Example 1.3.5.14(c)

This example demonstrates the calculation of drift snow loads including unbalanced snow load for multiple gable roof and canopy snow load.

Figure 1.3.5.14(c)-1 Building Geometry and Drift Locations

A. Given:

Building Use: Manufacturing (Standard Building) Location: Rock County, Minnesota Building Size: (1) 100'W x 300'L x 30'H (2) 100'W x 175'L x 20'H (3) 100'W x 125'L x 30'H (4) 50'W x 30'L x 12'H (Flat Roof) Roof Slope: 2:12 ($\theta = 9.46^{\circ}$) (Buildings 1, 2 and 3) Frame Type: Clear Span Roof Type: Sheltered, Heated, Smooth Surface, Unventilated, Roof Insulation (R-19) Terrain Category: B

B. General:

Ground Snow Load,	$p_g = 40 \text{ psf}$	[Figure 7-1, ASCE 7-05]
Importance Factor,	$I_{s} = 1.0$	[Table 7-4, ASCE 7-05 or Table 1.3.1(a) in
		this Manual, Standard Building]
Roof Thermal Factor,	$C_t = 1.0$	[Table 7-3, ASCE 7-05, Warm Roof]
Roof Slope Factor,	$C_{s} = 1.0$	[Figure 7-2(a), ASCE 7-05 or Section
-		1.3.5.5a(ii) in this Manual]
		Note that some roof slopes are unobstructed,
		but some are obstructed because an adjoining

$P_{act} = 12$	building prevents snow from sliding off of the eave. However, since insulation is R-19, the solid line of Figure 7-2(a) governs for all roof slopes.
Koof Exposure Factor, $C_e = 1.2$	B and sheltered roof]

Snow density $\gamma = 0.13 (40) + 14 = 19.2 \text{ pcf}$ (Eq. 7-3, ASCE 7-05)

Rain on Snow Surcharge: $p_g > 20$ psf, therefore, rain-on-snow surcharge load need not be considered.

C. Roof Snow Load:

1.) Flat Roof Snow Load:

 $p_f = 0.7 C_e C_t I_s p_g$ [Eq. 7-1, ASCE 7-05]

 $p_f = 0.7 (1.2)(1.0)(1.0)(40) = 33.6 \text{ psf}$

For $p_g = 40 \text{ psf}$ $p_{f,min} = I_s (20) = 1.0(20) = 20 \text{ psf}$

 $\therefore p_f = 33.6 \text{ psf controls}$

2.) Buildings No. 1, No. 2, and No. 3:

a.) <u>Sloped Roof Snow Load:</u> $p_s = C_s p_f$ [Eq. 7-2, ASCE 7-05]

= 1.0(33.6) = 33.6 psf (balanced load)

b.) Unbalanced Snow Load:

Since the roof slope (9.46°) is greater than the larger of: $(70/W + 0.5) = (70/50 + 0.5) = 1.9^{\circ}$, and $(1/2 \text{ on } 12) = 2.38^{\circ}$, unbalanced loads must be considered.

$$h_d = 0.43 \sqrt[3]{W_w} \sqrt[4]{p_g + 10} - 1.5 = 0.43 \sqrt[3]{50} \sqrt[4]{40 + 10} - 1.5 = 2.71 \text{ ft.}$$

Figure 1.3.5.8(c) is applicable for metal building framing and the unbalanced snow loads are:

Uniform Windward Load: $0.3p_s = 0.3(33.6) = 10.1 \text{ psf}$ Uniform Leeward Load: $p_s = 33.6 \text{ psf}$ Surcharge Leeward Load: $h_d \gamma / \sqrt{S} = (2.71)(19.2) / \sqrt{6} = 21.2 \text{ psf}$ Surcharge Leeward Length: $(8/3)h_d \sqrt{S} = (8/3)(2.71)\sqrt{6} = 17.7 \text{ ft}$

The balanced and unbalanced design snow loads are shown in the figure below.

c.) Partial Loading:

Partial loading to be calculated as demonstrated in Examples 1.3.5.14(a) and 1.3.5.14(b).

3.) Building No. 4 (50x30x12) (Flat roof):

Flat-roof snow load:

 $p_{\rm f} = 33.6 \, \rm psf$

Note: Although slope is less than W/50, still no rain-on-snow required since $p_g > 20 \text{ psf}$ (ASCE 7-05 Section 7.10).

D. Drift Loads and Sliding Snow Loads

Note: Unbalanced snow loads, drift loads and sliding snow loads are treated as separate load cases and are not to be combined as per Section 1.3.5.12 of this Manual.

1.) Calculation for Area A:

a.) Drift Load - Figure 1.3.5.14(c)-2

$$\begin{split} h_r (Average) &= 30 + \left\{ \frac{(25+50)}{2} \left(\frac{2}{12} \right) \right\} - 12 = 24.25 \text{ ft.} \\ h_b &= \frac{33.6}{19.2} = 1.75 \text{ ft.}; \quad h_c = (h_r - h_b) = 22.5 \text{ ft.} \end{split}$$

 $\begin{array}{l} \frac{h_c}{h_b} = \frac{22.5}{1.75} = 12.86 > 0.2 \quad \therefore \mbox{ consider drift loads.} \\ L_L \mbox{ (windward)} = 30 \mbox{ ft.} \\ h_d \mbox{ (windward)} = 0.75 \mbox{ [}0.43 \times \sqrt[3]{30} \mbox{ }\sqrt[4]{40+10} \mbox{ -}1.5\mbox{]} \\ = 1.55 \mbox{ ft.} \le h_c = 22.5 \mbox{ ft.} \\ L_u \mbox{ (leeward)} = 300 \mbox{ ft.} \\ h_d \mbox{ (leeward)} = [0.43 \times \sqrt[3]{300} \mbox{ }\sqrt[4]{40+10} \mbox{ -}1.5\mbox{]} \\ = 6.15 \mbox{ ft.} \le h_c = 22.5 \mbox{ ft.} \\ \therefore \mbox{ Leeward drift controls with } h_d = 6.15 \mbox{ ft. and, } w = 4h_d = 24.6 \mbox{ ft.} \\ \mbox{ Drift surcharge load, } p_d = h_d \mbox{ }\gamma = 6.15 \times 19.2 = 118.1 \mbox{ psf} \\ p_t = 33.6 + 118.1 = 151.7 \mbox{ psf} \end{array}$

Figure 1.3.5.14(c)-2 Drift Load for Area A

b.) Sliding Snow

No snow will slide off of the roof of Building No. 1 onto the roof of Building No. 4.

2.) Calculation for Area B:

a.) Drift Load - Figure 1.3.5.14(c)-3

Sloped-roof snow load, $p_s = 33.6 \text{ psf}$ (balanced snow load) $h_r = (30-20) = 10 \text{ ft.}; \quad h_b = \frac{33.6}{19.2} = 1.75 \text{ ft.}; \quad h_c = (h_r - h_b) = 8.25 \text{ ft.}$ $\frac{h_c}{h_b} = \frac{8.25}{1.75} = 4.71 > 0.2 \quad \therefore \text{ consider drift loads.}$ $L_L \text{ (windward)} = L_u \text{ (leeward)} = 100 \text{ ft. } \therefore \text{ leeward drift controls.}$ $h_d \text{ (leeward)} = [0.43 \times \sqrt[3]{100} \sqrt[4]{40+10} - 1.5]$ $= 3.81 \text{ ft.} \le h_c = 8.25 \text{ ft.}$ $\therefore h_d = 3.81 \text{ ft. and, } w = 4h_d = 15.24 \text{ ft.}$ Drift surcharge load, $p_d = h_d \gamma = 3.81 \times 19.2 = 73.2 \text{ psf}$ $p_t = 33.6 + 73.2 = 106.8 \text{ psf}$

Figure 1.3.5.14(c)-3 Drift Load for Area B

b.) Sliding Snow - Figure 1.3.5.14(c)-4

 $h_c = h_r - h_b = (10.0-1.75) = 8.25 \text{ ft.}; L_u = 50.0 \text{ ft.}; \text{ slope} = 2:12$

Since $2:12 > \frac{1}{4}:12$, sliding snow must be checked

Total sliding load/ft of eave = $0.4p_fW = 0.4(33.6)(50) = 672$ lb/ft

Sliding snow shall be distributed over 15 ft.

$$\frac{672}{15} = 44.8 \text{ psf}$$

Since $\frac{44.8}{19.2} = 2.3 \text{ ft} < 8.25 \text{ ft}$, no reduction is allowed
 $p_t = (33.6 + 44.8) = 78.4 \text{ psf}$

Figure 1.3.5.14(c)-4 Sliding Snow for Area B

3.) Calculation for Areas C_1 and C_2 :

a.) Drift Load - Figure 1.3.5.14(c)-5

Sloped-roof snow load, $p_s = 33.6 \text{ psf}$ (balanced snow load)

Note: C_1 is on unobstructed side and C_2 is on obstructed side where snow is prevented from sliding off eave. However, as previously indicated, C_S is equal to 1.0 for both sides for the roof insulation of R-19.

$$\begin{split} h_r &= (30\text{-}20) = 10 \text{ ft.}; \ h_b = \frac{33.6}{19.2} = 1.75 \text{ ft.}; \ h_c = (h_r - h_b) = 8.25 \text{ ft.} \\ \frac{h_c}{h_b} &= \frac{8.25}{1.75} = 4.71 > 0.2 \quad \therefore \text{ consider drift loads.} \\ L_L (windward) &= 175 \text{ ft.} \\ h_d (windward) &= 0.75 [0.43 \times \sqrt[3]{175} \sqrt[4]{40+10} - 1.5] \\ &= 3.68 \text{ ft.} \le h_c = 8.25 \text{ ft.} \\ L_u (\text{leeward}) &= 125 \text{ ft.} \\ h_d (\text{leeward}) &= [0.43 \times \sqrt[3]{125} \sqrt[4]{40+10} - 1.5] \\ &= 4.22 \text{ ft.} \le h_c = 8.25 \text{ ft.} \\ \therefore \text{ Leeward drift controls with } h_d = 4.22 \text{ ft. and, } w = 4h_d = 16.88 \text{ ft.} \\ \text{Drift surcharge load, } p_d = h_d \gamma = 4.22 \times 19.2 = 81.0 \text{ psf} \\ p_t = 33.6 + 81.0 = 114.6 \text{ psf} \end{split}$$

Figure 1.3.5.14(c)-5 Drift Load for Areas C₁ and C₂

b.) Sliding Snow

No snow will slide off of the roof of Building No. 3 onto the roof of Building No. 2.

4.) Calculation for Area D:

a.) Drift Load - Figure 1.3.5.14(c)-6

Unheated structure due to canopy condition. Flat-roof snow load, $p_f = 0.7 C_e C_t I_s p_g$ where, $p_g = 40 \text{ psf}$ $C_e = 1.2$ [Table 7-2, ASCE 7-05 for Terrain Category B and sheltered roof C_t = 1.2 [Table 7-3, ASCE 7-05, Unheated Structure]; $\therefore p_f = 0.7 (1.2)(1.2)(1.0)(40) = 40.3 \text{ psf}$ $h_r = (20-15) = 5 \text{ ft.}$; $h_b = \frac{40.3}{19.2} = 2.10 \text{ ft.}$; $h_c = (h_r - h_b) = 2.90 \text{ ft.}$ $\frac{h_c}{h_b} = \frac{2.90}{2.10} = 1.38 > 0.2 \quad \therefore \text{ consider drift loads.}$ L_L (windward) = 10 ft. \leq 25 ft. \therefore use L_L (windward) = 25 ft. h_d (windward) = 0.75 [0.43 × $\sqrt[3]{25} \sqrt[4]{40+10}$ -1.5] = 1.38 ft. $\le h_c = 2.90$ ft. L_u (leeward) = 100 ft. h_d (leeward) = $[0.43 \times \sqrt[3]{100} \sqrt[4]{40+10} - 1.5]$ = 3.81 ft. $> h_c = 2.90$ ft. : Leeward drift controls with drift height = $h_c = 2.90$ ft. and, w = $4h_d^2/h_c$

$$w = \frac{4(3.81)^2}{2.90} = 20.0 \text{ ft.}$$

Maximum drift width, $w = 8h_c = 8 \times 2.90 = 23.2 \text{ ft.} > 20.0 \text{ ft}$
 $\therefore w = 20.0 \text{ ft.}$
Drift surcharge load, $p_d = h_c \gamma = 2.90 \times 19.2 = 55.7 \text{ psf}$
 $p_t = 40.3 + 55.7 = 96.0 \text{ psf}$

Figure 1.3.5.14(c)-6 Drift Load for Area D

<u>Note</u>: For the below eave canopy, the minimum design load per Section 7.4.5 of ASCE 7-05 is $2p_f = 2(40.3) = 80.6$ psf.

b.) Sliding Snow - Figure 1.3.5.14(c)-7)

 $h_c = h_r - h_b = (5.0 - 2.10) = 2.90$ ft.; $L_u = 50.0$ ft.; slope = 2:12

Since $2:12 > \frac{1}{4}:12$, sliding snow must be checked

Total sliding load/ft of eave = $0.4p_fW = 0.4(33.6)(50) = 672$ lb/ft

Sliding snow shall be distributed over 15 ft (Even though canopy width is 10 ft.).

 $\frac{672}{15} = 44.8 \text{ psf}$

Since $\frac{44.8}{19.2} = 2.3$ ft < 2.9 ft, no reduction is allowed

$$p_t = (40.3 + 44.8) = 85.1 \text{ psf}$$

Figure 1.3.5.14(c)-7 Sliding Snow for Area D

5.) Calculation for Area E and Figure 1.3.5.14(c)-8:

For the intersection of drifts B and C_2 at E, the design load should be as shown in Figure 1.5.14(c)-8

Figure 1.3.5.14(c)-8 Intersecting Snow Drifts for Area E

6.) Calculation for Area F:

a.) Valley Drift Load - Figure 1.3.5.14(c)-9

For buildings 1 & 3, $p_f = 33.6 \text{ psf}$

$$h_{b} = \frac{p_{f}}{\gamma} = \frac{33.6}{19.2} = 1.75 \text{ ft.}$$

C_e = 1.2 (Table 7-2 for Terrain Category B and sheltered roof)

The unbalanced snow load (See ASCE 7-05, Section 7.6.3):

At Ridge = $0.5 p_f = 0.5 \times 33.6 = 16.8 psf$

At Valley =
$$2 p_f / C_e = (2 \times 33.6)/1.2 = 56.0 psf$$

Check if calculated snow depth in valley extends above snow level at ridge:

Snow depth at valley, $h_{dv} = \frac{56.0}{19.2} = 2.92$ ft. Snow level at ridge relative to valley $= \frac{50(2)}{12} + \frac{1.75}{2} = 9.20 > 2.92$ ft \therefore The valley snow depth does not extend above ridges

Windward slope snow load = 0.3 $p_f = 0.3 \times 33.6 = 10.1 \text{ psf}$ Leeward slope snow load = $p_f = 33.6 \text{ psf}$

Figure 1.3.5.14(c)-9 Valley Snow Drift for Area F