3.0 – Joists

Analysis Criteria

Bending – The joist with experience bending forces

Lateral Buckling – The floor joist will unlikely experience any lateral force causing buckling Shear – The floor joists will experience shear forces

Torsion – The floor joist will unlikely experience any torsional forces

Deflection – The floor joists will experience bending force that will cause deflection

3.1 - Design Strengths

$$X_d = k_{mod} \left[\frac{X_k}{\gamma M} \right]$$

3.1.1 - Design Shear Strength (f_{v,d})

$$f_{v,d} = k_{mod} \left[\frac{f_{v,k}}{\gamma M} \right]$$

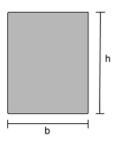
 $f_{v,k}$ = 2.5 (based on appendix A) K_{mod} = 0.7 (based on appendix B) γM = 1.3 (based on appendix C)

$$f_{v,d} = 0.7 \left[\frac{2.5}{1.3} \right]$$

$$f_{v.d} = 1.35 \text{ N/mm}^2$$

3.1.2 - Design Bending Strength (f_{m,d})

$$f_{m,d} = k_{mod} \left[\frac{f_{m,k}}{\gamma M} \right]$$


 $f_{m,k}$ = 24 (based on appendix A) K_{mod} = 0.7 (based on appendix B) γM = 1.3 (based on appendix C)

$$f_{m,d} = 0.7 \left[\frac{24}{1.3}\right]$$

$$f_{m.d} = 12.92 \text{ N/mm}^2$$

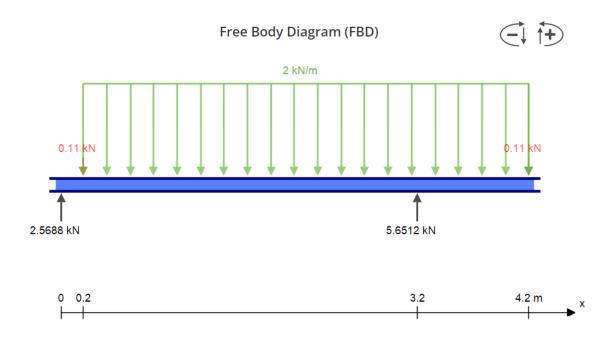
3.2 - Span 1

Width: 50mm Height: 225mm Span: 4.2m Timber: C24 Grade Modulus of Elasticity E = 11,000 MPa

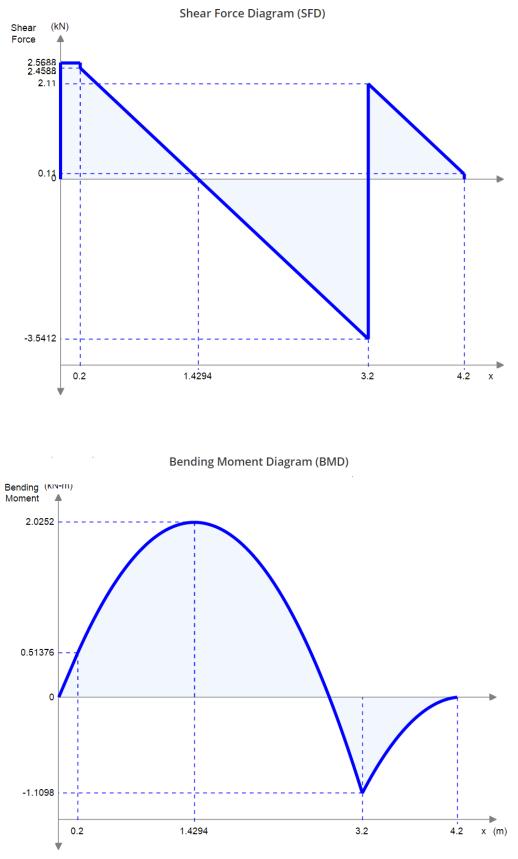
Result	Notation	Value	Unit
Section Area	А	0.01125	m ²
Moment of Inertia about the x-axis	$I_{\rm xx}$	0.000047461	m ⁴
Moment of Inertia about the y-axis	I _{yy}	0.0000023438	m ⁴
Distance from bottom of beam section to the centroid	Cy	0.1125	m
Distance from furthest left point of beam section to the centroid	C _x	0.025	m
Statical Moment of Area about the x-axis	Q _x	0.00031641	m ³
Statical Moment of Area about the y-axis	Qy	0.000070313	m ³
Section Modulus about the x-axis	Z _x	0.00042188	m ³
Section Modulus about the y-axis	Zy	0.00009375	m ³

3.2.2 – Loads & Free Body Diagram

Dead Loads


UDL = 0.07 KN/m* Point = 0.11 KN**

*Based on 400mm (0.4m) joist centres (includes Flooring Dead Loads) Timber Joists C24 Timber = 420 Kg/m³ Joists A = 0.225m x 0.05m x 4.2m = 0.04725 m³ = 19.85 Kg / Joist UDL (Dead Load) = 4.73 Kg/m = 0.0473 KN/m


**Wall Dead weight, see force diagram for locations

Live Loads

UDL = 1.92 KN/m^{*} *Based on 400mm (0.4m) joist centres

3.2.3 - Shear Force and Bending Moment Diagrams

2

3.2.4 - Bending Stress

$$\sigma_{m,y,d} = \frac{M_{y,d}}{W_y} = \frac{M_{y,d}}{\frac{b \cdot h^2}{6}}$$

Include Factor of Safety

$$\sigma_{m,y,d} = \frac{M_{y,d}}{\frac{b \cdot h^2}{6}} \cdot \text{FoS}$$

$$\sigma_{m,y,d} = \frac{2.0252}{\frac{0.05 \ x \ 0.225^2}{6}} \times 1.4$$

$$\sigma_{m,y,d} = 6721 \, KN/m^2 = 6.721 \, N/mm^2$$

Design Bending Strength $f_{m,d}$ = 12.92 N/mm² Applied Bending Stress $\sigma_{m,d}$ = 6.72 N/mm² Usage Factor = 0.52 **PASS**

3.2.5 - Shear Stress

For a rectangular section.....

$$\tau = \frac{3V}{2A}$$

$$\tau = \frac{3V}{2A} . FoS$$

$$\tau = \frac{3 x \, 3.5412}{2 \, x \, 0.01125} \, x \, 1.4$$

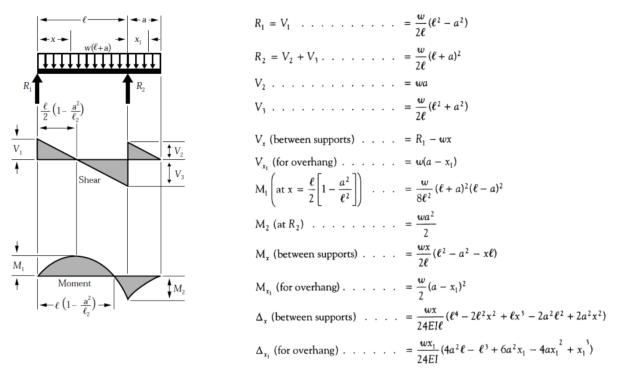
$$\tau = 661 \ KN/m^2 = 0.661 \ N/mm^2$$

Design Shear Strength $f_{v,d}$ = 1.35 N/mm² Applied Shear Stress $\tau_{v,d}$ = 0.661 N/mm² Usage Factor = 0.49 **PASS**

3.2.6 - Deflection

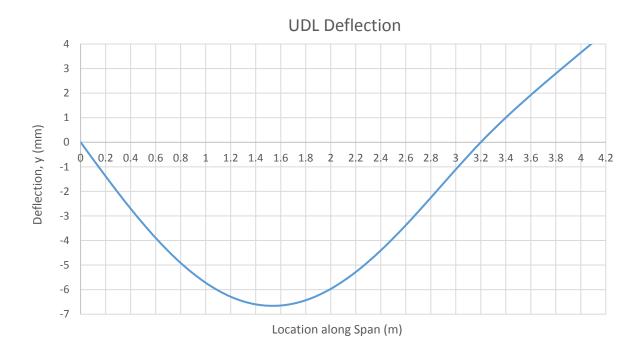
Deflection is calculated by a series of standard beam formulas for each loading type, and then combined by superposition.

The Modulus of Elasticity (E) is modified per Eurocode 5 to consider load duration and moisture influences on deformations having time dependent properties (I.E, Creep)

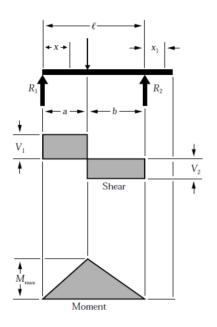

Therefore, Serviceability Limit State Design (SLS),

$$E_{mean,fin} = \frac{E_{mean}}{(1 + K_{def})}$$

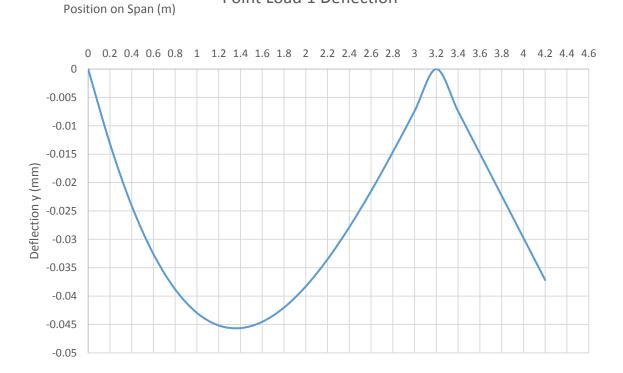
Where $K_{def} = 0.6$ based on the table in appendix D


$$E_{mean,fin} = \frac{11000}{(1+0.6)} = 6875 \, MPa$$

Deflection from UDL

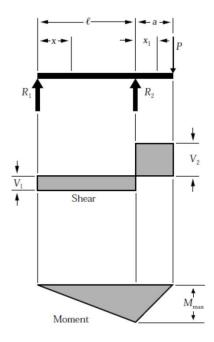

Take from standard beam formulas

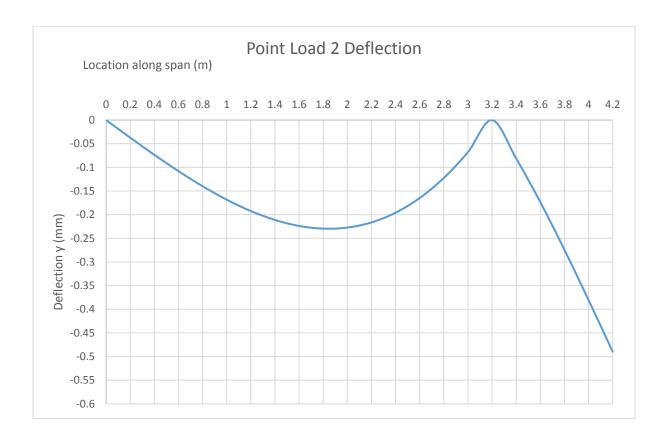
Note: For simplification, the 0.2m section where the UDL does not act on the beam design is considered to have a negligible impact on the deflection curve, and therefore is omitted for these calculations.



<u>Max y_{UDL} = -6.65mm</u>

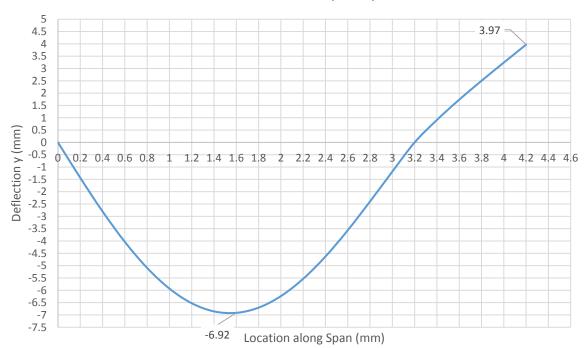
Deflection from Point Load 1


$R_1 = V_1 \pmod{a < b}$	$=rac{Pb}{\ell}$
$R_2 = V_2 \pmod{a > b}$	$=rac{Pa}{\ell}$
\boldsymbol{M}_{max} (at point of load)	£ C
M_x (when $x < a$)	$=\frac{Pbx}{\ell}$
$\Delta_{\max}\left(\text{at } x = \sqrt{\frac{a(a+2b)}{3}} \text{ when } a > b \right) .$	$=\frac{Pab(a+2b)\sqrt{3a(a+2b)}}{27EI\ell}$
Δ_a (at point of load)	$=\frac{Pa^2b^2}{3E!\ell}$
Δ_x (when $x < a$)	$=\frac{Pbx}{6El\ell}(\ell^2-b^2-x^2)$
Δ_x (when $x > a$)	
$\Delta_{x_1} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	$=\frac{Pabx_1}{6El\ell}(\ell+a)$


Point Load 1 Deflection

<u>Max y_{p2} = -0.04564 mm</u>

Deflection from Point Load 2


$R_1 = V_1 \dots \dots \dots \dots \dots = \frac{Pa}{\ell}$
$R_2 = V_1 + V_2 \dots \dots \dots \dots \dots = \frac{P}{\ell}(\ell + a)$
V_2 = P
M_{max} (at R_2) = Pa
M_x (between supports) $= \frac{Pax}{\ell}$
M_{x_1} (for overhang) $P(a - x_1)$
$\Delta_{\max}\left(\text{between supports at } x = \frac{\ell}{\sqrt{3}}\right) = \frac{Pa\ell^2}{9\sqrt{3}EI} = .06415 \frac{Pa\ell^2}{EI}$
Δ_{max} (for overhang at $x_1 = a$) = $\frac{Pa^2}{3EI}(\ell + a)$
Δ_x (between supports) $= \frac{Pax}{6EI\ell}(\ell^2 - x^2)$
$\Delta_{x_1} \text{ (for overhang)} \dots \dots \dots = \frac{Px_1}{6EI} (2a\ell + 3ax_1 - x_1^2)$

Max y_{p2} = -0.22951 mm

Final Deflection of Beam

 $y_{max} = 6.92mm$

Final Deflection (Wfin)

Limiting Value for Deflection (based on Eurocode 5)

 $W_{net, fin} = I / 350$, where I = span = 4200mm

W_{net, fin} = 12mm y_{max} = 6.92mm Usage Factor = 0.58 **PASS**

Appendix A

Table of Timber Structural strength class according to BS EN 338 table 1

Important Note; This table is equivalent to the table found in BS 5628 <u>Timber Design</u> however the strength values in this table are characteristic strengths (fifth percentile values derived directly from laboratory tests of five minutes) whereas the equivalent values in the BS 5628 table are grade stresses which have been reduced for long-term duration and already include a safety factor.

Species type		Poplar and conifer species						
Class	C14	C16	C18	C22	C24	C27	C30	C35
						Strengtl	h properties (N	_{/mm} 2 ₎
Bending f _{m,k}	14	16	18	22	24	27	30	35
Tension par'l. f _{t,0,k}	8	10	11	13	14	16	18	21
Tension perp. f _{t,90,k}	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4
Compression par'l. f _{C,0,k}	16	17	18	20	21	22	23	25
Compression perp. fc,90,k	4.3	4.6	4.8	5.1	5.3	5.6	5.7	6.0
Shear f _{v,k}	1.7	1.8	2.0	2.4	2.5	2.8	3.0	3.4
						Stiffness	properties (kl	$\sqrt{2}$
Mean modulus of elasticity parallel E _{0,mean}	7	8	9	10	11	12	12	13
5% modulus of elasticity parallel E _{0,05}	4.7	5.4	6.0	6.7	7.4	8.0	8.0	8.7
Mean modulus of elasticity Perpendicular E90,mean	0.23	0.27	0.30	0.33	0.37	0.40	0.40	0.43
Mean shear modulus G _{mean}	0.44	0.50	0.56	0.63	0.69	0.75	0.75	0.81
	•	•	•	•	•	D	ensity (kg/m ³)
Density ρ _k	290	310	320	340	350	370	380	400
Average density p _{mean}	350	370	380	410	420	450	460	480

Appendix B

Table for partial factor γ_M

Design situation	Partial factor γ_M
Fundamental combinations	
Solid timber	1.3
Glued laminated timber	1.25
Laminated veneer lumber (LVL),plywood, OSB	1.2
Particle board	1.3
Fibreboard hard	1.3
Fibreboard medium	1.3
Fibreboard, MDF	1.3
Fibreboard , soft	1.3
Connections	1.3
Punched metal plate fasteners	1.25
Accidental combinations	1.0
Serviceability limit states	1.0

Appendix C

table for k_{mod} This is applicable to solid timber , Glued laminated timber, LVL , and Plywood

Load duration class	Service class			
	1	2	3	
Permanent (> 10 years)	0.60	0.60	0.50	
Long-term (6 months - 10 years)	0.70	0.70	0.55	
Medium-term (1 week - 6 months)	0.80	0.80	0.65	
Short-term (< 1 week)	0.90	0.90	0.70	
Instantaneous	1.10	1.10	0.90	

Appendix D

table for k_{def}

Load duration class	Service class			
	1	2	3	
Solid Timber. EN 14081-1	0.60	0.80	2,00	
Glued laminated timber./ EN 14080	0.60	0.80	2,00	
LVL. EN 14374, EN 14279	0.60	0.80	2,00	
Plywood type EN636-1	0.80	-	-	
OSB. EN 312 OSB/2	2,25	-	-	
Particleboard EN312 Type P4	2,25	-	-	
Fibreboard hard. EN 622-2 HB0LA	2,25	-	-	
Fibreboard med. EN 622-3 MBH-LA1, MBH.LA2	3,00	-	-	
Fibreboard MDF EN 622-5 MDF-LA	2,25	-	-	

Imposed loads in buildings, category (see EN 1991-1-1)	Ψ0	ψ1	\u03cm 2
Category A: domestic, residential areas	0,7	0,5	0,3
Category B: office areas	0,7	0,5	0,3
Category C: congregation areas	0,7	0,7	0,6
Category D: shopping areas	0,7	0,7	0,6
Category E: storage areas	1,0	0,9	0,8
Category F: traffic area, vehicle weight ≤ 30 kN	0,7	0,7	0,6
Category G: traffic area, 30 kN < vehicle weight ≤ 160 kN	0,7	0,5	0,3
Category H: roofs	0	0	0
Snow loads on buildings (see EN 1991-1-3)* in Finland, Iceland, Norway, Sweden and other CEN Member, for sites located at altitude H > 1000 m a.s.l.	0,7	0,5	0,2
Other CEN Member States, for sites located at altitude H < 1000 m a.s.l.	0,5	0,2	0
Wind load on buildings (see EN 1991-1-4)	0,6	0,2	0
Temperature (non-fire) in buildings (see EN 1991-1-5)	0,6	0,5	0
NOTE The ψ values may be set by the National annex. * For countries not mentioned below, see relevant local conditions.			

Table 2.10. Recommended values of ψ factors for buildings [Table (A1.1)-EN1990]