Guess Values and Definition of Key Variables

$Q_T := 500 gpm$		Total Flow (T)
$Q_R := 3000 \text{gpm}$		Recyle Flow (R)
$Q_{BW} := 1200 gpm$		Backwash Flow (BW)
$L_{BW} \coloneqq 275 ft$	$L_R := 70 ft$	Length of BW and R lines
D _{BW} := 30in	$D_R := 12in$	Diameter of BW and R lines
$V_{BW} := 4 \frac{ft}{s}$	$V_R := 5 \frac{ft}{s}$	Velocity of BW and R lines
$\Delta P_{BW} \coloneqq 1 psi$		Additional pressure added by BW valve
$\Delta P_{Valve} := 10psi$		Additional pressure added by R valve
h _R := 10psi		
$\Delta K \coloneqq 15$		Delta K of Recycle Valve
$\Delta H := 1 psi$		Difference between head of pump curve and the calculated solution
$P_{\text{OpenR}} := 11\%$		Position of R Valve
CV _R := 1000		Calculated CV of R Valve
$Open_{CVR} := 10000$		CV of BW valve - Fully Open
CV _{BW} := 2332		Calculated CV of BW valve
Open _{CVBW} := 1000		CV of BW valve - Fully Open
$P_{OpenBW} := 11\%$		Percent Open of BW valve
$\rho \coloneqq 1000 \frac{\text{kg}}{\text{m}^3}$		Density of Water

$f_{R} := 0.035$	Friction factor from Moody Diagram
$f_{BW} := 0.035$	Friction factor from Moody Diagram
k _R := 10	Total of k values in R system (fittings, bends, etc.)
k _{BW} := 5.66	Total of k values in BW system (fittings, bends, etc.)
$h_{Pump} := 50 ft_{Head}$	Head of pump
$h_{System} := 50 ft_{Head}$	Head of BW System
$h_{\text{Common}} = 5 \text{ft}_{\text{Head}}$	Headloss through Common line

data :=			
		0	1
	0	500	78
	1	1000	74
	2	1500	72
	3	2000	70
	4	2500	68
	5	3000	66
	6	3500	64
	7	4000	62
	8	4500	60
	9	5000	

data := csort(data, 0)

 $X := data^{\langle 0 \rangle} \cdot gpm$

 $Y := data^{\langle 1 \rangle} ft_{Head}$

Spline coefficients:

S := cspline(X, Y) Q := 0gpn

Q := 0gpm, 100gpm.. 15000gpm

Fitting function:

Pumpfit(x) := interp(S, X, Y, x)

 $L_{C} := 763 \text{ft}$ $k_{C} := 13.68$ $f_{C} := .035$ $V_{C} := 5 \frac{\text{ft}}{\text{s}}$ $D_{C} := 34.5 \text{in}$

System :=				
5		0	1	2
	0	3	0	0
	1	4	0	0
	2	6	0	0
	3	8	0	0
	4	10	0	0
	5	12	0	0
	6	14	0	0
	7	16	0	0
	8	20	0	0
	9	24	14	1.46
	10	30	145	2.89
	11	36	19	2.26
	12	42	570	7.595
	13	48	0	0
	14	54	0	0
	15	60	0	0
	16	66	0	0
	17	72	0	0

D := System⁽⁰⁾ in HWL_{Destination} := 6.5ft L := System⁽¹⁾.ft K := System⁽²⁾ $C_{Pipe} := 120$

▶

h_{FrictionPipe} := 1ft

 $h_{\text{Static}} \coloneqq 1 \text{ft}$

 $h_{FrictionFittings} := 1 ft$

System :=

	0	1	2
0	0	6.5	
1	700	6.5	
2	1400	6.6	

3	2100	6.7	
4	2400	6.7	
5	2600	6.8	
6	2800	6.8	
7	3500	7	
8	4200	7.2	
9	4510	7.3	
10	5600	7.8	
11	6300	8.1	
12	7000	8.5	
13	7700	8.9	
14	8400	9.4	
15	9100	9.9	
16	9800	10.4	
17	10210		

data1 := csort(System, 0) $A := System^{(0)} \cdot gpm \qquad B := System^{(1)} ft_{Head}$

Spline coefficients:

R := cspline(A, B)

Fitting function:

Commonfit(x) := interp(R, A, B, x)

Given

BW System Parameters

Density of Water
Conservation of Flow
Logical contstrainst for QT. Manufacturer's
5,000 gpm we do not need the BW control
valve.

$$D_{BW} = 24in$$

$$L_{BW} = 220ft$$

$$k_{BW} = 5.66$$

$$f_{BW} = 0.035$$

$$V_{BW} = \frac{4Q_{BW}}{\pi D_{BW}^2}$$
Diameter of BW line
Length of BW line
Sum of BW line k-values
Friction Factor from Moody Diagram
Velocity of flow through BW line

Headloss through BW system = Piping loss + Fitting Loss+ Static Loss

$$h_{\text{System}} = \left[1.1 \left(\frac{f_{\text{BW}} \cdot L_{\text{BW}} \cdot V_{\text{BW}}^2}{2 \cdot D_{\text{BW}} \cdot g} + \frac{k_{\text{BW}} \cdot V_{\text{BW}}^2}{2g}\right) \rho \cdot g + 20 f t_{\text{Head}} + \left[0.0006 \left(\frac{Q_{\text{BW}}}{g p m}\right) + 0.8315\right] f t_{\text{Head}}\right]$$

Estimation of Pump Curve - Based on Curve fit above

 $h_{Pump} = Pumpfit(Q_T)$

Estimation of headloss through common line - Based on MS Excel 2nd order approximation

Þ

 $h_{\text{Common}} = \text{Commonfit}(Q_{\text{T}})$

$$k_{\rm C} = 13.68$$
 $D_{\rm C} = 34.5 {\rm in}$
 $L_{\rm C} = 763 {\rm ft}$ $f_{\rm C} = .035$
 $V_{\rm C} = \frac{4 {\rm Q}_{\rm T}}{\pi {\rm D}_{\rm C}^{-2}}$

Additional head imparted by BW valve

 $\Delta P_{BW} > 0 psi$

Logical qualifier for ΔPBW

CV of BW valve - Fully open - based on Henry Pratt Ball Valve CV

 $Open_{CVBW} = 22000$

20" BW Butterfly - valve

Percent Open of BW Valve

 $P_{OpenBW} = \frac{CV_{BW}}{Open_{CVBW}}$

Design guides recommend that a valve operate between 10% and 80% open

Recycle System Parameters

Friction factor R line - Moody Diagram

Diameter of R line

Sum of k-values - R line

Length of R line after common

L_R = 70ft

 $D_R = 14in$

 $f_{R} = 0.035$

k_R = 4.41

$$V_{R} = \frac{4Q_{R}}{\pi D_{R}^{2}}$$
 Velocity of flow through R line

Headloss through Recylce line = Fitting Loss + Pipe Losses

$$h_{R} = \left[\frac{\left(\Delta K + k_{R}\right) \cdot V_{R}^{2}}{2g}\right] \cdot \rho \cdot g + \frac{f_{R} \cdot L_{R} \cdot V_{R}^{2}}{2 \cdot D_{R} \cdot g} \cdot \rho \cdot g + 0.63 ft_{Head}$$

Headloss is equal in BW and R systems

$$h_R = \Delta P_{BW} + h_{System}$$

 $h_R > 0psi$

Logical qualifier for hR

Please note that:

(1) It is assumed that there is no static component to this term.

(2) The additional ΔK added by the backwash control value is segregated from the K of the existing fittings (to be used later to calculate the value pressure drop, which is = $(\Delta K^2)/2g$.

$\Delta P_{\text{Valve}} = \rho \cdot g \cdot \frac{\Delta K \cdot V_R^2}{2g}$	Headloss added by BW control valve
$\Delta K > 0$	Logical qualifier for ΔK
$CV_{R} = \frac{\frac{Q_{R}}{gpm}}{\sqrt{\frac{\Delta P_{Valve}}{psi}}}$	Calculated CV of BW control valve

$$\Delta P_{Valve} < 150 \text{psi} \qquad \text{Logical qualifier for } \Delta P \text{valve}$$

$$P_{OpenR} = \frac{CV_R}{Open_{CVR}}$$

$$Open_{CVR} = 12000 \qquad Fully \text{ open ball valve } CV - \text{Henry Pratt - 8"}$$

$$Ball \text{ valve}$$
Design guides recommend operating a valve between 10-80% open

At the precise solution, $\Delta H=0$

۸

Results

 $P_{OpenRSOL} = 27.\%$

Flow Rates

$$Q_{\text{TSOL}} = 7447.4 \cdot \frac{\text{gal}}{\text{min}}$$
 $Q_{\text{BWSOL}} = 1750 \cdot \frac{\text{gal}}{\text{min}}$ $Q_{\text{RSOL}} = 5697 \cdot \frac{\text{gal}}{\text{min}}$

Velocities

$$V_{BWSOL} = 1.241 \cdot \frac{ft}{s}$$
 $V_{RSOL} = 11.874 \cdot \frac{ft}{s}$

<u>Headloss</u>

 $h_{PumpSOL} = 54 \cdot ft_{Head}$

 $h_{SystemSOL} = 22.13 \cdot ft_{Head}$

 $h_{RSOL} = 22.15 \cdot ft_{Head}$

 $\frac{h_{CommonSOL} = 8.77 \cdot ft_{Head}}{\Delta H_{SOL} = -1 \cdot ft_{Head}}$

<u>CVs</u>

$CV_{BWSOL} = 18000$ C	$CV_{RSOL} = 3$	3217
------------------------	-----------------	------

 $\Delta P_{ValveSOL} = 7.242 \cdot ft_{Head}$ $\Delta P_{BWSOL} = 0.022 \cdot ft_{Head}$

 $\Delta K_{SOL} = 3$

Percent Open

 $P_{OpenRSOL} = 26.811 \cdot \%$ $P_{OpenBWSOL} = 81.81824 \cdot \%$

 $\mathbf{x}, \mathbf{D}_{R}, \mathbf{k}_{R}, \Delta \mathbf{H}, \mathbf{V}_{R}, \mathbf{V}_{BW}, \mathbf{L}_{BW}, \mathbf{D}_{BW}, \Delta \mathbf{P}_{Valve}, \mathbf{CV}_{R}, \mathbf{CV}_{BW}, \mathbf{P}_{OpenR}, \mathbf{Open}_{CVR}, \mathbf{k}_{BW}, \mathbf{P}_{OpenBW}, \mathbf{Open}_{CVR}, \mathbf{V}_{BW}, \mathbf{V}_{BW}$

 $\mathbb{CVBW}, {^{k}C}, {^{L}C}, {^{V}C}, {^{D}C}, {^{h}FrictionPipe}, {^{h}FrictionFittings}, {^{h}Static}, {^{C}Pipe} \Big)$