
Simple Linear Regression

3.6 Confidence and Prediction Intervals

I A common objective in regression analysis is to estimate the mean
for one or more probability distributions of Y .

• Let Xh denote the level of X for which we wish to estimate the mean
response.

• Then mean response when X = Xh is denoted by E(Yh) or Ŷhand
the point estimate of E(Yh) is:

Ŷh = b0 + b1Xh
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• The sampling distribution of Ŷh is

Ŷh ∼ N

(
β0 + β1Xh , σ

√
1
n

+
(Xh − X̄)2∑n
i=1(Xi − X̄)2

)
.

• 100(1-α)% confidence intervals for the mean response when X =
Xh is:(

Ŷh − t
(n−2)
[α/2] s

√
1
n

+
(Xh − X̄)2∑n
i=1(Xi − X̄)2

,

Ŷh + t
(n−2)
[α/2] s

√
1
n

+
(Xh − X̄)2∑n
i=1(Xi − X̄)2

)
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I To obtain 99% CI for the mean response:

> muresp3.1 <- predict(results3.1, interval="confidence",
level=.99 )

> muresp3.1
fit lwr upr

1 12.256049 10.912788 13.599311
2 12.256049 10.912788 13.599311
3 11.680402 10.545978 12.814825
4 10.848911 9.932931 11.764890
5 9.966251 9.099728 10.832774
6 8.443982 7.204640 9.683324
7 8.405606 7.152173 9.659038
8 7.842750 6.368684 9.316817
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I Plotting a scatter plot with fitted line and confidence interval:

> plot(data3.1, main="Fuel Consumption Data ",
xlab="temperature", ylab="Fuel Consumption")

> abline(coef(results))

B abline(a,b): Add a line with intercept a and slope b to an
existing plot

> lines(data3.1[,"Temp"], muresp3.1[,2])

> lines(data3.1[,"Temp"], muresp3.1[,3])
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I The prediction of a new observation Y corresponding to a given
level X of the predictor variable is viewed as the result of a new trial,
independent of the trials on which the regression analysis is based.

• In the estimation of the mean response, we estimate the mean of
the distribution of Y . In the prediction of a new observation , we
predict an individual outcome drawn from the distribution of Y .

• Then prediction of a new observation when X = Xh is denoted by
E(Yh(new)) or Ŷh(new) and the point estimate of E(Yh(new)) is:

Ŷh(new) = b0 + b1Xh

37



Simple Linear Regression

• The sampling distribution of Ŷh is

Ŷh ∼ N

(
β0 + β1Xh , σ

√
1 +

1
n

+
(Xh − X̄)2∑n
i=1(Xi − X̄)2

)
.

• Two sources of variations in the standard deviation of the prediction:

1. Variation in possible location of the distribution of Y
2. Variation within the probability distribution of Y

B Note that the first source is the only source of variations for
estimating the mean response.

38



Simple Linear Regression

• 100(1-α)% prediction interval for an individual value of Y when X =
Xh is:(

Ŷh − t
(n−2)
[α/2] s

√
1 +

1
n

+
(Xh − X̄)2∑n
i=1(Xi − X̄)2

,

Ŷh + t
(n−2)
[α/2] s

√
1 +

1
n

+
(Xh − X̄)2∑n
i=1(Xi − X̄)2

)
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I To obtain 99% PI for a new observation:

> pred3.1 <- predict(results3.1, interval="prediction",
level=.99 )

> pred3.1
fit lwr upr

1 12.256049 9.483493 15.02861
2 12.256049 9.483493 15.02861
3 11.680402 9.002784 14.35802
4 10.848911 8.256279 13.44154
5 9.966251 7.390677 12.54182
6 8.443982 5.720256 11.16771
7 8.405606 5.675439 11.13577
8 7.842750 5.004513 10.68099
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I Plotting a scatter plot with fitted line and prediction interval:

> plot(data3.1, main="Fuel Consumption Data ",
xlab="temperature", ylab="Fuel Consumption")

> abline(coef(results3.1))

> lines(data3.1[,"Temp"], pred3.1[,2], lty=3 )

> lines(data3.1[,"Temp"], pred3.1[,3], lty=3)
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3.7 Coefficients of Determination and
Correlation

I There are times when the degree of linear association is of interest
in its own right. We now discuss two descriptive measures to describe
the degree of linear association between X and Y .

I Partitioning of Total Sum of Squares:

• Total Sum of Squares (SST) =
∑n

i=1(Yi − Ȳ )2

– Error Sum of Squares (SSE) =
∑n

i=1(Yi − Ŷi)2

– Regresion Sum of Squares (SSR) =
∑n

i=1(Ŷi − Ȳ )2

• SST = SSE + SSR
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I The coefficient of determination r2 is defined as

r2 =
SSR

SST
= 1− SSE

SST

I Since 0 ≤ SSE ≤ SST , it follows that

0 ≤ r2 ≤ 1

• Interpret r2 as the proportionate reduction of total variation
associated with the use of the predictor variable X.
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I The limiting values of r2 occurs as follows:

1. When all observations fall on the fitted regression line, then
SSE = 0 and r2 = 1.

2. When the fitted regression line is horizontal so that b0 and
Ŷi ≡ Ȳ , then SSE = SST and r2 = 0.

I Thecorrelation coefficient r is the square root of r2:

r = ±
√

r2

A plus of minus sign is attached to this measure according to whether
the slope of the fitted regression line is positive or negative.
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I Since r2 ∈ [0, 1], it follows that

−1 ≤ r ≤ 1

• If a value of r is close to 1 then X and Y are said to be strongly
positively correlated

• If a value of r is close to −1 then X and Y are said to be strongly
negatively correlated
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I A common misunderstanding:

• A correlation coefficient near zero indicates that X and Y are not
related.

I A direct computational formula for r, which automatically furnishes
the proper sign, is:

r =
∑n

i=1(Xi − X̄)(Yi − Ȳ ){∑n
i=1(Xi − X̄)2

∑n
i=1(Yi − Ȳ )2

}1/2
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3.8 An F-test for the Model

I F-test of H0 : β1 = 0 versus Ha : β1 6= 0

• test statistic: F-score =
SSR/1

SSE/(n− 2)

• P-value: P (F (1,n−2) ≥ F-score)

• Reject H0 if P-value ≤ α, and fail to reject H0 otherwise
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I F-test, SST, SSR, and SSE.

> anova(results3.1)

I For the simple linear regression model, the F-test and the t-test for
β1 are equivalent. The F-test and the t-test are NOT equivalent in
multiple regression model.
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