

FIGURE 11.7 Definition of cross-section properties.

the end-restraint effect becomes complicated. Only a few solutions are available (Trahair, 1969; Kitipornchai and Lee, 1986). An acceptable design office solution is the use of effective-length factors so that Eqs. 11.2 and 11.3 are

$$P_u = \frac{\pi^2 E I_u}{(K_u L)^2} \tag{11.7}$$

$$P_z = \frac{\pi^2 E I_z}{(K_z L)^2} \tag{11.8}$$

where K_uL and K_zL are the effective length in the u and z directions, respectively.

11.3.3 Inelastic Behavior

Equations 11.2 and 11.3 (or Eqs. Inelastic behavior of angle colum (1986) using the finite element replace the elastic modulus *E* in the tangent modulus *E_t*. The sh Approximate tangent-modulus re Chapter 3 of this guide. Use of the iteration. A simpler approximation in Appendix E3 of the AISC LE as follows:

- 1. Determine the elastic critic
- 2. Compute an equivalent sler

Determine the buckling loa AISC LRFD specification.

It should be noted, however, that (AISC, 2000), does not require f hot-rolled single angles.

Kitipornchai (1983) suggested slenderness ratio from curve-fittin angles

$$\left(\frac{L}{r}\right)_{\text{eq}} = 0$$

and for unequal-leg angles

$$\left(\frac{L}{r_z}\right)_{\text{eq}} = \left[\left(\frac{L}{r_z}\right)^3 - 8\right]$$

where $\alpha_1 = D/B$ and $\alpha_2 = B/t$.

Tests performed by Kennedy and this method provided a satisfactory has been provided by Marsh (1969 aluminum angles with single- and dicted by