Copies of the logs are attached along with a test location sketch. Suggested design values are indicated in the following table. Table 1 - Summary of Design Parameters | Table 1 - Outlittaly Of Design Farameters | | | | | | | | |---|---|--------------------------------------|--------------------------------|-----------------------------|--------------------------|----------------------------------|--| | Material | Allowable
Shaft
Friction
(kPa) | Allowable
End
Bearing
(kPa) | Undrained
Cohesion
(kPa) | Angle of
Friction
(°) | Soil
Modulus
(MPa) | Undrained Passive Pressure (kPa) | Long Term Passive Pressure Coefficient (K _P) | | Stiff silty clay | 15 | 225 | 75 | - | 15 | 150 | 2.5 | | Very stiff silty clay | 20 | 450 | 150 | - | 30 | - | - | | Hard silty clay/extremely low strength | 25 | 600 | 200 | - | 50 | - | - | A safety factor of 2.5 has been used to assess these allowable bearing pressures. Where limit state methods are used to design the piles, the unfactored ultimate geotechnical strength (R_{ug}) can be calculated by multiplying the allowable values by a factor of safety of 2.5. The R_{ug} values will need to be multiplied by a suitable geotechnical strength reduction factor (ϕ_g) to obtain the design geotechnical strength (R^*g). Where no pile testing is carried out, a ϕ_g value of 0.5 is suggested. Lateral modulus of subgrade reaction (k_s) parameters can be estimated using the following approximate relationship: k_s = 1.3 x Soil Modulus / Pile Diameter