As I known, SLG kA to calculated by formula is

MVA(SLG) = sqrt(3)* KVA(LL) *I(SLG)

Hence, I(SLG)=3000/(1.732*230) = 7.53 kA

Please advise how to get the 22.678kA by calculated

B.R.

The equation you are using the calculate the SLG contribution is incorrect. Following is an example of how to calculate the SLG contribution from the source.

Component Editor - Sce	nario[Base Project]
Component Subviews:	
Utility Harmonic Impedance Reliability Data Optimal Power Flow User-Defined Fields Datablock	Name: UTIL-0001 In Service Complete Image: Initial Operating Conditions Voltage: 1.000 pu Angle: 0.00 Degrees Image: 1.000 pu Angle: 0.00 Degrees Image: 1.000 pu Angle: 0.00 Degrees Image: Enter MVA/kVA/Amps Enter Per Unit Update Utility Contribution X/B:
Scenario Manager All 🗨 Jump	Three Phase: 300.0 MVA 8.000 Line to Ground: 100.0 MVA 8.000
BUS-0001 BUS-0002 BUS-0003 BUS-0026 G CBL-0001 G CBL-0002	Per Unit Contribution R × Base/Rated MVA: 100.0 Positive 0.041345 0.330759 Base/Rated Voltage (L-L): 4160 Zero 0.041345 0.330759
₩ × F2-0001 UTIL-0001 Ø MTRI-0001 ↓ PD-0001 ▼ Expand Shrink	Bus: BUS-0001 Connection

Utility per unit impedance on a 100 MVA base.

Positive sequence = 0.041345 + j0.330759 = Z1 = Z2

Hi,

Zero sequence = 0.041345 + j0.330759 = Z0

Base current at the Utility Bus is { 100MVA/(1.732)(4160 V)} = 13878.61224 A

 $SLG = \{3/(Z1+Z2+Z0)\} = \{3/[3(0.041345 + j0.330759)]\} = (0.3721 - j2.9768) \text{ pu}$

SLG = (13878.61224 A)(0.3721 - j2.9768) = 41635.87 A

Best regards,