Chapter 14 can replace the 2 × 2 torsional matrices of this
chapter.

Stability Analysis

The stiffness matrices listed in the tables of this chapter do not include the interac-
tions between bending and axial forces. However, in some analyses (e.g., a stability
analysis), this interaction must be considered in that the bending moment caused
by the axial forces must be included. To do so, introduce the stiffness matrix of
Table 11-22 with P �= 0. The buckling loading can be obtained using a determinant
search after the global stiffness matrix is assembled and the boundary conditions
applied. The details of this instability procedure follow.

1. Perform a static analysis of the frame using the stiffness matrices given in
Tables 13-12 to 13-15 to determine the axial forces in each element resulting
from a given load.
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2. Use element stiffness matrices, such as that given in Table 11-22, that include
the effects of bending and the axial force interaction.

3. Assemble the element matrices to form the global stiffness matrix, and impose
the boundary conditions on the global matrix using the procedure described in
Appendix III.

4. Let all internal axial forces remain in the same fixed proportions to each other
throughout the search for the critical applied load. These fixed proportions are
determined in step 1. Introduce a single load factor λ that holds for global
structural matrices that model the entire structure. This λ is a common factor
that multiplies all loads as they vary in fixed proportion.

5. Let the determinant of the global stiffness matrix be zero and determine λ,
usually employing a numerical search technique. This λ is the critical load
factor.

For examples, see Ref. [13.11].

The stability analysis can also be conducted approximately, but efficiently, by
employing the geometric stiffness matrix given in Table 11-23 and using the dis-
placement method of Appendix III.
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TABLE 13-1 STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY
FRAMES OF CONSTANT CROSS SECTION
The direction of the reaction forces are shown in the figures of the configurations. The
signs of the moments are shown in the moment diagrams. A bending moment is indicated
as positive when it causes tension on the inner side of the frame and compression on the
outer side. Opposing moments are negative. The formulas in the table give the magnitudes
of these quantities. The horizontal and vertical coordinate axes are x and y, respectively.
v jk is the displacement of point j in the k direction. θ j is the slope at j .

Configuration Moment Diagram Important Values

1. HA = 0

RA = RB = 1
2 W

vBx = W hL2

8E I

Mmax = 1
4 W L at point K

2.
HA = W RA = RB = W

h

L

vBx = W h2

6E I
(3L + 2h)

vCy = 0 vCx = W h2

3E I
(L + h)

Mmax = W h at point D

3. HA = W RA = RB = 0

vBx = W h2

3E I
(3L + 2h)

Mmax = W h

4.
HA = 0 RA = RB = M0

L

vBx = M0hL

2E I

Mmax = M0 at point C

676 TABLE 13-1 Statically Determinate Rectangular Frames



TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF
CONSTANT CROSS SECTION

Configuration Moment Diagram Important Values

5.
HA = 0 RA = RB = M0

L

θK = M0 L

12E I

Mmax = 1
2 M0 at point K

6. HA = 0 RA = RB = 1
2 p1L

vbx = p1hL3

12E I

Mmax = 1
8 p1L2 at x = 1

2 L

7.
HA = p1h RA = RB = p1h2

2L

vBx = p1h3

24E I
(6L + 5h)

Mmax = 1
2 p1h2 at point D

8.
HA = p1h RA = RB = p1h2

2L

vBx = p1h3

24E I
(18L + 11h)

Mmax = p1h2 at point D
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TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF
CONSTANT CROSS SECTION

Configuration Moment Diagram Important Values

9. HA = W RA = 0 MA = 0

vDx = W h2

3E I
(3L + 4h)

vDy = −W hL

2E I
(L + h)

Mmax = W h at points B, C

10. HA = 0 RA = W MA = W L

vDx = −W hL

2E I
(L + 2h)

vDy = W L2

3E I
(L + 3h)

Mmax = W L

11. HA = W RA = 0 MA = W h

vDx = −W h3

2E I
vDy = W Lh2

2E I

vCx = W h3

3E I
vCy = W Lh2

2E I
Mmax = W h at point A

12. HA = 0 RA = 0 MA = M0

vDx = M0h

E I
(L + 3h)

vDy = − M0 L

2E I
(L + 2h)

θD = M0

E I
(L + 2h) Mmax = M0

13. HA = 0 RA = p1L

MA = 1
2 p1L2

vDx = − p1L2h

6E I
(L + 3h)

vDy = p1L3

8E I
(L + 4h)

Mmax = 1
2 p1L2
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TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF
CONSTANT CROSS SECTION

Configuration Moment Diagram Important Values

14. HA = 0 RA = W MA = W L

vCx = W Lh2

2E I

vCy = W L2

3E I
(L + 3h)

θC = W L

2E I
(L + 2h)

Mmax = W L

15. HA = W RA = 0 MA = W h

vCx = W h3

3E I

vCy = W h2L

2E I
Mmax = W h at point A

16. HA = 0 RA = 0 MA = M0

vCx = M0h2

2E I

vCy = M0L

2E I
(L + 2h)

θC = M0

E L
(L + h)

Mmax = M0

17. HA = 0 RA = p1L

MA = 1
2 p1L2

vCx = p1h2L2

4E I

vCy = p1L3

8E I
(L + 4h)

Mmax = 1
2 p1L2
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TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF
CONSTANT CROSS SECTION

Configuration Moment Diagram Important Values

18. Free-end relative displacement

v = vAx − vBx = Wa2

3E I
(2a + 3L)

Mmax = Wa

19. Free-end relative displacement

v = vAx − vBx = M0a

E I
(a + L)

Mmax = M0

20. Free-end relative displacement

v = vAx − vBx = p1a3

4E I
(a + 2L)

Mmax = 1
2 p1a2
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TABLE 13-2 STATICALLY INDETERMINATE RECTANGULAR FRAMES
The directions of the reaction forces are shown in the figures of the configurations. The
signs of moments are shown in the moment diagrams. A bending moment is indicated as
positive when it causes tension on the inner side of the member and compression on the
outer side. Opposing moments are negative. The formulas in the table give the magnitudes
of the forces and moments.

Definitions
e = h/L

β = Ih (horizontal beam)/Iv (vertical members)

Configuration Moment Diagram Important Values

1.
RA = W

L − a

L
RB = W

a

L

HA = HB = 3Wa

2hL

L − a

2βe + 3

MC = MD = 3Wa

2L

L − a

2βe + 3

MK = Wa(L − a)

2L

4βe + 3

2βe + 3

2.
RA = RB = W

h

L

HA = HB = 1
2 W

MC = MD = 1
2 W h
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

3.
RA = RB = W

h − a

L

HA = W

2h

[
h + a − (h − a)

aβ(2h − a)

h(2hβ + 3L)

]

HB = W (h − a)

2h

[
1 + aβ(2h − a)

h(2hβ + 3L)

]

MC = 1
2 W (h − a)

[
1 + aβ(2h − a)

h(2hβ + 3L)

]

MD = 1
2 W (h − a)

[
1 − aβ(2h − a)

h(2hβ + 3L)

]

MK = W (h − a)

2h

×
[

h + a − (h − a)
aβ(2h − a)

h(2hβ + 3L)

]

4. RA = RB = 1
2 p1L

HA = HB = p1L

4e(2βe + 3)

MC = MD = p1L2

4(2βe + 3)

MK = p1L2

8

2βe + 1

2βe + 3

5.
RA = RB = p1h2

2L

HA = p1h

8

11βe + 18

2βe + 3

HB = p1h

8

5βe + 6

2βe + 3

MC = p1h2

8

5βe + 6

2βe + 3

MD = 3p1h2

8

βe + 2

2βe + 3
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

6. RA = RB = 1
2 W

HA = HB = 3W L

8h(βe + 2)

MA = MB = W L

8(βe + 2)

MC = MD = W L

4(βe + 2)

MK = W L

4

βe + 1

βe + 2

7. RA = RB = 1
2 p1L

HA = HB = p1L2

4h(βe + 2)

MA = MB = p1L2

12(βe + 2)

MC = MD = p1L2

6(βe + 2)

MK = p1L2(3βe + 2)

24(βe + 2)

8.
RA = RB = p1h

βe2

6βe + 1

HA = p1h

4

[
8βe + 17

2(βe + 2)
− 4βe + 3

6βe + 1

]

HB = p1h

4

[
4βe + 3

6βe + 1
− 1

2(βe + 2)

]

MA = p1h2

4

[
4βe + 1

6βe + 1
+ βe + 3

6(βe + 2)

]

MB = p1h2

4

[
4βe + 1

6βe + 1
− βe + 3

6(βe + 2)

]

MC = p1h2 βe

4

[
2

6βe + 1
+ 1

6(βe + 2)

]

MD = p1h2 βe

4

[
6

6βe + 1
+ 1

6(βe + 2)

]
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

9.
RA = Wa[L2(2βe + 3) − a2]

2L3(βe + 1)

RB = W − RA

HA = HB = Wa(L2 − a2)

2hL2(βe + 1)

MC = Wa(L2 − a2)

2L2(βe + 1)

MD = a

L
[W (L − a) − MC ]

10. RA = p1L

8

4βe + 5

βe + 1

RB = p1L

8

4βe + 3

βe + 1

HA = HB = p1L2

8h(βe + 1)

MC =
p1L2

8(βe + 1)

11.
RA = Wa

L

(
1 + 2

L2

L2 − a2

3βe + 4

)

RB = W (L − a)

L

(
1 − 2a

L2

L + a

3βe + 4

)

HA = HB = 3Wa

hL2

L2 − a2

3βe + 4

MA = Wa

L2

L2 − a2

3βe + 4

MC = 2Wa

L2

L2 − a2

3βe + 4

MD = Wa(L − a)

L

(
1 − 2a

L2

L + a

3βe + 4

)
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

12.
RA = RB = 3Wa(h − a)2

hL2

β

3βe + 4

HA = Wa

h

[
1 + h − a

h2

3aβe + 2(h + a)

3βe + 4

− 3(h − a)2

hL

β

3βe + 4

]
HB = W − HA

MA = Wa(h − a)

h2

3aβe + 2(h + a)

3βe + 4

MC = 3Wa(h − a)2

hL

β

3βe + 4

MD = HA(h − a) − MA

13. RB = 3
2 p1L

βe + 1

3βe + 4

RA = 1
2 p1L

3βe + 5

3βe + 4

HA = HB = 3p1L2

4h(3βe + 4)

MA = p1L2

4(3βe + 4)

MC = p1L2

2(3βe + 4)

14.
RA = RB = 1

4 p1h
βe2

3βe + 4

HA = 1
2 p1h

3βe + 5

3βe + 4

HB = 3
2 p1h

βe + 1

3βe + 4

MA = 1
4 p1h2 βe + 2

3βe + 4

MC = 1
4 p1h2 βe

3βe + 4
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

15.
RA = Wa2

2L3(βe + 1)

× [βe(3L − a) + 2(3L − 2a)]
RB = W − RA

HA = HB = 3Wa2

2hL2

L − a

βe + 1

MA = Wa2

2L2

L − a

βe + 1

MB = Wa(L − a)

2L2

×
[
βe(2L − a) + 2(L − a)

βe + 1

]

MC = Wa2

L2

L − a

βe + 1

MD = RBa − MB

16.
RA = 1

8 p1L
3βe + 4

βe + 1

RB = 1
8 p1L

5βe + 4

βe + 1

HA = HB = p1L2

8h(βe + 1)

MA = p1L2

24(βe + 1)

MB = 1
24 p1L2 3βe + 2

βe + 1

MC = p1L2

12(βe + 1)
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TABLE 13-3 NONRECTANGULAR SINGLE-BAY FRAMES
The direction of the reaction forces are shown in the figures of the configurations. The
signs of moments are shown in the moment diagrams. A bending moment is indicated as
positive when it causes tension on the inner side of the member and compression on the
outer side. Opposing moments are negative. The formulas in the table give the magnitudes
of these quantities.

Symmetrical Gable Frames

k = I1a

I2h
φ = f

h
α =

(
3 + 3φ + φ2 + 1

k

)

γ = 3(1 − kφ)

2(1 + kφ2)
λ = 6(1 + k)

1 + kφ2
η = 12[2 + 2k − γ (1 − kφ)]

Configuration Moment Diagram Important Values

1.
HA = HB = W L(3 + 2φ)

2αh

RA = RB = 1
2 W

ME = MC = HBh

MD = 1
4 W L − HBh(1 + φ)

2.
HB = W

α

(
6 + 3φ + 2

k

)
HA = W − HB

RA = RB = W h

L
ME = h(W − HB)

MC = HBh

MD = HBh(1 + φ) − 1
2 W h
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

3.
HA = HB = p1L2

8αh
(8 + 5φ)

RA = RB = 1
2 p1L

ME = MC = HBh

MD = 1
8 p1L2 − HBh(1 + φ)

4. W = p1( f + h)

HB = p1h

4α

(
12 + 8φ

k
+ 30φ

+ 20φ2 + 5φ3 + 5

k

)
HA = W − HB

RA = RB = p1(h + f )2

2L

ME = HAh − 1
2 p1h2

MC = −HBh

MD = − 1
4 p1(h + f )2

+ HBh(1 + φ)

5.
HA = HB = W Lk

ηh
(3γ + λφ)

RA = RB = 1
2 W

ME = MC = W Lk

η
(3 + 2γφ)

MA = MB = −ME + HAh

MD = −ME + 1
4 W L − HB f

688 TABLE 13-3 Nonrectangular Single-Bay Frames



TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

6.
HB = 2W

η
(λ − 3γ )

HA = W − HB

RA = RB = 3W h

2(3 + k)L

ME = 4W h

(
3 − 2γ

2η

+ 3

16(3 + k)

)

MC = 4W H

(−3 + 2γ

2η

+ 3

16(3 + k)

)
MA = h(W − HB) − ME

MB = −MC + HBh

MD = HB f − 2W h

η
(3 − 2γ )

7. S = 2 + 5
4γφ T = 2γ + 5

8λφ

HA = HB = p1L2T k

ηh

RA = RB = 1
2 p1L

MA = MB = p1L2k

η
(T − S)

ME = MC = p1L2Sk

η

MD = − p1L2Sk

η
+ 1

8 p1L2−HB f

For the left half of a girder,

Mx = (−ME + 1
4 p1Lx)

×
(

1 − 2x

L

)
+ MD

2x

L
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

8. S = 6 − 4γ − kφ(4 + 5
2γφ)

T = 2λ + kφ(4γ + 5
4λφ) − 6γ

R = S f

h + f
+ h

h + f
(2 − 3

2γ )

Q = 4h

h + f
+ f

h + f
(12 − kφ)

W = p1( f + h)

HB = W

η(h + f )
(T f + 3

4λh − 2γ h)

HA = W − HB

RA = RB = W h

32(3 + k)L

×
(

4Q + 16(3 + k)
f

h + f
φ

)

ME = W h

(
R

η
+ Q

16(3 + k)

)

MC = −W h

(
R

η
− Q

16(3 + k)

)

MA = −ME − HBh + 1
2 W h

h + 2 f

h + f

MD = − 1
2 (ME − MC ) + HB f

− W f 2

4(h + f )

MB = −MC + HBh
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Symmetrical Arched Frames

k = I1L

I2h
φ = f

h
α = 8[1 + k(1.5 + 2φ + 0.8φ2)]

β = 1.5 − kφ

1 + 0.8kφ2
γ = 3 + 1.5k

1 + 0.8kφ2
η = 12(2 + k) − 4β(3 − 2kφ)

Configuration Moment Diagram Important Values

9.
HA = HB = W Lk

αh

6 + 5φ

4

RA = RB = 1
2 W

ME = MC = HAh

MD = 1
4 W L − HA(h + f )

10.
e = 4

α
(1 + 1.5k + kφ)

HB = We HA = W − HB

RA = RB = W h

L
ME = h(W − HB)

MC = HBh

11.
HA = HB = p1L2k

αh
(1 + 4

5φ)

RA = RB = 1
2 p1L

ME = MC = HAh

MD = 1
8 p1L2 − HA( f + h)
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

12. e = 4(1 + 1.5k + kφ)/α

HB = p1h

2α
(1 + αe)

HA = p1h − HB

RA = RB = p1h2

2L

ME = 1
2 p1h2 − HBh

MC = HBh

13.
HA = HB = W Lk

ηh

6β + 5γφ

4

RA = RB = 1
2 W

ME = MC = W Lk

η

6 + 5βφ

4

MA = MB = −ME + HAh

MD = 1
4 W L − ME − HA f

14.
HB = 2W

η
(2γ − 3β)

HA = W − HB

RA = RB = 3W h

(6 + k)L

ME = W h

η
(6 − 4β)

+ 3W h

2(6 + k)

MC = W h

η
(6 − 4β)

+ 3W h

2(6 + k)

MA = h(W − HB) − ME

MB = −MC + HBh
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

15. HA = HB

= p1L2k

5ηh
(5β + 4γφ)

RA = RB = 1
2 p1L

ME = MC

= p1L2k

5η
(5 + 4βφ)

MA = MB = −ME + HAh

MD = 1
8 p1L2 − ME − HB f

16.
HB = p1h

2η
(3γ − 4β)

HA = p1h − HB

RA = RB = p1h2

(6 + k)L

ME = p1h2

2η
(4 − 3β)

+ p1h2

2(6 + k)

MC = − p1h2

2η
(4 − 3β)

+ p1h2

2(6 + k)

MA = −ME − HBh + 1
2 p1h2

MB = −MC + HBh
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Symmetrical Polygonal Frames

k1 = I3a

I1e
k2 = I3d

I2e
B0 = 2a

h
(k1 + 1) + 1 C0 = a

h
+ 2 + 3k2

N0 = aB0

h
+ C0 C1 = b

a
(2 + 3k2) C2 = 1 + h

a
(2 + 3k2)

C3 = 1 + d

L
(2 + k2) R = b

a
C2 − k1 N1 = k3k4 − R2

β = 3k1 + 2 + d

L
N2 = 3k1 + β + d

L
C3 k3 = 2(k1 + 1) + h

a
(1 + C2)

K4 = 2k1 + b

a
C1

Configuration Moment Diagram Important Values

17.
X = WcC0 + ( 3

4 Wd)k2

2N0

HA = HB = X

h

RA = RB = 1
2 W

ME = MD = 1
2 Wc − X

MF = MC = a

h
X

MK = 1
4 Wd + ME

18.
X = p1dcC0 + 1

2 p1d2k2

2N0

HA = HB = X

h

RA = RB = 1
2 p1d

ME = MD = 1
2 p1dc − X

MF = MC = a

h
X

MK = 1
8 p1d2 + ME
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

19.
X = Wa(B0 + C0)

2N0

HB = X

h
HA = W − HB

RA = RB = Wa

L

MF = Wa − a

h
X

MC = a

h
X

ME =
(

1 − c

L

)
Wa − X

MD = c

L
Wa − X

20.

X =
p1a2

[
2(B0 + C0) + a

h
k1

]
8N0

HB = X

h
HA = p1a − HB

RA = RB = p1a2

2L

MF = 1
2 p1a2 − a

h
X

MC = a

h
X

ME = RB(L − c) − X

MD = X − RBc
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

21.
B1 = WcC1 + 3b

4a
Wdk2

B2 = WcC2 + 3h

4a
Wdk2

X1 = B1k3 − B2 R

2N1

X2 = B2k4 − B1 R

2N1

HA = HB = 1

a
(X1 + X2)

RA = RB = 1
2 W

MA = MB = X1

MF = MC = X2

ME = MD = 1
2 Wc − b

a
X1

− h

a
X2

MK = 1
4 Wd + ME

22.
B1 = p1dcC1 + p1d2b

2a
k2

B2 = p1dcC2 + p1d2h

2a
k2

X1 = B1k3 − B2 R

2N1

X2 = B2k4 − B1 R

2N1

HA = HB = 1

a
(X1 + X2)

RA = RB = 1
2 p1d

MA = MB = X1

MF = MC = X2

ME = MD = 1
2 p1dc − b

a X1

− h

a
X2

MK = 1
8 p1d2 + ME
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

23. B1 = bC1W B2 = bC2W

B3 = Wa

(
β + d

L
C3

)

X1 = B1k3 − B2 R

2N1

X2 = B2k4 − B1 R

2N1

X3 = B3

2N2

HB = W

2
− X1 + X2

a

HA = W − HB

RA = RB = 2

L

(
Wa

2
− X3

)
MA = X1 + X3

MB = −X1 + X3

MF = X2 + Wa

2
− X3

MC = X2 − Wa

2
+ X3

ME = −Wb

2
+ b

a
X1 + h

a
X2

+ d

L

(
Wa

2
− X3

)

MD = Wb

2
− b

a
X1 − h

a
X2

+ d

L

(
Wa

2
− X3

)
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

24.
B1 = p1ab

2
C1 + p1a2

4
k1

B2 = p1ab

2
C2 − p1a2

4
k1

B3 = p1a2

2

(
β + d

L
C3 + k1

)

X1 = B1k3 − B2 R

2N1

X2 = B2k4 − B1 R

2N1

X3 = B3

2N2

HB = p1a

4
− X1 + X2

a

HA = p1a − HB

RA = RB = 2

L

(
p1a2

4
− X3

)

MA = X1 + X3

MB = −X1 + X3

MF = X2 +
(

p1a2

4
− X3

)

MC = X2 −
(

p1a2

4
− X3

)

ME = − p1ab

4
+ b

a
X1

+ h

a
X2 + d

L

(
p1a2

4
− X3

)

MD = p1ab

4
− b

a
X1 − h

a
X2

+ d

L

(
p1a2

4
− X3

)
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TABLE 13-4 BUCKLING LOADS FOR FRAMES
Notation

E = modulus of elasticity
I = moment of inertia

Ih, Iv = moments of inertia of horizontal and vertical members
A = area of cross section

Ah = area of the cross section of horizontal member
Avi = area of the cross section of i th (from left to right) vertical member;

Avi = Av if all vertical members are identical
L = width of frame
h = height of frame

Pcr = buckling load; unless specified otherwise, Pcr = π2 E Iv/(αh)2

α = constant given in table

k = Iv L

Ihh
n = P1 + P

2P
m =




4Iv
L2 Av

for cases 1 and 2

Iv
L2

(
1

Av1
+ 1

Av2

)
for cases 3, 4, 5, and 6

4E Ih

L
for cases 7 and 8

ζ(η) = 3

η

(
1

sin 2η
− 1

2η

)
β(η) = 3

2η

(
1

2η
− 1

tan 2η

)
η = h

2

√
P

E Iv

For the cases where two forces P1 and P are applied, the ratio n is predetermined. Calculate
α and then find Pcr. Then P1cr can be calculated using P1cr = (2n − 1)Pcr.

Configuration Buckling Loads

1. α = √
n ·

√
1 + 0.35k + 2.1m − 0.017(k + 6m)2

m ≤ 0.2 n ≤ 1 k ≤ 10

2. α = √
n ·

√
4 + 1.4k + 8.4m + 0.2(k + 6m)2

n ≤ 1 k ≤ 10 m ≤ 0.2
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TABLE 13-4 (continued) BUCKLING LOADS FOR FRAMES

Configuration Buckling Loads

3. α = √
1 + 0.7k + 2.1m − 0.068(k + 3m)2

4. α =
√

(0.14 + 1.72n)
[
1 + 0.7k + 2.1m − 0.068(k + 3m)2

]
n ≤ 1.5

5. α = √
4 + 2.8k + 8.4m + 0.08(k + 3m)2

6. α =
√

(0.04 + 1.92n)
[
4 + 2.8k + 8.4m + 0.08(k + 3m)2

]
n ≥ 1.5

7. Pcr is determined by solving

1

m
+ Lβ(η)

3E Iv
= 0

Ref. [13.4]
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TABLE 13-4 (continued) BUCKLING LOADS FOR FRAMES

Configuration Buckling Loads

8. Pcr is determined by solving[
3E Iv
mL

+ β(η)

]
β(η) = 1

4 [ζ(η)]2

Ref. [13.4]

9. α = 0.558π

10. α = 0.623π

11. α = 0.701π

12. α = 0.9π

13. α = 0.627π
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TABLE 13-5 FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES
Notation

Eh, Ev = moduli of elasticity of horizontal and vertical beams

G = shear modulus of elasticity

E = modulus of elasticity

Ih, Iv = moments of inertia of horizontal and vertical beams

Jv = torsional constant of vertical beams

ρi = mass per unit length of vertical beams; ρi = ρv , all vertical
beams are identical

ρh = mass per unit length of horizontal beam

W = total weight of frame

f = λ2

2πh2

(
Ev Iv
ρv

)1/2

Hz (cycles/s) for cases 1, 2, 3, and 4
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Configuration Natural Frequency

1.
First symmetric
in-plane mode,
pinned

c1 = L

h

(
Ev Iv
Eh Ih

ρh

ρv

)1/4

c2 =
(

ρh

ρv

)1/4 ( Eh Ih

Ev Iv

)3/4

λ = a1 + a2
√

c2 + a3
(√

c2
)2 + a4

(√
c2
)3 + a5

(√
c2
)4

0.1 ≤ c2 ≤ 10.0 1.5 < c1 ≤ 10.0

a1 0.05881 + 3.7774

(
1

c1

)
+ 4.4214

(
1

c1

)2
− 4.5495

(
1

c1

)3

a2 0.06772 − 0.08744

(
1

c1

)
+ 1.8371

(
1

c1

)2
− 16.9061

(
1

c1

)3
+ 15.9685

(
1

c1

)4

a3 0.1265 − 2.1961

(
1

c1

)
+ 6.139

(
1

c1

)2
− 3.07026

(
1

c1

)3

a4 −0.04549 + 0.7259

(
1

c1

)
− 1.4984

(
1

c1

)2
+ 0.4223

(
1

c1

)3

a5 0.00545 − 0.08128

(
1

c1

)
+ 0.1277

(
1

c1

)2
+ 0.00154

(
1

c1

)3

0.1 ≤ c2 ≤ 10.0 0.1 ≤ c1 ≤ 1.5

a1 2.9505 + 0.01426c1 + 0.3933c2
1 − 0.1953c3

1

a2 2.09517 − 5.5922c1 + 5.7203c2
1 − 2.2752c3

1

a3 −1.6907 + 6.8916c1 − 8.2798c2
1 + 3.09981c3

1

a4 0.5590 − 2.6368c1 + 3.3057c2
1 − 1.2275c3

1

a5 −0.06605 + 0.3357c1 − 0.4296c2
1 + 0.1592c3

1
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

2.
First symmetric
in-plane mode,
clamped

c1 = L

h

(
Ev Iv
Eh Ih

ρh

ρv

)1/4

c2 =
(

ρh

ρv

)1/4 (Eh Ih

Ev Iv

)3/4

λ = a1 + a2
√

c2 + a3
(√

c2
)2 + a4

(√
c2
)3

0.1 ≤ c2 ≤ 10.0 1.2 < c1 ≤ 10.0

a1 18.33 − 23.028
√

c1 + 11.843
(√

c1
)2 − 2.8164

(√
c1
)3 + 0.25598

(√
c1
)4

a2 −6.951 + 8.992
√

c1 − 4.364
(√

c1
)2 + 0.9325

(√
c1
)3 − 0.07345

(√
c1
)4

a3 3.728 − 5.64
√

c1 + 3.169
(√

c1
)2 − 0.7878

(√
c1
)3 + 0.07319

(√
c1
)4

a4 −0.5991 + 0.9657
√

c1 − 0.5712
(√

c1
)2 + 0.1485

(√
c1
)3 − 0.01437

(√
c1
)4

0.1 ≤ c2 ≤ 10.0 1.2 ≥ c1 ≥ 0.1

a1 2.1037 + 13.649
√

c1 − 37.686
(√

c1
)2 + 42.2

(√
c1
)3 − 16.218

(√
c1
)4

a2 1.8503 − 3.4236
√

c1 + 4.852
(√

c1
)2 − 3.5313

(√
c1
)3 − 0.34975

(√
c1
)4

a3 0.0647 − 5.8812
√

c1 + 19.008
(√

c1
)2 − 21.873

(√
c1
)3 + 8.8495

(√
c1
)4

a4 −0.06883 + 1.3714
√

c1 − 4.2867
(√

c1
)2 + 4.8985

(√
c1
)3 − 1.931

(√
c1
)4
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3.
First asymmetric
in-plane mode,
pinned

c1 = Ev Iv
Eh Ih

c2 = ρv

ρh

λ = a1 + a2
(√

c1
) + a3c1 + a4

(√
c1
)3 + a5

(√
c1
)4

12.0 ≥ h/L ≥ 0.25 12.0 ≥ c1 ≥ 0.25

c2 = 0.25, set a5 = 0

a1 0.5270 + 0.7587

√
h

L
− 0.2330

h

L
+ 0.02650

(√
h

L

)3

a2 −0.7049 + 0.9064

√
h

L
− 0.3750

h

L
+ 0.04973

(√
h

L

)3

a3 0.2644 − 0.4642

√
h

L
+ 0.2145

h

L
− 0.02996

(√
h

L

)3

a4 −0.03382 + 0.06720

√
h

L
− 0.03350

h

L
+ 0.004914

(√
h

L

)3

TA
B

L
E

13-5
F

u
n

d
am

en
talN

atu
ralF

req
u

en
cies

o
f

F
ram

es
705



TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

c2 = 0.75, set a5 = 0

a1 0.7608 + 0.7983

√
h

L
− 0.2993

(√
h

L

)2

+ 0.03833

(√
h

L

)3

a2 −1.09597 + 1.8224

√
h

L
− 1.1311

(√
h

L

)2

+ 0.3092

(√
h

L

)3

− 0.03122

(√
h

L

)4

a3 0.4930 − 1.1224

√
h

L
+ 0.8202

(√
h

L

)2

− 0.2500

(√
h

L

)3

+ 0.02730

(√
h

L

)4

a4 −0.06778 + 0.1709

√
h

L
− 0.1329

(√
h

L

)2

+ 0.04220

(√
h

L

)3

− 0.004738

(√
h

L

)4

c2 = 1.5, set a5 = 0

a1 0.8222 + 1.1944

√
h

L
− 0.8201

(√
h

L

)2

+ 0.2544

(√
h

L

)3

− 0.02879

(√
h

L

)4

a2 −1.3211 + 2.3536

√
h

L
− 1.5610

(√
h

L

)2

+ 0.4528

(√
h

L

)3

− 0.0481

(√
h

L

)4

a3 0.5721 − 1.3439

√
h

L
+ 1.0166

(√
h

L

)2

− 0.3193

(√
h

L

)3

+ 0.03571

(√
h

L

)4

a4 −0.07699 + 0.1987

√
h

L
− 0.1587

(√
h

L

)2

+ 0.05152

(√
h

L

)3

− 0.005889

(√
h

L

)4
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c2 = 3.0

a1 1.2461 + 0.3113

√
h

L
− 0.09981

(√
h

L

)2

+ 0.007269

(√
h

L

)3

+ 0.0009349

(√
h

L

)4

a2 −2.002781 + 4.6441

√
h

L
− 3.7526

(√
h

L

)2

+ 1.2573

(√
h

L

)3

− 0.1480

(√
h

L

)4

a3 1.1303 − 3.3717

√
h

L
+ 3.01029

(√
h

L

)2

− 1.06090

(√
h

L

)3

+ 0.1286

(√
h

L

)4

a4 −0.2818 + 0.9551

√
h

L
− 0.9064

(√
h

L

)2

+ 0.3304

(√
h

L

)3

− 0.04087

(√
h

L

)4

a5 0.02631 − 0.09744

√
h

L
+ 0.09638

(√
h

L

)2

− 0.03596

(√
h

L

)3

+ 0.004509

(√
h

L

)4
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

c2 = 6.0

a1 1.4901 − 0.03882

√
h

L
+ 0.1021

(√
h

L

)2

− 0.04520

(√
h

L

)3

+ 0.005995

(√
h

L

)4

a2 −1.9893 + 4.5893

√
h

L
− 3.6732

(√
h

L

)2

+ 1.2198

(√
h

L

)3

− 0.1426

(√
h

L

)4

a3 1.01408 − 3.06477

√
h

L
+ 2.7202

(√
h

L

)2

− 0.9512

(√
h

L

)3

+ 0.1145

(√
h

L

)4

a4 −0.2289 + 0.8108

√
h

L
− 0.7698

(√
h

L

)2

+ 0.2790

(√
h

L

)3

− 0.03429

(√
h

L

)4

a5 0.01929 − 0.0778

√
h

L
+ 0.0776

(√
h

L

)2

− 0.02886

(√
h

L

)3

+ 0.003601

(√
h

L

)4
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c2 = 12.0

a1 1.7059 − 0.4443

√
h

L
+ 0.4067

(√
h

L

)2

− 0.1448

(√
h

L

)3

+ 0.01784

(√
h

L

)4

a2 −1.9940 + 4.6785

√
h

L
− 3.8064

(√
h

L

)2

+ 1.2804

(√
h

L

)3

− 0.1511

(√
h

L

)4

a3 0.9691 − 3.03021

√
h

L
+ 2.7507

(√
h

L

)2

− 0.9771

(√
h

L

)3

+ 0.1189

(√
h

L

)4

a4 −0.2119 + 0.7952

√
h

L
− 0.7783

(√
h

L

)2

+ 0.2876

(√
h

L

)3

− 0.03583

(√
h

L

)4

a5 0.0174083 − 0.07637

√
h

L
+ 0.07910

(√
h

L

)2

− 0.03009

(√
h

L

)3

+ 0.0038131

(√
h

L

)4
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

4.
First asymmetric
in-plane mode,
clamped

c1 = Ev Iv
Eh Ih

c2 = ρv

ρh

λ = a1 + a2(
√

c1) + a3c1 + a4
(√

c1
)3

12 ≥ h/L ≥ 0.25 12.0 ≥ c1 ≥ 0.25

c2 = 0.25

a1 0.4687 + 1.8309

√
h

L
− 0.9885

(√
h

L

)2

+ 0.2793

(√
h

L

)3

− 0.03053

(√
h

L

)4

a2 −0.7082 + 0.6148

√
h

L
− 0.06704

(√
h

L

)2

− 0.05671

(√
h

L

)3

+ 0.01210

(√
h

L

)4

a3 0.3999 − 0.6247

√
h

L
+ 0.2986

(√
h

L

)2

− 0.05446

(√
h

L

)3

+ 0.002969

(√
h

L

)4

a4 −0.06957 + 0.1329

√
h

L
− 0.08131

(√
h

L

)2

+ 0.02082

(√
h

L

)3

− 0.001938

(√
h

L

)4
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c2 = 0.75

a1 0.6517 + 2.3508

√
h

L
− 1.4862

(√
h

L

)2

+ 0.4412

(√
h

L

)3

− 0.04870

(√
h

L

)4

a2 −1.0348 + 1.2196

√
h

L
− 0.4609

(√
h

L

)2

+ 0.05260

(√
h

L

)3

+ 0.001087

(√
h

L

)4

a3 0.5720 − 1.01757

√
h

L
+ 0.6004

(√
h

L

)2

− 0.14999

(√
h

L

)3

0.01366

(√
h

L

)4

a4 −0.09659 + 0.1992

√
h

L
− 0.1351

(√
h

L

)2

+ 0.03858

(√
h

L

)3

− 0.003989

(√
h

L

)4

c2 = 1.5

a1 0.8888 + 2.4200

√
h

L
− 1.6779

(√
h

L

)2

+ 0.5212

(√
h

L

)3

− 0.05889

(√
h

L

)4

a2 −1.311 + 1.8646

√
h

L
− 0.9713

(√
h

L

)2

+ 0.2194

(√
h

L

)3

− 0.01811

(√
h

L

)4

a3 0.6995 − 1.3471

√
h

L
+ 0.8811

(√
h

L

)2

− 0.2464

(√
h

L

)3

+ 0.02515

(√
h

L

)4

a4 −0.1146 + 0.2476

√
h

L
− 0.1776

(√
h

L

)2

+ 0.05346

(√
h

L

)3

− 0.005787

(√
h

L

)4

TA
B

L
E

13-5
F

u
n

d
am

en
talN

atu
ralF

req
u

en
cies

o
f

F
ram

es
711



TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

c2 = 3.0

a1 1.2508 + 2.09185

√
h

L
− 1.5600

(√
h

L

)2

+ 0.5042

(√
h

L

)3

− 0.05829

(√
h

L

)4

a2 −1.5471 + 2.4771

√
h

L
− 1.4901

(√
h

L

)2

+ 0.3968

(√
h

L

)3

− 0.03920

(√
h

L

)4

a3 0.7925 − 1.6060

√
h

L
+ 1.1121

(√
h

L

)2

− 0.3282

(√
h

L

)3

+ 0.03510

(√
h

L

)4

a4 −0.1253 + 0.2790

√
h

L
− 0.2066

(√
h

L

)2

+ 0.06396

(√
h

L

)3

− 0.007083

(√
h

L

)4

c2 = 6.0

a1 1.6631 + 1.4804

√
h

L
− 1.1766

(√
h

L

)2

+ 0.39396

(√
h

L

)3

− 0.04649

(√
h

L

)4

a2 −1.6468 + 2.7901

√
h

L
− 1.7805

(√
h

L

)2

+ 0.5016

(√
h

L

)3

− 0.05210

(√
h

L

)4

a3 0.8142 − 1.6929

√
h

L
+ 1.2020

(√
h

L

)2

− 0.3626

(√
h

L

)3

+ 0.03949

(√
h

L

)4

a4 −0.1237 + 0.2797

√
h

L
− 0.2098

(√
h

L

)2

+ 0.06565

(√
h

L

)3

− 0.0073295

(√
h

L

)4
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c2 = 12.0

a1 2.0122 + 0.8737

√
h

L
− 0.7544

(√
h

L

)2

+ 0.2641

(√
h

L

)3

− 0.03196

(√
h

L

)4

a2 −1.6071 + 2.7565

√
h

L
− 1.7815

(√
h

L

)2

+ 0.5078

(√
h

L

)3

− 0.05327

(√
h

L

)4

a3 0.7787 − 1.6318

√
h

L
+ 1.1642

(√
h

L

)2

− 0.3526

(√
h

L

)3

+ 0.03850

(√
h

L

)4

a4 0.1144 + 0.2604

√
h

L
− 0.1955

(√
h

L

)2

+ 0.06116

(√
h

L

)3

− 0.0068249

(√
h

L

)4

5.
First out-of-plane
mode

Approximate formula

f =
√

g

2π

{
W

2

[
L3

24E Ih
+ h3

3E Iv
− L4G Jv

32E Ih(2hE Ih + LG Jv)

]}−1/2

Hz

where g is the gravitational acceleration constant

Ref. [13.12]
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

6.
Rigid beam supported
by n slender legs,
in-plane mode

Approximate formula f = 1

2π

[
12

∑
Ei Ii

h3(Mh + 0.37
∑

Mi )

]1/2

Hz Ref. [13.13]

Mh = Mass of the top beam

Mi = Mass of the i th vertical beam
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TABLE 13-6 SAFE-LOAD REGIONS
The combination of loadings describes a region on the xy plane. If a prescribed loading
defines a point inside the safe region, no collapse occurs. If a point falls on the boundary,
collapse occurs according to the collapse mode indicated. Fully plastic bending moment
is defined as Mp = σys Z p, where Z p is the plastic section modulus taken from Table 2-2
and σys is the yield stress of the material.

Frame and Loading Safe Load Region

1. Mode 1: x = 3

Mode 2: y = 8

Mode 3: 2x + y = 10

x = WH h

Mp

y = WV L

Mp

2. Mode 1: x = 4

Mode 2: y = 8

Mode 3: 2x + y = 12

x = WH h

Mp

y = WV L

Mp

3. Mode 1: x = 8

Mode 2: y = 8

Mode 3: x + y = 10

x = WH h

Mp

y = MV L

Mp

TABLE 13-6 Safe-Load Regions 715



TABLE 13-6 (continued) SAFE-LOAD REGIONS

Frame and Loading Safe Load Region

4. Mode 1: x = 3

Mode 2: y = 16

Mode 3: 2x + y − 4
√

y − 2 = 0

x = WH h

Mp

y = pV L2

Mp

5. Mode 1: x = 4

Mode 2: y = 16

Mode 3: 2x + y − 4
√

y − 4 = 0

x = WH h

Mp

y = pV L2

Mp

6. Mode 1: y = 8

Mode 2: 2x + y = 10

x = WH h

Mp

y = WV L

Mp

7. Modes 1–4: x + y = 8

x = WH h

Mp

y = WV L

Mp
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TABLE 13-6 (continued) SAFE-LOAD REGIONS

Frame and Loading Safe Load Region

8. Mode 1: x = 4

Mode 2: y = 18
√

3

Mode 3: y − 6x + 12

+ (9x − 36)

√
3y

y − 6x + 12
= 0

x = WH h

Mp

y = p0L2

Mp

9. Mode 1: x = 3

Mode 2: y = 18
√

3

Mode 3: (y − 6x − 6)3

− (27 − 9x)23y = 0

x = WH h

Mp

y = p0L2

Mp

TABLE 13-6 Safe-Load Regions 717



TABLE 13-7 UNIFORM GRIDWORKSa

Notation

The ends of both the girders and stiffeners are simply supported.
Girders: beams that lie parallel to the x axis.
Stiffeners: beams that lie parallel to the y axis.

ng, ns = total number of girders and stiffeners, respectively

g, s = index for girders and stiffeners, respectively

wg, θg, Mg, Vg = deflection, slope, bending moment, and shear force of gth girder

Ig, Is = moments of inertia of girders and stiffeners, respectively. All girders
have the same Ig and all stiffeners have the same Is .

Lg, Ls = length of girders and stiffeners, respectively. All girders have the same
Lg and all stiffeners have the same Ls .

M = number of terms chosen by user to be included in summation

〈x − xs〉0 =
{

0 if x < xs

1 if x ≥ xs

K j = Take from Table 13-8.

Response

1.
Deflection

wg = sin
πg

ng + 1

∞∑
j=1

K j sin
jπx

Lg

2.
Slope

θg = − sin
πg

ng + 1

∞∑
j=1

K j
jπ

Lg
cos

jπx

Lg

3.
Bending moment

Mg = E Ig sin
πg

ng + 1

∞∑
j=1

K j

(
jπ

Lg

)2

sin
jπx

Lg

4.
Shear force

Vg = E Ig sin
πg

ng + 1

∞∑
j=1

K j

×
[(

jπ

Lg

)3

cos
jπx

Lg
+ π4 Is

(ng + 1)L3
s Ig

M∑
s=1

〈x − xs〉0 sin
jπxs

Lg

]

aFrom Ref. [13.6].
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TABLE 13-8 PARAMETERS Kj OF TABLE 13-7 FOR THE STATIC
RESPONSE OF GRIDWORKS

Notation

Pg, Ps = axial forces in girders and stiffeners, respectively (all girders have the
same Pg and all stiffeners have the same Ps)

ps = loading intensity along the sth stiffener (F/L)

Wsg = concentrated force at intersection xs, yg

Pe = π2 E Is

L2
s

Pc = π2 E Ig

L2
g

Loading K j

1.
For concentrated
loads Wsg at
xs, yg

2L3
s

E Isπ4

Pe

Pe − Ps

ns∑
s=1

ng∑
g=1

Wsg sin
πg

ng + 1
sin

jπs

ns + 1

ng + 1

2
j4

(
Ls

Lg

)3 Ig

Is

(
1 − Pg

j Pc

)
+ ns + 1

2

2.
For uniform
force ps along
sth stiffener

4L4
s

E Isπ5

Pe

Pe − Ps

ns∑
s=1

ps sin
jπs

ns + 1

ng + 1

2
j4

(
Ls

Lg

)3 Ig

Is

(
1 − Pg

j Pc

)
+ ns + 1

2

3.
If uniform
force ps is
same for all
stiffeners

Only the first term ( j = 1) in the equations
of Table 13-7 is required:

K1 =
4L4

s

E Isπ5

Pe

Pe − Ps

ns∑
s=1

ps sin
πs

ns + 1

ng + 1

2

(
Ls

Lg

)3 Ig

Is

(
1 − Pg

Pc

)
+ ns + 1

2

TABLE 13-8 Parameters Kj of Table 13-7 719



TABLE 13-9 CRITICAL AXIAL LOADS IN GIRDERSa

Notation

ns = number of stiffeners

Lg, Ls = length of girders and stiffeners, respectively

E = modulus of elasticity

Ig, Is = moments of inertia of girders and stiffeners, respectively

Pcr = unstable value of Pg, axial force in girders

The length, moment of inertia, and axial force do not vary from girder to girder.
The lengths and moments of inertia of the stiffeners also do not vary from each other.

D1 = 0.0866L2
g

D3
D2 = 0.202L2

g

D3
D3 =

√
C1Lg L3

s Ig

Is(ns + 1)

Pe = π2 E Ig

L2
g

Take C1 from Table 13-10.

End Conditions of
Girders Case D1 Pcr

Simply supported 1 ≤ 1 (1 + D1)Pe
2 > 1 D2 Pe

Fixed 3 ≤ 1 (4 + D1)Pe
4 > 1 (3 + D2)Pe

aFrom Ref. [13.6].
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TABLE 13-10 VALUES OF C1 OF TABLE 13-9 FOR STABILITYa

End Conditions of Stiffeners, C1Number of
Girders, ng Simply Supported Fixed

1 0.020833 0.0052083
2 0.030864 0.0061728
3 0.041089 0.0080419
4 0.051342 0.010009
5 0.061603 0.011997
6 0.071866 0.013990
7 0.082131 0.015986
8 0.092396 0.017982
9 0.10266 0.019979

10 0.11293 0.021976

aFor simply supported stiffeners the formula

C1 = ng + 1

π4


1 +

∞∑
j=1

{[
2 j (ng + 1) + 1

]−4 + [
2 j (ng + 1) − 1

]−4
}

applies for any ng .

TABLE 13-10 Values of Stability Parameters 721



TABLE 13-11 VALUES OF NATURAL FREQUENCY PARAMETERS Cn OF EQS. (13.1) AND (13.2)
Number
of
Stiffeners,
ns C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Girders with Simply Supported Ends

1 0.020833
2 0.030864 0.0020576
3 0.041089 0.0026042 0.00057767
4 0.051342 0.0032240 0.00065790 0.0002462
5 0.061603 0.0038580 0.00077160 0.00025720 0.00012564
6 0.071866 0.0044962 0.00089329 0.00028895 0.00012688 0.000073890
7 0.082131 0.0051361 0.0010177 0.00032552 0.00013769 0.000072209 0.000047321
8 0.092396 0.0057767 0.0011431 0.00036387 0.00015157 0.000076208 0.000045226 0.000032215
9 0.10266 0.0064178 0.0012691 0.00040301 0.00016667 0.000082237 0.000046681 0.000030328 0.000022963

10 0.11293 0.0070590 0.0013954 0.00044252 0.00018233 0.000089133 0.000049521 0.000030753 0.000021400 0.000016967

Any ns Cn = ns + 1

π4

[
1

n4
+

∞∑
j=1

{
[2 j (ns + 1) + n]−4 + [2 j (ns + 1) − n]−4

}]

Girders with Fixed Ends

1 0.0052083
2 0.0061728 0.0011431
3 0.0080419 0.0011393 0.00042165
4 0.010009 0.0013459 0.00039075 0.00020078
5 0.011997 0.0015917 0.00043081 0.00018009 0.00011111
6 0.013990 0.0018480 0.00048904 0.00018923 0.000098217 0.000067910
7 0.015986 0.0021078 0.00055303 0.00020779 0.000099794 0.000059682 0.000044545
8 0.017982 0.0023691 0.00061925 0.00022977 0.00010668 0.000059226 0.000039097 0.000030804
9 0.019970 0.0026311 0.00068645 0.00025320 0.00011572 0.000061961 0.000038155 0.000027067 0.000022193

10 0.021976 0.0028934 0.00075415 0.00027732 0.00012573 0.000066109 0.000039232 0.000026101 0.000019547 0.000016522
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TABLE 13-12 STIFFNESS MATRIX FOR PLANE TRUSSES
Notation

E = modulus of elasticity

A = area of the cross section

� = length of element

x X = angle between x and X axes

x Z = angle between x and Z axes

Right-handed global XY Z and local xyz coordinate systems are employed. The identity
cos2 x X + cos2 x Z = 1 is useful.

The relationships of this table should be used for the static analysis of trusses. For dynamic
analyses of trusses, use the frame formulas.

LOCAL COORDINATES[
Ña

Ñb

]i

= E A

�

[
1 −1

−1 1

] [
ũa
ũb

]i

p̃i = k̃i ṽi

p̃i =
[

Ñxa

Ñxb

]i

=
[

Ña

Ñb

]i

ṽi =
[

ũxa
ũxb

]i

=
[

ũa
ũb

]i

GLOBAL COORDINATES

pi = ki vi

vi =



uXa
uZa
uXb
uZb




i

pi =



FXa
FZa
FXb
FZb




i

ki = TiTk̃i Ti = E A

�

[
A −A

−A A

]

Ti =
[

cos x X cos x Z 0 0
0 0 cos x X cos x Z

]
A =

[
cos2 x X cos x X cos x Z

cos x X cos x Z cos2 x Z

]

TABLE 13-12 Stiffness Matrix for Plane Trusses 723



TABLE 13-13 STIFFNESS MATRIX FOR SPACE TRUSSES
Notation

E = modulus of elasticity

� = length of element

A = area of cross section

x X = angle between x axis and X axis, and so on.

The relationships of this table should be used for the static analysis of trusses. For dynamic
analyses of trusses, use the frame formulas. See Table 13-12 for coordinate system and
other definitions.

LOCAL COORDINATES[
Ña

Ñb

]i

= E A

�

[
1 −1

−1 1

] [
ũa
ũb

]i

p̃i = k̃i ṽi

GLOBAL COORDINATES

pi = ki vi

vi =




uXa
uY a
uZa
uXb
uY b
uZb




i

=




ua
va
wa
ub
vb
wb




i

pi =




FXa
FY a
FZa
FXb
FY b
FZb




i

ki = TiT k̃i Ti

Ti =
[

cos x X cos xY cos x Z 0 0 0
0 0 0 cos x X cos xY cos x Z

]
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TABLE 13-14 STIFFNESS MATRICES FOR PLANE FRAMES
Notation

E = modulus of elasticity

I, Iz = moments of inertia about local y and z axes

Iz =
∫

A
y2 d A I =

∫
A

z2 d A

� = length of element

G = shear modulus of elasticity

J = torsional constant

A = area of cross section

x X = angle between x and X axis; and so on,
for x Z , z X , and zZ

Right-handed global XY Z and local xyz coordinate systems are employed. The identities
cos2 x X + cos2 x Z = 1 and cos2 z X + cos2 zZ = 1 are useful. Bending is modeled using
Euler–Bernoulli beams.

In-Plane Loading Out-of-Plane Loading
(Bending and Extension) (Bending and Torsion)

DISPLACEMENTS AND FORCES DISPLACEMENTS AND FORCES

ṽi = [ũa w̃a θ̃a ũb w̃b θ̃b]T

p̃i = [Ña Ṽa M̃a Ñb Ṽb M̃b]T

ṽi = [φ̃a ṽa θ̃za φ̃b ṽb θ̃zb]T

p̃i = [T̃a Ṽya M̃za T̃b Ṽyb M̃zb]T

POSITIVE FORCES AND DISPLACEMENTS POSITIVE FORCES AND DISPLACEMENTS

TABLE 13-14 Stiffness Matrices for Plane Frames 725



TABLE 13-14 (continued) STIFFNESS MATRICES FOR PLANE FRAMES

In-Plane Loading Out-of-Plane Loading
(Bending and Extension) (Bending and Torsion)

LOCAL COORDINATES LOCAL COORDINATES

p̃i = k̃i ṽi

k̃i =

E I

�3




A�2/I
0 12 symmetric
0 −6� 4�2

−A�2/I 0 0 A�2/I
0 −12 6� 0 12
0 −6� 2�2 0 6� 4�2




p̃i = k̃i ṽi

k̃i =

E Iz

�3




G J�2/E Iz
0 12 symmetric
0 −6� 4�2

−G J�2/E Iz 0 0 G J�2/E Iz
0 −12 6� 0 12
0 −6� 2�2 0 6� 4�2




GLOBAL COORDINATES GLOBAL COORDINATES

pi = ki vi

vi = [
u Xa u Za θa u Xb u Zb θb

]T

pi = [
FXa FZa Ma FXb FZb Mb

]T

ki = TiT k̃i Ti

pi = ki + vi

vi = [
θXa uY a θZa θXb uY b θZb

]T

pi = [
MXa FY a MZa MXb FY b MZb

]T

ki = TiT k̃Ti

Global vi and pi Global vi and pi

Ti =




cos x X cos x Z 0 0 0 0
cos zX cos zZ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos x X cos x Z 0
0 0 0 sin zX cos zZ 0
0 0 0 0 0 1




Ti =




cos x X 0 cos x Z 0 0 0
0 1 0 0 0 0

cos zX 0 cos zZ 0 0 0
0 0 0 cos x X 0 cos x Z
0 0 0 0 1 0
0 0 0 cos zX 0 cos zZ
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TABLE 13-15 STIFFNESS MATRIX FOR BAR IN SPACE
Notation

E = modulus of elasticity

I, Iz = moments of inertia about y and z axes

Iz =
∫

A
y2 d A Iy = I =

∫
A

z2 d A

x X = angle between x and X axes; similarly for xY ,
x Z , y X , yY , y Z , zX , zY , zZ

G = shear modulus of elasticity

A = area of cross section

J = torsional constant

� = length of element

The identities cos2 j X + cos2 jY + cos2 j Z = 1, j = x, y, z are useful.

DISPLACEMENTS AND FORCES

LOCAL COORDINATES p̃i = k̃i ṽi

ṽi = [
ũa ṽa w̃a φ̃a θ̃ya θ̃za ũb ṽb w̃b φ̃b θ̃yb θ̃zb

]T

p̃i = [
Ña Ṽya Ṽza T̃a M̃ya M̃za Ñb Ṽyb Ṽzb T̃b M̃yb M̃zb

]T

k̃i =




E A/�

0 12E Iz/�
3 Symmetric

0 0 12E Iy/�3

0 0 0 G J/�

0 0 −6E Iy/�2 0 4E Iy/�

0 6E Iz/�
2 0 0 0 4E Iz/�

−E A/� 0 0 0 0 0 E A/�

0 −12E Iz/�
3 0 0 0 −6E Iz/�

2 0 12E Iz/�
3

0 0 −12E Iy/�3 0 6E Iy/�2 0 0 0 12E Iy/�3

0 0 0 −G J/� 0 0 0 0 0 G J/�

0 0 −6E Iy/�2 0 2E Iy/� 0 0 0 6E Iy/�2 0 4E Iy/�

0 6E Iz/�
2 0 0 0 2E Iz/� 0 −6E Iz/�

2 0 0 0 4E Iz/�
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TABLE 13-15 (continued) STIFFNESS MATRIX FOR BAR IN SPACE

GLOBAL COORDINATES pi = ki vi

vi = [
uXa uY a uZa θXa θY a θZa uXb uY b uZb θXb θY b θZb

]T

pi = [
FXa FY a FZa MXa MY a MZa FXb FY b FZb MXb MY b MZb

]T

ki = TiT k̃i Ti

�0 =

cos x X cos xY cos x Z

cos y X cos yY cos y Z
cos zX cos zY cos zZ




Ti =




�0
�0 0

0 �0
�0




POSITIVE FORCES AND DISPLACEMENTS
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TABLE 13-16 MASS MATRICES FOR PLANE FRAMES
Notation

ρ = mass per unit length

Ix = polar moment of inertia, Ix = Jx

Ixx j , Iyy j , Izz j = rotary inertia of lumped mass at point j
about the x, y, z axes, respectively

A = area of cross section

ry, rz = radius of gyration about y and z axes

ry =
√

Iy/A, rz = √
Iz/A

Iy, Iz = moments of inertia about y and z axes

� = length of element

See Table 13-14 for coordinate systems, displacement vectors, and force vectors.

In-Plane Loading (Bending and Extension) Out-of-Plane Loading (Bending and Torsion)

Mass Lumped at Both Ends of Element

LOCAL COORDINATES

m̃i = ρ�

2




1 symmetric
0 1

0 0
�2

12
+ r2

y

0 0 0 1
0 0 0 0 1

0 0 0 0 0
�2

12
+ r2

y




=




ma
ma

Iyya
mb

mb
Iyyb




Set Iyya = Iyyb = 0 if rotary inertia is neglected.

LOCAL COORDINATES

m̃i = ρ�

2




Ix/A symmetric
0 1

0 0
�2

12
+ r2

z

0 0 0 Ix/A
0 0 0 0 1

0 0 0 0 0
�2

12
+ r2

z




=




Ixxa
ma

Izza
Ixxb

mb
Izzb




Set Izza = Izzb = 0 if rotary inertia is neglected.
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TABLE 13-16 (continued) MASS MATRICES FOR PLANE FRAMES

In-Plane Loading (Bending and Extension) Out-of-Plane Loading (Bending and Torsion)

Mass Lumped at Point a

Use only the a components of the force and displacement vectors.

m̃i = ρ�




1
1

�2

12
+ r2

y


 =


ma

ma
Iyya


 m̃i = ρ�




Ix/A
�2

12
+ r2

y

1


 =


Ixxa

Izza
ma




Consistent Mass Matrices for Uniform Beams

m̃i = ρ�

420




140
0 156 symmetric
0 −22� 4�2

70 0 0 140
0 54 −13� 0 156
0 13� −3�2 0 22� 4�2




+ ρ A�

30

(ry

�

)2




0
0 36 symmetric
0 −3� 4�2

0 0 0 0
0 −36 3� 0 36
0 −3� −�2 0 3� 4�2




(rotary inertia)

GLOBAL COORDINATES

mi = TiT m̃i Ti , where Ti is as given in Table 13-14.

m̃i = ρ�

420




14Ix/A
0 156 symmetric
0 22� 4�2

70Ix/A 0 0 140Ix/A
0 54 13� 0 156
0 −13� −3�2 0 −22� 4�2




+ ρ A�

30

(rz

�

)2




0
0 36 symmetric
0 3� 4�2

0 0 0 0
0 −36 −3� 0 36
0 3� −�2 0 −3� 4�2




(rotary inertia)

GLOBAL COORDINATES

mi = TiT m̃i Ti , where Ti is as given in Table 13-14.
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TABLE 13-17 MASS MATRICES FOR SPACE FRAMES
Notation

ρ = mass per unit length

Ix = polar moment of inertia, Ix = Jx

Ixx j , Iyy j , Izz j = rotary inertia of lumped mass
at point j about the x, y, z
axes, respectively

A = area of cross section

ry, rz = radius of gyration about y
and z axes

ry =
√

Iy/A, rz = √
Iz/A

Iy, Iz = moments of inertia about y
and z axes

� = length of element

See Table 13-15 for coordinate systems, force vector, and displacement vector definitions. Formulas
for m j , Ixx j , Iyy j , Izz j are defined in Table 13-16.

Mass Lumped at Both Ends of Element

m̃i = ρl

2




1
0 1
0 0 1
0 0 0 Ix/A

0 0 0 0
�2

12
+ r2

y

0 0 0 0 0
�2

12
+ r2

z

0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 Ix/A

0 0 0 0 0 0 0 0 0 0
�2

12
+ r2

y

0 0 0 0 0 0 0 0 0 0 0
�2

12
+ r2

z




=




ma
ma

ma
Ixxa

Iyya
Izza

mb
mb

mb
Ixxb

Iyyb
Izzb
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TABLE 13-17 (continued) MASS MATRICES FOR SPACE FRAMES

Mass Lumped at Point a

Use only the a components of the force and displacement vectors.

mi = ρ�




1
1

1
Ix /A

�2

12
+ r2

y

�2

12
+ r2

z




=




ma
ma

ma
Ixxa

Iyya

Izza




Consistent Mass for Uniform Space Bars

m̃i = ρ�

420




140
0 156
0 0 156
0 0 0 140Ix /A
0 0 −22� 0 4�2

0 22� 0 0 0 4�2

70 0 0 0 0 0 140
0 54 0 0 0 13� 0 156
0 0 54 0 −13� 0 0 0 156
0 0 0 70Ix /A 0 0 0 0 0 140Ix /A
0 0 13� 0 −3�2 0 0 0 22� 0 4�2

0 −13� 0 0 0 −3�2 0 −22� 0 0 0 4�2




+ ρ

30�




0
0 36r2

z
0 0 36r2

y symmetric
0 0 0 0
0 0 −3�r2

y 0 4�2r2
y

0 3�r2
z 0 0 0 4�2r2

z
0 0 0 0 0 0 0
0 −36r2

z 0 0 0 3�r2
z 0 36r2

z
0 0 −36r2

y 0 3�r2
y 0 0 0 36r2

y
0 0 0 0 0 0 0 0 0 0
0 0 −3�r2

y 0 −�2r2
y 0 0 0 3�r2

y 0 4�2r2
y

0 3�r2
z 0 0 0 −�2r2

z 0 3�r2
z 0 0 0 4�2r2

z




(rotary inertia)

GLOBAL COORDINATES

mi = TiT m̃i Ti , where Ti is as given in Table 13-15.
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