23.00

See 1

5 11 3 3

S EDDE EXA

5 22 22

"K" FACTOR TABLE—SHEET 1 of 4

Representative Resistance Coefficients (K) for Valves and Fittings

("K" is based on use of schedule pipe as listed on page 2-10)

PIPE FRICTION DATA FOR CLEAN COMMERCIAL STEEL PIPE WITH FLOW IN ZONE OF COMPLETE TURBULENCE

Nominal Size	<i>y</i> ₂ "	3/4"	1"	11/4"	11/2"	2"	21/2, 3"	4"	5"	6"	8-10"	12-16"	18-24"
Friction Factor (f_T)	.027	.025	.023	.022	.021	.019	.018	.017	.016	.015	.014	.013	.012

FORMULAS FOR CALCULATING "K" FACTORS* FOR VALVES AND FITTINGS WITH REDUCED PORT

(Ref: Pages 2-11 and 3-4)

• Formula 1

$$K_2 = \frac{0.8\left(\sin\frac{\theta}{2}\right)(1-\beta^2)}{\beta^4} = \frac{K_1}{\beta^4}$$

• Formula 2

$$K_2 = \frac{0.5 (1 - \beta^2) \sqrt{\sin \frac{\theta}{2}}}{\beta^4} = \frac{K_1}{\beta^4}$$

• Formula 3

$$K_2 = \frac{2.6 \left(\sin \frac{\theta}{2}\right) (1 - \beta^2)^2}{\beta^4} = \frac{K_1}{\beta^4}$$

• Formula 4

$$K_2 = \frac{(1-\beta^2)^2}{\beta^4} = \frac{K_1}{\beta^4}$$

• Formula 5

$$K_2 = \frac{K_1}{\beta^4} + \text{Formula } 1 + \text{Formula } 3$$

$$K_2 = \frac{K_1 + \sin\frac{\theta}{2} \left[0.8 \left(1 - \beta^2\right) + 2.6 \left(1 - \beta^2\right)^2\right]}{\beta^4}$$

*Use "K" furnished by valve or fitting supplier when available.

• Formula 6

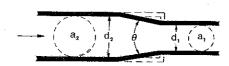
$$K_2 = \frac{K_1}{\beta^4} + \text{Formula } 2 + \text{Formula } 4$$

$$K_2 = \frac{K_1 + 0.5 \sqrt{\sin \frac{\theta}{2} (1 - \beta^2) + (1 - \beta^2)^2}}{\beta^4}$$

• Formula 7

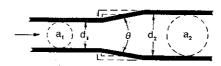
$$K_2 = \frac{K_1}{\beta^4} + \beta$$
 (Formula 2 + Formula 4) when $\theta = 180^\circ$

$$K_2 = \frac{K_1 + \beta \left[0.5 (1 - \beta^2) + (1 - \beta^2)^2\right]}{\beta^4}$$


$$\beta = \frac{d_1}{d_2}$$

$$\beta^2 = \left(\frac{d_1}{d_2}\right)^2 = \frac{a_1}{a_2}$$

Subscript 1 defines dimensions and coefficients with reference to the smaller diameter.


Subscript 2 refers to the larger diameter.

SUDDEN AND GRADUAL CONTRACTION

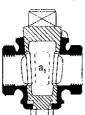
If:
$$\theta \le 45^{\circ} \dots K_2 = \text{Formula 1}$$

 $45^{\circ} < \theta \le 180^{\circ} \dots K_2 = \text{Formula 2}$

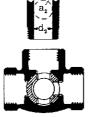
SUDDEN AND GRADUAL ENLARGEMENT

3-Way

Representative Resistance Coefficients (K) for Valves and Fittings

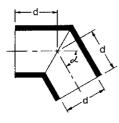

(for formulas and friction data, see page A-26)

("K" is based on use of schedule pipe as listed on page 2-10)


PLUG VALVES AND COCKS

Straight-Way

CRANE


If:
$$\beta = I$$
, $K_1 = I8 f_T$

If:
$$\beta = I$$
, $K_1 = 30 f_T$

If: $\beta = 1$, $K_1 = 90 f_T$

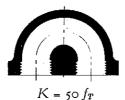
If: $\beta < 1...K_2 = Formula 6$

MITRE BENDS

~	K
0°	2 f _T
15°	4 fr
30°	8 f _T
45°	15 f ₇
60°	25 f ₇
75°	40 fr
90°	60 fr

90° PIPE BENDS AND FLANGED OR BUTT-WELDING 90° ELBOWS

A MANAGEMENT

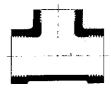

r/d	К	r/d	K	
1	20 f _r	8	24 f _T	
1.5	14 fT	10	30 f _T	
2	12 fr	12	34 fr	
3	12 f _T	14	38 fr	
4	14 fr	16	42 fr	
6	17 fr	20	50 fr	

The resistance coefficient, K_B , for pipe bends other than 90° may be determined as follows:

$$K_B = (n-1) \left(0.25 \ \pi \ f_T \frac{r}{d} + 0.5 \ K\right) + K$$


n= number of 90° bends K= resistance coefficient for one 90° bend (per table)

CLOSE PATTERN RETURN BENDS

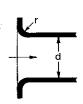

STANDARD ELBOWS

 $K = 30 f_T$

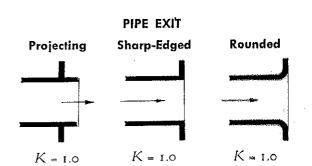
STANDARD TEES

Flow thru run..... $K = 20 f_T$ Flow thru branch ... $K = 60 f_T$

PIPE ENTRANCE


Inward **Projecting**

K = 0.78


r/d Κ 0.00* 0.5 0.02 0.28 0.04 0.24 0.06 0.15 0.10 0.09 0.15 & up 0.04

*Sharp-edged

Flush

For K, see table

