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58 CHAPTER 3 Strength of Rectangular Sections in Bending

3.7 Mihimum Reinforcement

nt in a flexural member is only 2 small amount because

the factored moment M, is low, the beam may perform uncracked at service load.
| moment strength M, in accordance with Sec. 3.4,

The computation of nomina

assumes the tension concrete to be cracked. Thus, the computed nominal

strength M,, for a section having a small amount of reinforcement could be less

than the strength M, (called M,,) of the same section of plain concrete (ie., no
esired, the lowest amount of steel

reinforcement). Since a ductile failure mode is d
permitted should be the amount that would equal the strength of an unreinforced

section. The desired relationship then becomes

[strength of re'mforced] - [strength of plain ] 3.7.1)

When steel reinforceme

concrete beam, ¢M, concrete beam, M,

rete beam, known as the cracking moment M, is
fiber in tension reaches the modulus of rupture I
normal-weight concrete, ACI-9.5.2.3 uses

f.=75VfL 3.7.2)¢

as an elastic homogeneous material, the

The strength of a plain conc
achieved when the extreme
(see Sec. 1.8). For

Assuming plain (nonreinforced) concrete
flexure formula gives M, as
Iy
M, =1 (3.73)
Y

moment of inertia of the gross concrete Cross-section; Cb,h°/12

where I, =
y, = distance from the neutral axis to the extreme fiber in tension; h/2
¢ = coefficient to account for flanges of T-sections; ¢ = 1.0 for
rectangular section
b, = width of section; width of web for T-section
h = overall depth of the section
Expanding Eq. (3.7.3), it becomes
b h3/12 7.5V [ Cb n*
M, =75V = /12 _ 75V Cout 374
h/2 6
For a reinforced concrete section, using Eq. (3.3.4),
oM, = A Sf(d— al2) [3.3.4]
substituting Eqs. (3.7.4) and (3.3.4) into Eq. (3.7.1) gives
5V Cb,h*
b A, fy(d = %) =M, = 2’%—“4— (3.7.5)
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wFor SI, with f,and f, inMPa,  fr= 0.62Vf,
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[3.3.4]
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Estimating /2 as 0.05d, and using ¢ = 0.9 for flexure, Eq. (3.7.5) gives

B 1 1 -

Rectangular Sections. For rectangular beams, slabs, and footings, € = 1.0
and h/d varies from about 1.05 to 1.2. For such sections, Eq. (3.7.6) becomes
1.6V 21V
s,min = S bwd to As,min = 7]; bwd (3'7‘7)
Iy b
T-sections Having Slab in Compression. For this case, € will vary from
about 1.3 to 1.6 for a practical range of variables in flange thickness to overall
depth and flange width to web width. Taking €' = 1.5 along with //d from 1.05
to 1.2, Eq. (3.7.6) becomes

AV a0 a4 32Vfe , 4 (3.7.8)

s,min — Jj/ s, min — fJ‘;
New in 1995, ACI-10.5.1 gives as Formula (10-3) for the minimum reinforcement
“At every section of a flexural member, where tensile reinforcement is required
by analysis . . .”
V[
As,min = ff bwd (3-7-9)*

y

but not less than 2006,,d/f,. This latter limit was a last minute addition to these
Code changes to satisfy negative voters. In the authors’ view there is no scientif-
ic basis for keeping the 1989 ACI Code limit as a lower bound.

T-sections Having Slab in Tension. For this case, C will vary from about 3.0
to 4.0 for a practical range of variables flange thickness to overall depth and
flange width to web width. Taking ¢ = 3.5 along with A/d from 1.05 to 1.2, Eq.
(3.7.6) becomes

5.6Vf! 7.4V f!

Asmm = —“—wad to AS min = < bwd (3-7.10)
’ b ’ b

New in 1995, ACI-10.5.2 gives as Formula (10-4) for the minimum reinforcement
For a statically determinate T-section with flange in tension, . . .”
6Vf

Asmin = s bwd (3-7-11)1'
’ by
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but not more than ACI Formula (10-3), Eq. (3.7.9), with b,, set equal to the width
of the flange. This modifier of Eq. (3.7.11) was an addition to address concerns
of Code committee members that Eq. (3.7.11) would require too much minimum
reinforcement.

Note that the 1995 ACI Code refers in ACI-10.5.2 to a “statically determinate”
T-section having the “flange in tension,” which means a cantilever T-section beam.
Prior codes did not have sucha reference; instead required minimum reinforcement
where “positive reinforcement is required by analysis.” “positive” reinforcement
can be interpreted as “positive moment” reinforcement Or as “tension” reinforce-
ment. Obviously, there is not agreement on when minimum reinforcement is
required, particularly on continuous beams. The authors believe that minimum
reinforcement should be used in both positive and negative moment regions of
continuous beams as well, because sudden cracking in flexure should be avoided.

Escape Clause. For situations where the reinforcement required for
strength is far below the minimum required by ACI Formulas (10-3) or (10-4),
ACI-10.5.3 permits the use of a lesser minimum, as long as the amount is “at least
one-third greater than that required by analysis.”

Structural Slabs and Footings of Uniform Thickness. Note that the derived
requirement for rectangular sections, Egs. (3.7.7), is roughly two-thirds of
Egs. (3.7.8) and is only one-half to two-thirds of ACI Formula (10-3), Eq. 3.7.9.
There could have been another category for rectangular sections. Structural slabs
and footings of uniform thickness are the most common actual rectangular sec-
tions; thus the special category. Converting Egs. (3.7.7) for rectangular sections to
be in terms of overall thickness h by substituting d = h/1.05 and d = h/1.2, respec-

tively, gives

LSV L8V, b, h (3.7.12)

A ——=—2Cp h 0 Agmn=" 5
, min jj*)

s,min —
o

Equation (3.7.12) converted to reinforcement ratio A,/b,h gives the following

range of values for the ratio of reinforcement area to gross concrete area:

Vi 3000 4000 5000 6000

40,000 0.0020-0.0024 0.0024-0.0029 0.0026—0.0032 0.0029-0.0035
50,000 0.0017-0.0019 0.0019-0.0023 0.0021-0.0025 0.0023-0.0028
60,000 0.0014-0.0017 0.0016-0.0019 0.0018-0.0021 0.0019-0.0023

ACI-10.5.4 requires A,/ b, h to be not less than 0.0020 for Grades 40 and 50
deformed bars, and not less than 0.0018 for Grade 60. These amounts agree with
the lower end of the ranges indicated by Egs. (3.7.12) for rectangular sections.
Opinions differ on how much minimum reinforcement is needed for slabs and
footings; generally designers believe less is needed than for important beams. ACI
Code Committee 318 settled on the lower minimum for these rectangular sections
to be the amount specified in ACI-7.12 for temperature and shrinkage reinforce-
ment. The amount prescribed by ACI-10.5.4 is not temperature and shrinkage

reinforceme
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reinforcement, but rather the amount that generally agrees with the above table
and Eqs. (3.7.12).

3.8 Design of Rectangular Sections in Bending Having Tension
Reinforcement Only Under ACI-10.3 and 10.5

In the design of rectangular sections in bending with tension reinforcement only,
the problem is to determine b, d, and A, from the required value of M, = M, /¢,
and the given material properties f; and f,.

The two conditions of equilibrium are

c=T (3.8.1a)

and
M,=(Cor T) (d N g) (3.8.1b)

Since there are three unknowns but only two conditions, there are many possi-
ble solutions. If the reinforcement ratio p is preset, then, from Eq. (3.8.1a),

0.85f, ba = pbdf,

(3.8.2)
a= p( A )d
0.85f.
Substituting Eq. (3.8.2) into Eq. (3.8.1b),
= _p(_h ) ]
M, pbdjg,[d 5 (0.85 Iz d (3.8.3)

A strength coefficient of resistance R, is obtained by dividing Eq. (3.8.3) by bd”
and letting

m= 3 g;f, (3.8.4a)
Thus
M
R, = = pl, - 1pm (3.8.4b)

;he relationship between p and R, for various values of f; and f, is shown in
19::5.8.1.

In some situations the values of b and d may be preset, which is equivalent

o having R, preset; then p may be determined by solving the quadratic equa-
tion (3.8.4). Thus

1
: R, = pf, 1 —3pm)
from which

1 2mR
=—(1—1/1— 7 8.5
p ( 7 ) (3.8.5)




