3.6 Confidence and Prediction Intervals

 \blacktriangleright A common objective in regression analysis is to estimate the mean for one or more probability distributions of Y .

• Let X_h denote the level of X for which we wish to estimate the mean response.

 $\bullet\,$ Then mean response when $X=X_h$ is denoted by $E(Y_h)$ or \hat{Y}_h and the point estimate of $E(Y_h)$ is:

$$
\hat{Y}_h = b_0 + b_1 X_h
$$

• The sampling distribution of \hat{Y}_h is

$$
\hat{Y}_h \sim N\left(\beta_0 + \beta_1 X_h, \sigma \sqrt{\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}\right).
$$

• 100(1- α)% confidence intervals for the mean response when $X =$ X_h is:

$$
\left(\hat{Y}_h - t_{\left[\alpha/2\right]}^{(n-2)}s\sqrt{\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}},\right)
$$

$$
\hat{Y}_h + t_{\left[\alpha/2\right]}^{(n-2)}s\sqrt{\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}\right)
$$

 \blacktriangleright To obtain 99% CI for the mean response:

```
> muresp3.1 <- predict(results3.1, interval="confidence",
  level=.99 )
```
> muresp3.1

 \blacktriangleright Plotting a scatter plot with fitted line and confidence interval:

```
> plot(data3.1, main="Fuel Consumption Data ",
 xlab="temperature", ylab="Fuel Consumption")
```

```
> abline(coef(results))
```
 \triangleright abline(a,b): Add a line with intercept a and slope b to an existing plot

```
> lines(data3.1[, "Temp"], muresp3.1[,2])
```

```
> lines(data3.1[, "Temp"], muresp3.1[,3])
```
Fuel Consumption Data

 \blacktriangleright The prediction of a new observation Y corresponding to a given level X of the predictor variable is viewed as the result of a new trial, independent of the trials on which the regression analysis is based.

• In the estimation of the mean response, we estimate the mean of the distribution of Y . In the prediction of a new observation, we predict an individual outcome drawn from the distribution of Y .

• Then prediction of a new observation when $X = X_h$ is denoted by $E(Y_h(new))$ or $\hat{Y}_h(new)$ and the point estimate of $E(Y_h(new))$ is:

$$
\hat{Y}_h(new) = b_0 + b_1 X_h
$$

• The sampling distribution of \hat{Y}_h is

$$
\hat{Y}_h \sim N\bigg(\beta_0 + \beta_1 X_h , \sigma \sqrt{1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}\bigg).
$$

- Two sources of variations in the standard deviation of the prediction:
	- 1. Variation in possible location of the distribution of Y
	- 2. Variation within the probability distribution of Y
		- \triangleright Note that the first source is the only source of variations for estimating the mean response.

• 100(1- α)% prediction interval for an individual value of Y when $X =$ X_h is:

$$
\left(\hat{Y}_h - t_{\left[\alpha/2\right]}^{(n-2)}s\sqrt{1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}, \right.\n\hat{Y}_h + t_{\left[\alpha/2\right]}^{(n-2)}s\sqrt{1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}\right)
$$

- ▶ To obtain 99% PI for a new observation:
- > pred3.1 <- predict(results3.1, interval="prediction", level=.99)
- $>$ pred3.1 $\,$

- \blacktriangleright Plotting a scatter plot with fitted line and prediction interval:
- > plot(data3.1, main="Fuel Consumption Data ", xlab="temperature", ylab="Fuel Consumption")
- > abline(coef(results3.1))
- $>$ lines(data3.1[, "Temp"], pred3.1[,2], lty=3)
- $>$ lines(data3.1[, "Temp"], pred3.1[,3], lty=3)

Fuel Consumption Data

42

3.7 Coefficients of Determination and Correlation

 \blacktriangleright There are times when the degree of linear association is of interest in its own right. We now discuss two descriptive measures to describe the degree of linear association between X and Y .

▶ Partitioning of Total Sum of Squares:

- Total Sum of Squares (SST) $= \sum_{i=1}^n (Y_i \bar{Y})^2$
	- **−** Error Sum of Squares (SSE) $= \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$
	- **−** Regresion Sum of Squares (SSR) = $\sum_{i=1}^{n}(\hat{Y}_{i}-\bar{Y})^{2}$
- $SST = SSE + SSR$

 \blacktriangleright The coefficient of determination r^2 is defined as

$$
r^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}
$$

 \blacktriangleright Since $0 \leq SSE \leq SST$, it follows that

$$
0\leq r^2\leq 1
$$

• Interpret r^2 as the proportionate reduction of total variation associated with the use of the predictor variable X .

 \blacktriangleright The limiting values of r^2 occurs as follows:

- 1. When all observations fall on the fitted regression line, then $SSE = 0$ and $r^2 = 1$.
- 2. When the fitted regression line is horizontal so that b_0 and $\hat{Y}_i \equiv \bar{Y}$, then $SSE = SST$ and $r^2 = 0$.
- \blacktriangleright Thecorrelation coefficient r is the square root of r^2 .

$$
r = \pm \sqrt{r^2}
$$

A plus of minus sign is attached to this measure according to whether the slope of the fitted regression line is positive or negative.

Since $r^2 \in [0,1]$, it follows that

$-1 \leq r \leq 1$

- If a value of r is close to 1 then X and Y are said to be strongly positively correlated
- If a value of r is close to -1 then X and Y are said to be strongly negatively correlated
- \blacktriangleright A common misunderstanding:
- A correlation coefficient near zero indicates that X and Y are not related.

 \blacktriangleright A direct computational formula for r, which automatically furnishes the proper sign, is:

$$
r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\left\{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2\right\}^{1/2}}
$$

3.8 An F-test for the Model

$$
\blacktriangleright
$$
 F-test of $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$

• test statistic: F-score =
$$
\frac{SSR/1}{SSE/(n-2)}
$$

• P-value:
$$
P(F^{(1,n-2)} \geq F\text{-score})
$$

• Reject H_0 if P-value $\leq \alpha$, and fail to reject H_0 otherwise

 \blacktriangleright F-test, SST, SSR, and SSE.

```
> anova(results3.1)
```

```
Analysis of Variance Table
Response: data3.1[, "Fuelcons"]
                 Df Sum Sq Mean Sq F value Pr(\geq F)data3.1[, "Temp"] 1 22.9808 22.9808 53.695 0.0003301 ***
Residuals 6 2.5679 0.4280
والوارد
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
 \blacktriangleright For the simple linear regression model, the F-test and the *t*-test for β_1 are equivalent. The F-test and the *t*-test are NOT equivalent in multiple regression model.