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ABSTRACT 
 
Using the Fullness Method it is possible to calculate the moment curvature relationship of a 
symmetrical aluminium cross section in a rather simple way. The nonlinearity in the stress strain 
behaviour of the material is considered by applying the Ramberg-Osgood law. Moreover the 
validity of the method for welded sections will be shown. 
 

INTRODUCTION 
 
Nonlinear calculation of beams and frames is practicable by means of moment curvature 
relationships (MCR). The deformation of structures which have locally reached the inelastic range 
can also be well approximated through it. But because of the stress strain behaviour of aluminium 
numerical models have to be used to calculate the MCR of a cross section. 
 
Therefore EC 9 annex G (1) contains a simplified model for the generation of MCR. This paper 
suggests another way of gaining MCR which is based on the exact solution of M(κ) for the 
rectangular cross section. 
 

CALCULATION OF THE BENDING MOMENT ON A RECTANGULAR CROSS 
SECTION 

 
The bending moment of a rectangular cross section can be calculated by the following integration 
(Fig. 1). 
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Including the Bernoulli-hypothesis the cross section coordinate z (see Fig. 1) can be substituted 
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σεε dd'=  being the first derivative of the strain. The integration limit ist transfered from h/2 to the 

extreme fibre stress (index ef) σef. Using the symmetry of the problem (Ref. 1) can therefore be 
written as 
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Fig. 1: Rectangular cross section with linear strain diagram and non linear stress diagram 
 
 
On the assumption that Ramberg-Osgood (RO) law  
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is valid the integral can be solved setting 
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The bending moment M results in  
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For the rectangular cross section (Ref. 6) is a direct solution of the problem ( efMM )σ=  and 
therefore it also solves ( )κMM =  because 
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(Ref. 6) relates the bending moment of a rectangular cross section with RO material in the elastic or  
inelastic range, respectively,  to the elastic moment at the same extreme fibre stress σef. The relation 
factor β 
 

( )ψαβ −= 1pl      [8] 
 
depends on the the geometry of the cross section summarized in the geometrical shape factor αpl as 
well as on material properties represented by one summarizing parameter ψ. But both properties 
influence the relation factor β independently. 
 
The three main characteristics of the direct solution of a rectangular aluminium cross section are: 
(1) relation to the elastic moment by Wel σef, 
(2) independent influence of the cross section geometry through αpl, 
(3) independent influence of material through ψ. 
 
The properties of material and geometry are in each case represented by one summarizing 
parameter. 
 

SIMPLIFIED CALCULATION METHOD FOR I-SECTIONS 
 
In accordance with the direct solution for the rectangular cross section the attempt is made to 
transfer the benefit of the three main characteristics to a solution of a more general but also 
symmetrical cross section. Fig. 2 shows the stress diagrams and relation factors for three different 
stress situations of a symmetrical cross section. 
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Fig. 2: Three different stress diagrams of a symmetrical cross section: linear, nonlinear, fully 
plastic; definition of the fullness ϕ 
 
Obviously the relation factor β can be obtained by interpolation. The fullnes ϕ, i.e. the area beneath 
the stress strain curve divided by the product of stress and strain, see Fig. 2, is taken as the basis of 
interpolation (see also 3). 



Tab. 1: I-sections, geometrical measures 
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To get to know the shape of the required interpolating function for the relation factor β a numerical 
procedure is used to calculate the exact MCR of the cross section. The numerical procedure consists 
of a layer model of the section on which a definite curvature is applied. The moment is obtained by 
numerical integration of the stress diagram. 
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Fig. 3: ϕ-β-diagrams for I-sections of Tab. 1; numerical solution and FM 



 
With the MCR of a distinct cross section and the knowledge of the extreme fibre stress σef for each 
calculated curvature level the corresponding ϕ-β-diagram can be derived. Fig. 3 shows some 
diagrams for different I-sections (see Table 1) with different material properties (Youngs modulus E 
= 70000 N/mm², exponent n = 10, 20, 30 and 0.2 limit stress f0.2 = 150, 200, 250 N/mm²).  
 
It can be seen that the relation factor β does not depend on the 0.2 limit stress but is slightly 
influenced by the exponent n. In accordance with the three main characteristics which have been 
derived from the rectangular cross section this n-dependency will be neglected. In the following the 
influence of the material properties will only be represented by the fullness ϕ. 
 
As shown in Fig. 3 the interpolating function for the relation factor β has to be smoothly curved to 
end in a sufficient fit. Therefore one of the trigonometrical functions is taken as the structure for β. 
Adapting to the boundary conditions, i.e. β = 1 if ϕ = 0.5 and β = αpl if ϕ = 1, see Fig. 2, results in 
 

( ) πϕαβ cos11 pl −−=   .   [10] 
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Fig. 4: Moment curvature diagrams for I-sections of Tab. 1; numerical solution, EC 9 model, 
FM 
 



The line in Fig. 3 depicts the evaluation of  the interpolating function due to (Ref. 10) of the four 
different I-sections.  The matching is not really convincing, especially for small values of αpl. 
Ignoring these discrepancies and using this interpolating function in (Ref. 11) a direct procedure for 
the calculation of the bending moment of a symmetrical cross section is found. Because of ϕ, which 
is the fullnes of the stress strain diagram and serves as the basis of interpolation, this formula shall 
be called fullness method (FM). 
 

          efelWM σβ=      [11] 

 
 
Comparing the MCR of the numerical model with the FM, see Fig. 4, is sufficent in spite of the 
rather great differences for β which have been recognized in Fig.3. The results are depicted as non-
dimensional values, i.e. moment M is related to the elastic limit moment M0.2 and curvature κ is 
related to κ0.2 which belongs to an extreme fibre strain of ε0.2 – this can easily evaluated from σef 
and RO law. 
 
In addition to the numerical solution and the FM Fig. 4 contains results of the moment curvature 
model of EC 9 annex G (2) which has been proposed by Mazzolani in 1. For small exponents n a 
slight difference can be recognized if the curvature is greater than 2κ0.2 for the EC 9 model while 
the FM leads to good results in the whole investigated range.  
 

VALIDITY FOR OTHER SYMMETRICAL SHAPES 
 
It has to be stated that the interpolating function for the relation factor β (Ref. 10) is derived from 
sections with an I-shape. The geometrical properties of the section are only covererd by the 
geometrical shape factor αpl, which pays no attention to whether the section has lips or another 
symmetrical shape different from the I. Generalization to other symmetrical shapes therefore has to 
be examined. In Table 2 four different shapes and geometry measures, respectively, for distinct 
sections are listed.  
 
Tab. 2: Different non I-shaped symmetrical sections 
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These sections have been evaluated by the numerical procedure and by applying (Ref. 10, 11). Fig. 
5 shows the  ϕ-β-diagrams and the non-dimensional M-κ-diagrams for a RO material with f0.2 = 200 



N/mm² and n = 20. The adaption for the ϕ-β-diagram again depends on the geometrical shape factor 
αpl but is not worse than for the examined I-sections. The M-κ-diagrams show good coincidence 
with the results of the numerical procedure. Therefore (Ref. 10, 11) can also be applied to 
symmetrical sections with shapes different from the I-shape. 
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Fig. 5: ϕ-β-diagrams and moment curvature diagrams for symmetrical sections of Tab. 2 
 
 

WELDED SECTIONS 
 
The softening of the material through welding is generally considered by heat affected zones 
(HAZ). The HAZ is supposed to have a distinct extent and constant material properties which can 
be covered by RO law. This simplification leads to a two material system of welded sections as 
depicted in Fig. 6. 
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Fig. 6: I-sections with different welding situations 
  
The FM is well suited to evaluate the MCR for a symmetrical cross section which is made of one 
material. Separating of the two materials of a welded section (Fig. 7) produces two partial sections 
each consisting of only one material. Now the moments of the partial sections can be calculated 
separately – which means separated coefficients for the FM, e.g. Wel, αpl, ϕ etc. – and afterwards 



added together for gaining the total result. Of course, the strain situation for  both partial sections 
has to be the same i.e. same curvature. 
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Fig. 7: Welded section (two materials) consists of two partial section with each having only 
one material 
 
Due to the RO law the FM uses the extreme fibre stress σef – not the corresponding strain – as the 
starting parameter. Because of the different material models of the two partial sections they have to 
be evaluated using different values for σef. One for the parent material (PM) σef,PM and another for 
the HAZ σef,HAZ. But both have to lead to the same curvature κ. 
 
This problem is solved by assuming an extreme fibre stress σef,PM for PM and calculating the partial 
moment MPM (Ref. 10, 11) and also the curvature κ (Ref. 7), which is caused by σef,PM. Afterwards 
an extreme fibre stress σef,HAZ for the HAZ part of the section has to be choosen in a way which 
leads to the already known curvature of the PM part. Because of the difficulty which lies in the 
solution of the problem σ = σ(ε) for a RO material not the HAZ stress belonging to the extreme 
fibre will be calculated but the position z of the extreme fibre which belongs to the HAZ stress and 
strain, respectively, (Ref. 12). 
 

κ
ε HAZ,efz =      [12] 

 
For this reason an estimation of the HAZ stress – the corresponding fibre z is still unknown at this 
point – is sufficient. As has been shown in the preceeding paragraphs the FM is only dependent on 
αpl in the case of the geometry properties and is also valid for some different shaped sections (see 
Tab. 2). Therefore it is not important to know the extreme fibre exactly but to relate all FM 
coefficients of the HAZ part (i.e. Wel,HAZ, αpl,HAZ, βΗΑΖ, σef,HAZ, ϕΗΑΖ) to this fibre. Doing so the 
HAZ part of the moment can be calculated due to (Ref. 10, 11).  
 
In this paper the estimation of the HAZ stress has been carried out through (Ref. 13). 
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This estimation has been derived from the following assumption: 
If the real extreme fibre strain εef,PM is lower than 80 % of ε0.2,HAZ of the HAZ material, the HAZ 
can be assumed to be still in the elastic range. Otherwise the elastic part of the strain is taken as εel = 
0.0001 = const. and the stress is calculated through the inversion of  
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An estimation of the extreme fibre stress of the HAZ can be based on the real extreme fibre strain 
εef,PM of the section as (Ref. 13) does. But it is also practicable to use a strain level which belongs to 
an internal fibre of the section e.g. for obvious reasons in the case of a type A section (see Fig. 6). 
 
Because of the interpolating function (Ref. 10) the estimated HAZ stress and the corresponding 
fibre z shall not lead to an αpl which is lower than 1. Every other estimation will cause more or less 
sufficient results (of course αpl should not become much greater than 2). 
 
Tab. 3: Welded sections, geometrical measures and material properties 
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If these few conditions are considered the bending moment of a two material system can be 
calculated by means of the FM. Table 3 contains geometry measures of  two different I-sections and 
three assumed material models for PM and HAZ. The MCR for the cross sections considering the 
welding situations of type B and C (Fig. 6) are evaluated by means of the numerical procedure and 
of the FM. Fig. 8 depicts the results as non-dimensional M-κ-diagrams. The coincidence of the 
numerical procedure and the simplified solution is rather sufficient.  
 
Additionally Fig. 8 contains in each case the non-dimensional M-κ-diagram of a section entirely 
consisting of PM which represents the unwelded section. The weakening due to welding mainly  
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Fig. 8: M-κ-diagrams for welded sections (Table 3) 
 
depends on the position of the HAZ inside the cross section. Sections with welds which do not 
affect the flanges nearly reach the same moment capacity as the unwelded section. Such sections 
which are only slightly influenced throug welding (like type A, see Fig. 6) are hence expected to 
have a similar moment curvature characteristic as the unwelded section. They can probably be 
treated without considering the HAZ. 
 

CONCLUSIONS 
 
The moment curvature behaviour of a rectangular aluminium cross section with a RO material 
model has been examined. The derived solution is depending on the extreme fibre stress, the elastic 
resistance moment and a relation factor. This concept has been transfered to I-shaped sections with 
rather good results. Applying the FM to other symmetrical sections is also sufficient. Extending the 
method to a two material system has been successful. Therefore the calculation of welded sections 
is also possible. 
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