Simple Linear Regression

3.6 Confidence and Prediction Intervals

» A common objective in regression analysis is to estimate the mean
for one or more probability distributions of Y.

e Let X}, denote the level of X for which we wish to estimate the mean
response.

e Then mean response when X = X, is denoted by E(Y},) or Y;,and
the point estimate of E(Y}) is:

Yy, = b + b1 X},
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Simple Linear Regression

e The sampling distribution of Y}, is

B N o 1 \/ ")

e 100(1-a)% confidence intervals for the mean response when X =

Xy, IS:
(X5, — X)?
(Yh a/2 \/ Zz 1 X X

Yh—I—t(Z/;) \/ Z Xh_ ) ) )
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» To obtain 99% CI for the mean response:

Simple Linear Regression

> muresp3.1 <- predict(results3.1, interval="confidence",
level=.99 )

> muresp3.1l

ONOOUTA WDNPE

fit
12.256049
12.256049
11.680402
10.848911
9.966251
8.443982
8.405606
7.842750

lwr
10.912788
10.912788
10.545978
9.932931
9.099728
7.204640
7.152173
6.368684

upr
13.599311
13.599311
12.814825
11.764890
10.832774
9.683324
9.659038
9.316817
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Simple Linear Regression

» Plotting a scatter plot with fitted line and confidence interval:

> plot(data3.1, main="Fuel Consumption Data ",
xlab="temperature", ylab="Fuel Consumption")

> abline(coef(results))

> abline(a,b): Add a line with intercept a and slope b to an
existing plot

> lines(data3.1[,"Temp"], muresp3.1[,2])

> lines(data3.1[,"Temp"], muresp3.1[,3])
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Simple Linear Regression

» The prediction of a new observation Y corresponding to a given
level X of the predictor variable is viewed as the result of a new trial,
Independent of the trials on which the regression analysis is based.

e In the estimation of the mean response, we estimate the mean of
the distribution of Y. In the prediction of a new observation , we
predict an individual outcome drawn from the distribution of Y.

e Then prediction of a new observation when X = Xj, is denoted by
E(Yn(new)) or Y,(new) and the point estimate of E(Y},(new)) is:

A

Yi(new) = by + b1 Xy,
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Simple Linear Regression

e The sampling distribution of Y}, is

X 1 (X — X)?
Y, ~ N X 1+ — — |.

h (50+51 hya\/ +n+2?:1(XZ-—X)2)
e Two sources of variations in the standard deviation of the prediction:

1. Variation in possible location of the distribution of Y
2. Variation within the probability distribution of Y

> Note that the first source is the only source of variations for
estimating the mean response.
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Simple Linear Regression

e 100(1-a)% prediction interval for an individual value of Y when X =
Xy, IS:

A _ 1 (X5, — X)?
Y, -t s |14 = _
( ' /2 S\/ +n+ Z?:1(Xi _X)2 |

. _ 1 (X5, — X)?
Y, -t s 14 2 _
b Haya \/ Dy X>2>
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» To obtain 99% PI for a new observation:

Simple Linear Regression

> pred3.1 <- predict(results3.1, interval="prediction",
level=.99 )

> pred3.1

1

1

CONO Ol Ph WDN P

fit
2.256049

12.256049

1.680402

10.848911

9.966251
8.443982
8.405606
7.842750

lwr
9.483493
9.483493
9.002784
8.256279
7.390677
5.720256
5.675439
5.004513

upr
15.02861
15.02861
14.35802
13.44154
12.54182
11.16771
11.13577
10.68099
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Simple Linear Regression

» Plotting a scatter plot with fitted line and prediction interval:

> plot(data3.1, main="Fuel Consumption Data ",
xlab="temperature", ylab="Fuel Consumption")

> abline(coef(results3.1))
> lines(data3.1[,"Temp"], pred3.1[,2], Ity=3 )

> lines(data3.1[,"Temp"], pred3.1[,3], Ity=3)
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Simple Linear Regression

3.7 Coefficients of Determination and
Correlation

» There are times when the degree of linear association is of interest
In its own right. We now discuss two descriptive measures to describe
the degree of linear association between X and Y.

» Partitioning of Total Sum of Squares:

e Total Sum of Squares (SST) =" (V; —Y)?

A

— Error Sum of Squares (SSE) = >_" ,(V; — Y;)?

A

— Regresion Sum of Squares (SSR) = > ,(Y; — Y)?

o SST =SSE+ SSR
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Simple Linear Regression

» The coefficient of determination 2 is defined as

» Since 0 < SSE < SST, it follows that
0<r?<1

e Interpret r? as the proportionate reduction of total variation
associated with the use of the predictor variable X.
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Simple Linear Regression

» The limiting values of 2 occurs as follows:

1. When all observations fall on the fitted regression line, then
SSE =0and r? = 1.

2. When the fitted regression line is horizontal so that b, and
Y, =Y, then SSE = SST and r? = 0.

» Thecorrelation coefficient r is the square root of r2:
r = +Vr?

A plus of minus sign is attached to this measure according to whether
the slope of the fitted regression line Is positive or negative.
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Simple Linear Regression

» Since 2 € [0, 1], it follows that

—1<r<i

e If a value of r is close to 1 then X and Y are said to be strongly
positively correlated

e If a value of r is close to —1 then X and Y are said to be strongly
negatively correlated
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Simple Linear Regression

» A common misunderstanding:

e A correlation coefficient near zero indicates that X and Y are not
related.

» A direct computational formula for », which automatically furnishes
the proper sign, is:

> (X - X)(Y; - Y)

T =

{Zyzl(Xi — X2 (Vi - Y)2}1/2
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Simple Linear Regression

3.8 An F-test for the Model

» F-testof Hy: 31 =0versus H, : 61 # 0

SSR/1

test statistic: F-score =
* SSE/(n—2)

e P-value: P(F("=2) > F-score)

e Reject Hj if P-value < «, and fail to reject H, otherwise
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Simple Linear Regression

» F-test, SST, SSR, and SSE.

> anova(results3.1)

Analys1s of Variance Table

Response: datal.l[, "Fuelcons']

Df Sun Sq Mean Sq Fvalue  Pr[oF)
datad. 1], "Temp'] 1 22.9808 22,9808 53.69% 0.0003301 v+
Residuals B 2.5679 0.4280

Signif. codes: (v 0001 000 003 0L

» For the simple linear regression model, the F-test and the t-test for
(1 are equivalent. The F-test and the t-test are NOT equivalent in
multiple regression model.
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