
Machining Knowledge Editor Training
Machining Knowledge Editor Training i

ii
Proprietary and restricted rights notice

This software and related documentation are proprietary to Siemens Product Life-
cycle Management Software Inc.

© 2010 Siemens Product Lifecycle Management Software Inc. All Rights
Reserved.

All trademarks belong to their respective holders.
Machining Knowledge Editor Training

CHAPTER 1 Machining Knowledge Editor
Concepts 1
Best practice definition. The example of a hole. 2
Machining Rule concept 3
RuleLibrary 4
Starting the Machining Knowledge Editor 5
Loading the Rule Library 6
The Machining Knowledge Editor User Interface 7
Tree View 9

Selecting nodes 10
Activating nodes 10
Renaming nodes 11
Ordering nodes 11
Copying nodes 11
Deleting nodes 12

Table View 13
Selecting nodes in Table View 13
Commands in Table View 13
Table View Toolbar 13
Sorting cells 15
Editing cells 15

Rule View 17
Conditions Tab 18
Constants Tab 19
Materials Tab 19
Machines Tab 20
Explanations Tab 20
Image Tab 20
Add-on Tab 20

Conditions concept 22
Application Criteria 22
Tool Attributes 24
Less Worked Feature Attributes 26
Operation Attributes 27

Expression syntax | Functions 28
Functions 29

Constants concept 30
Machining Knowledge Editor Training I

II
Scope of a Constant 31
Constant Command Icons 31
Using Constants in Expressions 31

Finding Rules based on criteria 32
Find in all Rule Conditions 32
Using TableView autofilter 32
Using TableView Filter Column 33

Testing the Rules 34
Check Validity 34
Building 34
Testing in NX with Create Feature Process 35
Reading the Information window and the
MSAnalysis.lis 35

Rules for multiple More Worked Features 36
Customization view 37

Making changes to the customization 38

CHAPTER 2 How Operation Selection works 39
Machining Knowledge Editor and NX 40
Examples of operation sequences 42

STEP1HOLE and STEP1HOLE_THREAD in 4
operations. 42

Finding a solution using elementary rules 44
Information Window 48

CHAPTER 3 Machining Knowledge Editor
Exercises Part 1: Hole Making 51
Creating a new RuleLibrary file 52

Copying an existing RuleLibrary file 52
Creating a new RuleLibrary file. 53

Defining a first Rule 55
What this example intends to explain 55
Explanatory picture 55
Conditions 56
Constants 60
Materials and Machines 61
Machining Knowledge Editor Training

Building the MachiningRuleLibrary 61
Testing the MachiningRule 62
Detailing the MachiningRule with Add-ons 63

Defining a second MachiningRule 67
What this example intends to explain 67
Explanatory picture 68
Conditions 68
Constants 69
Materials and Machines 69
Explanation 69
Image 69

Defining a ‘competing’ MachiningRule 70
What this example intends to explain 70
Explanatory picture 71
Conditions 71
Constants 72
Materials and Machines 72
Explanation 72
Image 72

Minimizing the number of different tools 74
What this example intends to explain 74
Explanatory picture 74
Conditions 74
Constants 75
Materials and Machines 75
Explanation 75
Image 76

Thread Milling 76
Using functions 76

What this example intends to explain 76
Explanatory picture 77
Constants 78
Materials and Machines 78
Explanation 78
Image 78
Explanatory picture 79
Constants 80
Materials and Machines 80
Explanation 80
Image 80
Machining Knowledge Editor Training III

IV
Using TableView to query the
MachiningRuleLibrary 81

What this example intends to explain 81
Using Find and Replace functions 82
Additional stuff 82

What this example intends to explain 82

CHAPTER 4 Machining Features from opposite
directions 85
When both sides of a hole need chamfering 85

What this example intends to explain 85
Creating a rule to split features 86
Defining the conditions 87
Testing the rule 89

Drilling a deep hole from opposite directions 91
Adding a face attribute prior to Find Features... 91
Testing the value of a Feature Attribute 92
Adding MACHINE_TWO_SIDED to the
customization 92
Creating a rule to split a feature 94

Decision making through multiple MCS’s and
Knowledge Fusion 95

Automating 2-sided machining using the KF functions
added in NX6.0.3 95

Checking for tool availability 100

CHAPTER 5 Machining Knowledge Editor
Exercises Part 2: Turning 103
Feature Based Turning 104

Feature Recognition 104
Operation Selection 106
Machining Knowledge Editor 107
Machining Knowledge Editor Training

CHAPTER 6 Color and Attribute Features 111
Face color and attribute recognition 112

Declaring a new "Color&Attribute" Feature Type 112
Defining a Recognition Rule for the new Feature
Type 114
Recognizing MAGENTA 117
Machining Direction of C&A Features 118

Machining Rules for a Color & Attribute
feature 118

CHAPTER 7 Wire EDM 121

CHAPTER 8 Feature Mapping 123
Using Feature Mapping -case 1 124
Using Feature Mapping -case 2 124
Example 124
Mapping to Hole or Pocket feature types? 126
Identification or Recognition 127

Feature Identification 127
Feature Recognition 128
What this example intends to explain 128
Conditions 129

CHAPTER 9 Machining Knowledge Customization
Project 131
Customization Files 132

CAM Configuration dependent customization 132
Tools, Machines and Part Materials 132
Operation Types 133
Features 133
Default Customization 133
Additional Customization 133
NX Version upgrades 134

OOTB content 135
Machining Knowledge Editor Training V

VI
An explanation of the OOTB Rules 135
What do all these achievable... constants mean? 135
Discussion of some other constants... 138

Modify the OOTB or Start from Scratch? 139
Workflow in a customization project 139
Analyze your products for manufacturing
features 140

What comes OOTB 140
How to add features that are not standard. 141

Analyze your operation sequences 143
145

Analyze your tool libraries 145
What comes OOTB. 145
How to add tools that are not standard. 145

Implement Knowledge 146
Maintain Knowledge 147

CHAPTER 10 Appendices 149
A: Glossary of Terms 150
B: Naming conventions for Manufacturing
Features 150
C: Definition of the standard STEPPED
features 151
D: Definition of the standard non-STEPPED
features 154
E: Tips and Tricks 162

Choosing priority for the MACHINING_RULE 162
How to use the MACHINING_RULE conditions 162
Machining Knowledge Editor Training

CHAPTER 1 Machining Knowledge Editor
Concepts
The first chapter explains the concepts behind the Machining Knowledge Editor.
Machining Knowledge Editor Training V7.5- Concepts 1

Best practice definition. The example of a hole.

2

Best practice definition. The example of a hole.
There are many ways to machine a hole. It will depend on the hole’s diameter, its
depth, the ratio depth/diameter, the quality of the cylindrical surface, the tolerance
of the diameter, and more.

We can create a hole using a twist drill, a reamer, a boring bar, a mill, or some other
type of tool. Sometimes we start directly from the surface. Sometimes we must start
from an existing hole or a centerpoint.

What applies to holes, also applies to most other features: generally there will be
alternative ways to have them manufactured.

A company’s best practice defines their methodology of machining certain manu-
facturing features. It defines, for a set of machining features, which operations
should be used, which tools should be used, and in which order these should be
applied. The best practice is defined by sets of Machining Rules.

In addition to the day-to-day advantage of generating fast, reliable and reproducible
solutions, having a best practice also serves as a vehicle for standardization.
Machining Knowledge Editor Training- Concepts

Machining Rule concept
Machining Rule concept
A Machining Rule defines how a manufacturing feature (More Worked Feature)
can be machined starting from another feature (Less Worked Feature) using a tool
of a certain class.

In general, a Machining Rule will correspond to a manufacturing operation (e.g.
drilling a hole or milling a pocket) and will describe:

• when this operation is allowed
• what result can be achieved (which shape is created, which tolerances can be

achieved)
• which tool is necessary (which type is required, what dimensions are required)
• which start shape needs to be there.

For brevity, in this training when we talk about a ‘Rule’ we actually mean a
‘Machining Rule’.
Machining Knowledge Editor Training V7.5- Concepts 3

RuleLibrary

4

RuleLibrary
Rules are always grouped in a RuleLibrary. Three different RuleLibraries, with dif-
ferent purposes, are used in NX:

1. The ‘Machining Knowledge’ library, which is used by the Create Feature Pro-
cess command. This RuleLibrary defines the best practice to manufacture fea-
tures.

2. The ‘Feature Mapping’ library, which is used by the Find Features command.
This RuleLibrary defines how a feature of one type can be changed (mapped,
transformed) into a feature of another type. This functionality can be used to
transform external or modeling features (User Defined Features) into manufac-
turing features and vice versa. See “Feature Mapping” on page 123.

3. ‘Feature Recognition’ rules. These are outside the scope of this tutorial.

In the Machining Knowledge Editor release 7.5 you will see 3 different Tabs for the
3 different Rules you can define. The names of the Tabs and the Tab order are fixed.

Editing machining and mapping rules does not require any knowledge or skills in a
particular programming language like C or C++.
Machining Knowledge Editor Training- Concepts

Starting the Machining Knowledge Editor
The Machining Rules are used by the inference engine which is dedicated to
searching a solution to machine manufacturing features. Machining Rules are the
elementary process steps and the application of a Machining Rule will generally
result in a single NX operation object. The inference engine will be discussed in
“How Operation Selection works” on page 39.

Starting the Machining Knowledge Editor

Rules are defined with the dedicated Machining Knowledge Editor application.

Every user can view and edit the Rules. Protection can be arranged by setting spe-
cial file permissions on the relevant files/directories or are handled by Teamcenter
when you are working in managed mode.

The Machining Knowledge Editor is opened from the start menu Programs > UGS
NX Version > Manufacturing Tools > Machining Knowledge Editor.

Activity: Open the Machining Knowledge Editor
• Start the application
• From the menu bar, choose View > Options
• Inspect tab Exchange Adapter
• Inspect tab TCIN. When you work in managed mode, you must check active

‘Use Teamcenter Integration’. When not in managed mode, you will be reading
and writing to the file system. In managed mode, the 2-tier or 4-tier connection
parameters must be set. Further details can be found in the NX Help for the
Machining Knowledge Editor.
Machining Knowledge Editor Training V7.5- Concepts 5

Loading the Rule Library

6

Loading the Rule Library

The first step is to load the RuleLibrary. Either use File > Open in the main menu,
or click on the Open icon in the toolbar. This will open a dialog in which a .xml file
can be selected and opened.

Note Screenshot is taken when working in native mode.

By default, the dialog will open in the directory defined by the system variable
UGII_CAM_MACHINING_KNOWLEDGE_DIR. Recently used libraries can be
found by clicking on the ‘My Recent Documents’ icon.

You can open multiple .xml files in the Machining Knowledge Editor. This allows
for easy copying of data between libraries.

Activity: Load a Machining Knowledge Library
• Open the ‘machining_knowledge.xml
Machining Knowledge Editor Training- Concepts

The Machining Knowledge Editor User Interface
The Machining Knowledge Editor User Interface

The Machining Knowledge Editor User Interface consists of three sections:

• The Tree View showing the RuleLibrary tree. This lists the names of the Rules.
The Tree View is mainly used for finding and activating nodes, and for starting
specific commands.
The three Tabs (new in NX 7.5) allow to switch between modes for Machining
Rules and Feature Recognition Rules and Feature Mapping Rules.

• The Table View showing the activated nodes.

 The Table View is mainly used for finding and filtering on Rules.
Machining Knowledge Editor Training V7.5- Concepts 7

The Machining Knowledge Editor User Interface

8

• The Rule View showing the component data of a selected Rule.

This view is used to define a Rule.

The display of the Tree View and Table View can be tog-
gled from the pull-down menu View. From the sub menu
select the name of the view. This will toggle the display
of the view. When checked active, it is displayed.

Activity: Change the visibility of the views
• Toggle the visibility of the views with the View entry in the main menu.
• Display all views again.
Machining Knowledge Editor Training- Concepts

Tree View
Tree View

The Tree View lists the Rules in a tree format. The Tree View is mainly used for
finding and activating nodes, and for starting specific commands.

Activity: Navigating the tree
• move through the tree use the arrow-up, arrow- down, Home, End, Page Up,

and Page Down keys.
• Sections of the tree can be expanded or collapsed by clicking with the left mouse

button on the +/- sign shown in front of the node name.
• Sections of the tree can be expanded or collapsed by using the left and the right

keys on the keyboard.
Machining Knowledge Editor Training V7.5- Concepts 9

Tree View

10
Selecting nodes
Most commands are executed on one or more nodes in the Tree View or Table
View. If a command is started from the Tree View, only the selected nodes will be
used as input for the commands.

In the Tree View all nodes of the project can be selected. In the Table View only the
activated nodes can be selected (as these are the only nodes which are displayed in
this view).

Selected nodes will be highlighted in the views where the nodes are visible. Nodes,
which are (de)selected in one view (e.g. Tree View), are also (de)selected in the
other view (Table View).

Activity: Selecting Nodes in the Tree View
• click MB1 on a node (active or not active) for single select.
• Control + click MB1 to modify the selection. The node will be added or removed

from the current selection.
• Shift+MB1 allows multiple selection. All nodes starting from the previously

selected node will be added to the current selection.
• Shift+Up or Shift+Down allows multiple selection. A new selection will be

started from the first node where the shift was pressed.

Activating nodes

Only activated nodes are visible in the Table View.

The status (activated/deactivated) is shown with the check box in front of the node.

Activity: Activating Nodes in the Tree View
• Click with the left mouse button on the check box in the Tree View to toggle the

status of the node. If the node is part of a selection, all other nodes will be set to
the same activation status regardless of their current status.
Machining Knowledge Editor Training- Concepts

Tree View
• Press the space bar to reverse the status of the node. If the node is part of a
selection, the status of all other nodes will also be reversed from their current
status.

• All children of a node can be activated from the Tree View popup menu by exe-
cuting the Activate Children command.

• All nodes can be deactivated from the Tree View popup menu by executing the
Deactivate All command.

Renaming nodes
In the Tree View a node can be renamed by first selecting it, followed by another
mouse click on the name of the node or by pressing F2. This will start the editing
mode indicated by the box around the name. The changes can be cancelled by
pressing the ‘Esc’ button. The editing mode will be closed when clicking outside
the editing box.

Activity: Rename a node
• Rename the ‘RuleLibrary’ node into ‘Default RuleLibrary’.

Ordering nodes
In the Tree View nodes can be moved by making a selection, dragging this selection
with MB1 pressed within the Tree View on one of the other nodes, and releasing
MB1. This will move all selected nodes to a position below the node that the selec-
tion was dragged on.

Activity: Moving nodes within the Tree View
• Move some of the nodes within the Tree View.

Copying nodes
In the Tree View nodes can be copied by making a selection, dragging this selection
with MB1 pressed within the Tree View on the RuleLibrary node, and releasing
MB1. This will copy all selected nodes and add them at the end of the tree. All data
related to a node will be copied to the new node. This enables to quickly create a
new Rule from an existing Rule.
Machining Knowledge Editor Training V7.5- Concepts 11

Tree View

12
Activity: Copy a node
• Copy some of the nodes within the Tree View.
• Rename these nodes.

Deleting nodes
In the Tree View nodes can be deleted by making a selection, and pressing the
‘Delete’ button or by selecting ‘Delete’ from the popup menu. This will delete all
selected nodes.

Activity: Delete a node
• Delete the nodes that were created in the previous exercise.
Machining Knowledge Editor Training- Concepts

Table View
Table View
The Table View shows the data of activated nodes in an ’Excel’ style tabular repre-
sentation. The Table View is mainly used for finding and filtering nodes.

Selecting nodes in Table View

Nodes in the Table View can be selected in one of the following ways:

• MB1 on the beginning of a row is single select. If the mouse is moved while the
MB1 is pressed (and you should see an arrow cursor), multiple lines will be
selected.

• Control + MB1 on the beginning of a not-selected row modifies the selection.
The node will be added to the current selection.

• Control + MB1 on the beginning of a selected row modifies the selection. The
node will be removed from the current selection.

• Shift+MB1 on the beginning of a row allows multi selection. All nodes from the
previous selected node will be added to the current selection.

• MB1 on the top left Cell will select all rows in the Table View.

Commands in Table View

Node specific commands can be started from the popup menu of the Table View.
This popup menu only appears when using MB3 on the beginning of the row.

Table View Toolbar

The Table View toolbar contains the following settings and commands for the Table
View:
Machining Knowledge Editor Training V7.5- Concepts 13

Table View

14
• Page Setup of Table View: Pops up the Page Setup window for the Table View.
In this window the setup of the Table View can be changed.

• Export Table View to Microsoft Excel: Saves the content of the Table View to
an MS Excel file format.

• Zoom in Table View by 20%: does what it says.
• Zoom out Table View by 20%: does what it says.
• Reset Zoom: Resets the zoom of the content of the Table View to 100%
• Replace: Searches the column for entries containing the search string

and replaces the search string with the replacement string. The search
string does not support wildcards.

• Filter: Hides all rows that do not have data matching the search string
in the selected column. To display all rows again, the filter button has
to be pressed again. If a cell is selected instead of a column, then the data of this
cell is used to preset the search string for filtering the column containing the
cell. The search string supports wildcards:
* replacing zero or more characters
? replacing exactly one character
; separating elements of a vector
Machining Knowledge Editor Training- Concepts

Table View
• Autofilter: Activating the AutoFilter adds a new row to the TableView
just below the top row with the column names. Clicking with the mouse
in one of the fields in this AutoFilter row shows a menu with all different values
in the column. Selecting one of the values will show only the rows with that
value and filter out all rows with other values. Upon deactivating the AutoFilter
the AutoFilter row is removed and the filters are reset, i.e. all rows are shown
again.

• Toggle Freeze rows/ Toggle Freeze columns: moves the selected rows/
columns to the first positions, where they will remain visible when
scrolling through the Table View. Pressing the button again will restore the nor-
mal display of the rows/columns.

• Hide rows / Unhide rows: Will hide the selected rows. Unhide rows
will show all hidden rows again.

• Hide columns / Unhide columns: Will hide the selected columns.
Unhide columns will show all hidden columns again.

Activity: Using some Table View commands
• Activate all Rules.
• In the ‘name’ column find the nodes starting with ‘Tap’ by using the filter

‘Tap*’
• Use the filter wildcards command on the ‘name’ column to display all rows that

have ‘S1H’ at the beginning, at the end, or somewhere in the string.
• Use the freeze/hide commands.
• Use the Autofilter command to filter on the OperationClass and the OutputFea-

tures column values.

Sorting cells

In the Table View the rows can be sorted by attribute by clicking on the name of the
column.

Editing cells

In the Table View the attributes of nodes can be edited. Cells are:

• white, if the value in the cell can be edited,
Machining Knowledge Editor Training V7.5- Concepts 15

Table View

16
• light gray, if the value in the cell is read-only,
• dark gray, if the attribute does not exist for the node.

The Table View displays both single value attributes (for example the ‘name’
attribute), and vector attributes (for example the ‘OutputFeatures’ and the ‘Product-
Materials’ attribute).

Several cells, either single value or vector values, in one column can be set to the
same value by:

• select one Cell having the value you want to copy, 10 in the example screenshot.
• select a corner of that Cell such that the cursor shape changes to a small rectan-

gular.
• drag that corner of the Cell over the other Cells

Several single value cells, not necessarily in one column, can be set to the same
value by:

• Select several cells
• Ctrl-click in one of the fields that you want to change
• Edit the value of the last selected cell and press Enter; the values of all selected

cells are changed to the new value.

Activity: Editing Cells
• Activate all Rules.
• In the Table View click on the ‘name’ column to order the data.
• Change the priority of all the TAPPING operations to 10 using the two

described methods.
Machining Knowledge Editor Training- Concepts

Rule View
Rule View
The Rule View shows the data of a selected Rule. This is shown in a set of tabs,
which are described later, and six Rule Definition Components. These are:

Name. Contains the name of the Rule.

OperationClass (oper.). Contains the class of the operation that is to be generated
based on this Rule. Pressing the F8 key in the field will pop-up a scrollable list with
operation classes. Select one item from the list, type the value manually, or use a
copy/paste sequence. The operation class and its parameters determine the motions
of the tool during the operation.

Note Display Names (also known as Nice Names) for operation classes are not
supported by the Machining Knowledge Editor. The class name will be shown.
This also applies for the feature classes and the tool classes.

The display color will change when a valid OperationClass is defined. This also
applies for the feature classes and the tool classes. The classes and related informa-
tion are defined in the customization belonging to the RuleLibrary. This is
explained in “Customization view” on page 37.

There is a special class DummyOperation that can be use to change one feature
type into another feature type. Rules of this class have no tool class.

Priority. Contains a numerical value which determines the relative priority of the
Rule, compared with other Rules producing the same More Worked Feature. The
priority defines which Rule will be tried first, when there are more Rules that can
machine the same feature. Generally, we give Rules that correspond to ‘cheap’
operations (like drill operations) a higher priority than Rules that correspond to
‘expensive’ operations (like reaming operations). This way we can be sure the sys-
tem will try cheap Rules first and when these cannot be applied, try the next more
expensive Rule etcetera.
Machining Knowledge Editor Training V7.5- Concepts 17

Rule View

18
OutputFeatures (mwf.). Contains the class of the Output Feature that is produced
by the operation when the Rule is applied. This corresponds to the shape of the fea-
ture at the end of the operation. Pressing the F8 key in the field will pop-up a scrol-
lable list with feature classes. Select one item from the list, type the value manually,
or use a copy/paste sequence. When the Rule produces multiple features, they are
separated by commas.

InputFeatures (lwf.). Contains the class of the Input Feature that is expected by
the operation before the Rule is applied. This corresponds to the shape of the fea-
ture at the beginning of the operation. Pressing the F8 key in the field will pop-up a
scrollable list with feature classes. Select one item from the list, type the value man-
ually, or use a copy/paste sequence. When the Rule consumes multiple features,
they are separated by commas.

Resources (tool.). Contains the class of the tool that is used by the operation when
the Rule is applied. Pressing the F8 key in the field will pop-up a scrollable list with
tool classes. Select one item from the list, type the value manually, or use a copy/
paste sequence.

When you locate the mouse pointer in any of the above fields you get a short help
text.

In addition to the six Rule Definition Components, there are seven Tabs containing
more detailed aspects of the Rule Definition. These are described in the following
sections.

Conditions Tab

This tab shows the conditions pertaining to the Rule. Conditions are used to
describe specifics of the Rule, like when a Rule can be applied, which specific tool
should be selected, operation parameters etc. All conditions are interpreted as logi-
cal expressions and must be true. If one or more conditions is false, the Rule will be
rejected.
Machining Knowledge Editor Training- Concepts

Rule View
The conditions are described in an easy, Visual Basic style, text based editing envi-
ronment. This allows for free text editing (manual typing, delete, insert, copy, paste,
etc.) with support for standard windows shortcuts:

 For more details please refer to “Conditions concept” on page 22.

Constants Tab
This tab shows the constants that can be used within conditions to improve consis-
tency and readability. Constants can be used instead of hard-coded values in
expressions. See “Constants concept” on page 30.

Materials Tab
This tab shows the list of materials that are defined as part materials within NX. A
Rule can be made valid for selected materials. By checking the ‘All Materials’
check box, a Rule will be valid for any material, also for materials that will be
added in the future.

TABLE 1. Shortcuts for condition editing

Ctrl + A Select all text.
Ctrl + X Cut selected item.
Ctrl + C Copy selected item.
Ctrl + V Paste
Home Goes to beginning of current line.
Ctrl + Home Goes to beginning of document
End Goes to end of current line.
Ctrl + End Goes to end of document.
Shift + Home Highlights from current position to beginning of line
Shift + End Highlights from current position to end of line
Ctrl + Left arrow Moves one word to the left at a time
Ctrl + Right arrow Moves one word to the right at a time.
Machining Knowledge Editor Training V7.5- Concepts 19

Rule View

20
Machines Tab
This tab shows the list of machines that are defined within NX. A Rule can be made
valid for selected machines. By checking the ‘All Machines’ check box, a Rule will
be valid for any machine, also for those that will be added in the future.

Explanations Tab
Contains a free textual explanation of the Rule.

Image Tab
You can add a picture to the Rule. The image can have as format .jpeg or .jpg. Use
the command Add Image... that is available in the popup menu of the Image tab.

The picture appears in the Image Tab.

Add-on Tab
This Tab is new in NX 7.5. It enables the creation and editing of what we have
called “Add-ons”. Depending on the Rule’s Operation Class, different types of Rule
Add-ons can be defined.

Examples of Add-on Object Types for a Drill Rule are:

• Cycle - enables definition of the cycle type and its specific parameters
• Start of Path Events - like Approach Markers, opstop and many more
• End of Path Events -
• Knowledge Fusion (KF) - all parameters of the Rule’s Operation Class can be

defined via KF if desired.
Machining Knowledge Editor Training- Concepts

Rule View
Example of Add-on-Types for a Groove_OD Rule for turning is:

• Geometry Parent, class Containment (is mandatory)

Example of Add-on-Types for an Internal_Trim Rule for Wire EDM is:

• Geometry Parent, class Wedm_Geom (is mandatory)

Examples of Add-on-Types for a Cavity_Mill Rule are:

• Geometry Parent, class Mill_Area
• CutLevel, class ZlevelBase
• NcmLocalEngage, class EngageRetract_Default

Examples of Add-on-Types for a Thread_Milling Rule are:

• Geometry Parent, class Hole_Boss (is mandatory)
Machining Knowledge Editor Training V7.5- Concepts 21

Conditions concept

22
Conditions concept
A condition is a logical expression which can evaluate to TRUE or FALSE.

There are four distinct categories of Conditions:

• ‘Application Criteria” see page 22.
• ‘Tool Attributes” see page 24.
• ‘Less Worked Feature Attributes” see page 26.
• ‘Operation Attributes” see page 27.

Although NX does not “know” these categories, it is good to keep them in mind
and organize them into these four categories.

Application Criteria

Application criteria state when a Rule may be applied. In general, application crite-
ria are related to the size and quality of the More Worked Feature. Examples are:

• The roughnesses that can be achieved: e.g. drilling is only allowed until a cer-
tain roughness, otherwise reaming/boring should be used.

• The size tolerances that can be achieved: e.g. drilling is only allowed until a cer-
tain diameter tolerance, otherwise boring or reaming should be used.

• The shape of the feature: e.g. drilling with a straight drill will finish the shape
only when there are no chamfers.

• The size of the feature: e.g. drilling is only allowed when the feature is not too
deep or too large, otherwise another operation type should be used.

A Rule can only be applied to a feature when all its application criteria are TRUE.
When the expression evaluates to FALSE, evidently the Rule may NOT be applied.

An example of an application criterion for using a twist drill is
:

Machining Knowledge Editor Training- Concepts

Conditions concept
REM Application Criteria
mwf.DEPTH / mwf.DIAMETER_1 < 6
$$ Feature is too deep for DRILL cycle

Each line in this example has a different function. The first line starting with
‘REM’ is considered as remark and does not have any effect on the behavior of the
program. The programmer can use remarks to include short explanations or obser-
vations. It is advised to add remarks so others can understand the behavior of the
Rule and the reason for the conditions. There can be several lines of remarks fol-
lowing each other, but each line needs to start with ‘REM ’.

The second line
mwf.DEPTH / mwf.DIAMETER_1 < 6
is the actual condition. In this case defining that the DEPTH attribute of the mwf
(More Worked Feature) should be smaller than 6 times the DIAMETER_1 of the
mwf. When applied to a manufacturing feature, with its actual parameter values for
DEPTH and DIAMETER, this condition is false, the Rule will be rejected and the
system will continue evaluating the next Rule.

The third line starting with $$ defines the message that will be output when the con-
dition is false and thus the rule is rejected. This message is part of the messages that
users will see if they want to analyze why a certain solution was found. As a conse-
quence, these messages should be clear enough for the users to be able to under-
stand why a Rule was not used. When the Rule is denied because of this condition,
the text prefixed with “$$” will be printed in the Information window (if displayed)
and to the MSAnalysis.lis file on the $TEMP directory.

In the above examples, DEPTH and DIAMETER_1 are attributes of
STEP1HOLE. In order to obtain a complete list of attributes you can use in
expressions, type “mwf” followed by a dot “.” and select one from the list.

When the editor recognizes valid entries, it will display them in a different color.
These colors are defined in the Preferences.xml that can be found in the
MACH\machining_knowledge_editor directory.

Another example of an application criterion is:
Machining Knowledge Editor Training V7.5- Concepts 23

Conditions concept

24
IT_class_ISO(mwf.DIAMETER_1, mwf.DIAMETER_1_UPPER,
mwf.DIAMETER_1_LOWER) >= 11
$$ Feature's tolerance class cannot be achieved with this Rule

In the IT-class system for tolerancing dimensions, a low value denotes a tighter tol-
erance than a high value. So if the IT class of an actual feature is 7, it is too tightly
toleranced to be drilled. Then this application criterion will evaluate to FALSE and
the Rule will not be applied.

In the above example,
IT_Class_ISO() is a function
delivering an integer number as
result. When placing the mouse
over the function text, a tool tip
will appear explaining the func-
tion, see left.

In order to obtain a complete list of functions you can use in expressions, press F8
and select one from the list.

Some other examples of rather common Application Criteria are:

mwf.SIDE_ROUGHNESS_1 > 12.5
$$ Features side roughness cannot be achieved
mwf.DIAMETER_1 < 63
$$ Feature's diameter is too large
mwf.DEPTH_TOP_CHAMFER > 0.01
$$ Feature must have a top chamfer

Tool Attributes

The Tool Query defines the size of the tool that will be used for the operation.
Examples are:
Machining Knowledge Editor Training- Concepts

Conditions concept
• The diameter of the tool should be corresponding to the diameter of the mwf:
e.g. the drill diameter should be smaller than the maximum toleranced size of
the mwf diameter but should be larger than the minimum toleranced size.

• The tool should be long enough: e.g. the length of the drill should be larger than
the depth of the hole.

A Rule will have one or more expressions to specify tool attributes like:

tool.Diameter >= mwf.DIAMETER_1 + mwf.DIAMETER_1_LOWER
tool.Diameter <= mwf.DIAMETER_1 + 0.5*(mwf.DIAMETER_1_UPPER +
mwf.DIAMETER_1_LOWER)
tool.FluteLength > mwf.DEPTH

The expressions above were entered using copy and paste, see screenshot below.

In the above example, Diameter, and FluteLength are attributes of
TWIST_DRILL. In order to obtain a complete list of attributes you can use in
expressions, type “tool” followed by a dot “.” and select one from the list.

The text printed, when one of these conditions evaluates to FALSE, says “Conflict in
one of the tool size specifications”. That would happen, for instance, if we had mis-
takenly entered something conflicting like:

tool.POINT_ANGLE = 120 AND tool.POINT_ANGLE = 118

Note The operator AND is equivalent to putting the expressions on separate lines.

A Rule should not be rejected based on conditions defining tool Attributes. When
the cutting tool of the class is not available, the Rule will not be applied and NX
will try the next Rule. In that case, the $$text will not be displayed.

NX will try to use the tool with the biggest Cutter Diameter that is still smaller than
the maximum as specified by the expressions. As a consequence, the lower limit
only needs to be defined when it is essential for a correct tool selection, like for drill
type operations. For milling operations a lower limit is most of the times not neces-
sary. For this to function, NX must know which attribute holds the size of the Cutter
Diameter. This is a trivial issue, but since the tool classification is free, it is neces-
sary to appoint one of the tool’s attributes to be the Cutter Diameter. This is done in
the Customization View with command Set as Cutter Diameter...
Machining Knowledge Editor Training V7.5- Concepts 25

Conditions concept

26
Tool Sort Order

Generally, more than one tool of the desired class satisfies the tool query. It is
important to avoid choosing a too long and therefore unstable tool. Tools are
ordered by their length. For this to function, NX must know which attribute holds
the size of the Cutter Length. This is a trivial issue, but since the tool classification
is free, it is necessary to appoint one of the tool’s attributes to be the Length. This is
done in the Customization View with command Set as Cutter Length.

Less Worked Feature Attributes

When defining Less Worked Feature attribute values we define the in-process
geometry. The screenshot above shows the drill point that exists before drilling the
hole.

If no Less Worked Feature is required, the class BLANK is used. This means the
operation does not need a defined starting geometry.

Note In general, there should be at least one operation with BLANK as LWF
for every MWF feature type. Otherwise there will be no complete solution
found for a specific feature type.

In order to calculate the dimensions we need to be familiar with the feature classes
and their attributes.

To specify the dimensions of the drill point (class POCKET_ROUND_TAPERED) we
need following expressions:

lwf.DIAMETER_1 = mwf.DIAMETER_1 * 0.5
lwf.DIAMETER_2 = 0
lwf.DEPTH = lwf.DIAMETER_1/2

In the above example, DIAMETER_1, DIAMETER_2 and DEPTH are attributes of
Less Worked Feature POCKET_ROUND_TAPERED. In order to obtain a
Machining Knowledge Editor Training- Concepts

Conditions concept
complete list of attributes you can use in expressions, type “lwf” followed by a dot
“.” and select one from the list.

When there is no expression for the LWF attribute, NX copies the corresponding
value from the MWF. This works only if the attribute names match exactly. So, if
the DEPTH of the feature does not change, you do not need to enter the expression:

lwf.DEPTH = mwf.DEPTH

Also, you do not need to enter expressions like:

lwf.X_POSITION = mwf.X_POSITION
lwf.Y_POSITION = mwf.Y_POSITION
lwf.Z_POSITION = mwf.Z_POSITION

When the LWF is of class BLANK, we do not care about the LWF class and hence
do not need to specify any LWF attributes.

For readability, it is good practice to have lwf attributes on the left side of the equa-
tion.

Operation Attributes

The last category of conditions specifies attributes of the Rule’s operation. Exam-
ples are:

• The operation should go deep enough
• What is the control point on the tool

Above a screenshot with some examples of assignments to operation attributes. In
order to obtain a complete list of attributes you can use in expressions, type “oper”
followed by a dot “.” and select one from the list.
Machining Knowledge Editor Training V7.5- Concepts 27

Expression syntax | Functions

28
Expression syntax | Functions
This section gives a short overview of the expression syntax including the operators
and functions that can be used within the expressions.

Note a - b + c is evaluated as a - (b + c). It is advised to use brackets for clarity
and correct evaluation.

Table 2—Operators
Operator Explanation

= equal

< smaller than

<= smaller than or equal

> greater than

>= greater than or equal

< > not equal

+ addition

- subtraction

* multiplication

/ division

^ power

AND logical

OR logical

NOT logical

(left parenthesis

) right parenthesis

IF THEN ELSE conditional expression
Machining Knowledge Editor Training- Concepts

Expression syntax | Functions
Functions
Press F8 while in the Conditions Tab to obtain a list of functions:

TABLE 3. Functions to be used in expressions

output function(argument) explanation

[degrees] ACOS (number) returns the arc cosine.

[degrees] ASIN (number) returns the arc sine.

[degrees] ATAN (number) returns the arc tangent.

[number] COS (degrees) returns the cosine.

[number] SIN (degrees) returns the sine.

[number] TAN (degrees) returns the tangent.

[integer] CEIL (number) returns the smallest integer >= input value.

[integer] CEIL_RANGE (number) The input value can be a range, bound sin-
gle or double sided.

IF (a<=number<=b) THEN CEIL((a+b)/2)

Otherwise same as CEIL(number)

[integer] FLOOR (number) returns the largest integer <= input value.

[integer] FLOOR_RANGE (number) Similar to CEIL_RANGE

[boolean] is_defined(arg) returns TRUE if arg is defined; FALSE other-
wise.
returns FALSE if arg does not exist;

arg can be of type real, integer or string;

[integer] IT_class_ISO(number ,
number,number)

Example:
IT_class(20,0.021,0) = 7

[double] roughness_value(string) returns the roughness value of an attribute

[boolean] on_same_axis(mwf1 ,
mwf2)

returns true if the two features are on the
same axis

[double] distance(mwf1 , mwf2) returns the distance between two features
Machining Knowledge Editor Training V7.5- Concepts 29

Constants concept

30
Constants concept
Constants are objects with a name, a type and a value. We use them in conditions
instead of ‘hard-coded’ values, for instance:

oper.Depth = mwf.DEPTH + constant.DEPTH_EXTEND

instead of

oper.Depth = mwf.DEPTH + 2

Using constants instead of hard-coded values eases the readability and maintain-
ability of expressions.

Another advantage of using constants is the possibility to vary the values for any
combination of machine / material. If there is no value specified then the default is
used.

Above screenshot shows a constant.Pre_Drill_Limit with a different value for
material ALUMINIUM.

A constant can be of datatype ‘double’, ‘integer’, or ‘string’.

Different constant values can be defined for metric and inch part files. Based on the
units used in the part file, NX will automatically select the correct values of the
constants.

• If you define a constant value in metric (mm) only then NX will calculate the
english (inch) value by division by 25.4.

• If you define a constant value in english (inch) only then NX will calculate the
metric (mm) value by multiplication with 25.4.

• If you define a value for both english (inch) and metric (mm) unit systems then
-however- these values will be used by NX.
Machining Knowledge Editor Training- Concepts

Constants concept
Scope of a Constant
Preferably we declare a Constant ‘globally’, that is on the RuleLibrary level, with
its default value and if applicable its values per machine / material combination.

We use the Constant locally in a Rule’s Conditions and when the value should be
different from the global value we can define the Constant locally at Rule level.

Constant Command Icons
• Opens a dialog window to declare a new Constant and its default value.
• Cuts selected Constant and saves it on the clipboard.
• Copies selected Constant and saves it on the clipboard.
• Paste from the Clipboard
• Delete selected Constant
• Edit selected Constant (alternative for double click)

These commands are also available in the pop-up menu of the list of constants.

Using Constants in Expressions

In order to obtain a complete list of Constants you can use in expressions, type
“constant” followed by a dot “.” and select one from the list.

It is possible to use a constant even before it is declared. However, the Check Valid-
ity command will stumble over this and you can declare afterwards.
Machining Knowledge Editor Training V7.5- Concepts 31

Finding Rules based on criteria

32
Finding Rules based on criteria
There are several ways of finding and searching within the Machining Knowledge
Editor. These options are described in the following section.

Find in all Rule Conditions
Use command Find in all Rule Conditions in the condition Tab or on the RuleLi-
brary, to activate (so they’re displayed in Table View) all Rules having the search
string.

Find/Replace

To search for any text in the conditions and replace that text. When at the end of the
Rule’s condition, the command asks if it should continue to search in the next Rule
unless the ‘Wrap around search’ is checked active.

Using TableView autofilter
• Use Table View to filter the RuleLi-

brary on any criteria, like Rules for
machining a feature of class
STEP1HOLE.
Machining Knowledge Editor Training- Concepts

Finding Rules based on criteria
Using TableView Filter Column
• You can search a selected column using the Wildcard search. For instance you

can find all activated Rules who’s name starts with Chamfer:

Activity: Searching the Rules
• Use the table view to find all Rules with the TAPPING OperationClass.
• Find all Rules that use the condition ‘tool.Diameter < mwf.DIAMETER_1’
Machining Knowledge Editor Training V7.5- Concepts 33

Testing the Rules

34
Testing the Rules

Check Validity
Once a Rule is complete, the Rule can be checked by compiling the Rule or some of
the conditions. Compilation of the Rule conditions can be done on different levels.
Typically this is done to test conditions on validity ‘on the fly’.

• Select one or more lines in the conditions Tab and execute Check Validity
(selection) from the pop-up menu.

• Select the Rule node in the RuleLibrary and execute Check Validity from the
pop-up menu.

If the compiler discovers mistakes these are indicated by bookmarks. Locate these
bookmarks and correct the mistakes with the help of the compiler’s error message.

Activity: Check Validity
• Select a Rule and check the validity of some of the conditions.
• Select several Rules and check the validity of the Rules.

Building
Before the Rule Library can be used, the RuleLibrary has to be compiled. The com-
mand Build on the RuleLibrary will create a dll (dynamically linked library) which
is used by command Create Feature Process.

Normally the build ends successfully and there will be a dll created in the same
directory as the library xml file. This dll contains the compiled and linked Rules.

If the build finishes with an error, the MachiningKnowledgeEditor.log contains all
error messages. This file is saved in the $TEMP directory.

Activity: Building the RuleLibrary
• Build the RuleLibrary
Machining Knowledge Editor Training- Concepts

Testing the Rules
Testing in NX with Create Feature Process

Once a library has been built, the Create Feature Process command in NX can be
used to test the Rules. This can be done by selecting features in the NX Manufac-
turing Feature Navigator and starting the Create Feature Process from the popup
menu.

Reading the Information window and the MSAnalysis.lis
After each execution of Create Feature Process there will be a report in the Infor-
mation window and in the MSAnalysis.lis file on the $TEMP directory.

At the beginning of the file, the used dll is mentioned, like:
Knowledge library: C:\Program Files\UGS\NX
7.5\mach\resource\machining_knowledge\machining_knowledge.dll

When a Rule is denied because of a condition, the text after that condition prefixed
with “$$” will be printed.

Activity: Testing the RuleLibrary
• Start NX
• Load a test model
• Switch to Manufacturing.
• In the Feature Navigator, recognize features with the Find Features command
• Start the Create Feature Process command on a feature.
Machining Knowledge Editor Training V7.5- Concepts 35

Rules for multiple More Worked Features

36
Rules for multiple More Worked Features
It is allowed, for feature mapping rules only, to have multiple mwf’s separated by
commas.

Attribute Rule.type [direct,composed,indirect] determines the applicability of the
Rule.

• direct

mwf OR mwf OR mwf

Attributes in conditions are prefixed with “mwf”. Since only attributes can be
used that are in all mwf classes there can be no confusion.

• composed

mwf AND mwf AND mwf

Attributes in conditions must be pre-fixed with mwf_1, mwf_2 etcetera.
This is not yet supported in for operation selection rules.
It is supported in NX6 for feature mapping rules.

• indirect

Rule will be filtered out in any case during Compute > Operations command.
Machining Knowledge Editor Training- Concepts

Customization view
Customization view
The customization defines which classes are available and which attributes can be
used. Once a RuleLibrary is loaded, the customization can be viewed by selecting
View > Customization from the main menu.

This opens the customization view consisting of a tree view on the left listing the
classes. On the right hand side you find an attribute view listing all attributes of the
selected class, and a relation which shows the relations of the selected class with
other objects in the customization.

In the relation view, for instance, we find that all operations under HoleMaking
have a 1:1 relation with the Cycle object which you can find back under the NXOb-
jects node.

The tree views contains:

• Features, Operations and Tools classes. For the Operation classes, field Con-
tainer Type holds the name of the operation template where the class is defined.

• Materials and Machines from the NX libraries.
Machining Knowledge Editor Training V7.5- Concepts 37

Customization view

38
 The attributes view shows, for each attribute in the selected class:

• Attribute: the name of the attribute as it is used in the MKE.
• Display Name: the path to the parameter in the NX Operation Dialogue. It helps

to find the purpose of the operation parameters.
• Type: the type of the attribute
• Enum Type: the type of enumerated defining the allowed values of the attribute.

Activity: Customization view
• Open the Customization view and explore the customization.

Making changes to the customization

Changing the customization is described in “Customization Files” on page 132.
Machining Knowledge Editor Training- Concepts

CHAPTER 2 How Operation Selection works
This chapter deals with the Operation Selection that was introduced in NX6. It
gives some background on how things work. NX CAM programmers do not neces-
sarily have to be aware of this.

What is Operation Selection?

Rule–based operation selection is a proven technology seamlessly integrated into
NX 6 that helps you automatically create operations such as milling, drilling and
tapping from a generic template. Since NX 7.5 it is also applicable to Turning and
Wire EDM operations.

It lets you select features such as holes, slots, and pockets from any source, includ-
ing features that are user defined, identified, recognized or tagged.

It applies best practice machining rules on the features while taking into account
any defined PMI.

Benefits of feature based Operation Selection are:

• Standardize on best practice machining knowledge. The software finds the best
solution for a machining task within a company’s environment.

• Save time with process automation.
Machining Knowledge Editor Training V7.5- How it works 39

Machining Knowledge Editor and NX

40
Machining Knowledge Editor and NX

There is a clear separation between the tool of the Subject Matter Expert, the
Machining Knowledge Editor (above the dashed line) and the NX Programmer.
Machining Knowledge Editor Training V7.5- How it works

Machining Knowledge Editor and NX
The Machining Knowledge Library dll is created using the MKE. NX can be con-
figured to use this dll. For details on the configuration, See “Customization Files”
on page 132.

Since, in NX 7.5, the dll is still created using a c-compiler, it is necessary to have a
c-compiler installed.
Machining Knowledge Editor Training V7.5- How it works 41

Examples of operation sequences

42
Examples of operation sequences

STEP1HOLE and STEP1HOLE_THREAD in 4 operations.

Observe that Spot_Drill and Drill_S1H and Chamfer_S1H are three elemental
operations that appear in the solution for both features. This is an essential concept:
Machining Knowledge Editor Training V7.5- How it works

Examples of operation sequences
elementary rules are defined only once and are applied whenever appropriate. This
sets aside the NX FBM solution to other systems or custom made solutions which
find solutions by definining the complete set of operations for every case that
needs to be automated. In NX FBM, a modification to a Rule will have effect in all
instances where the rule will be applied.
Machining Knowledge Editor Training V7.5- How it works 43

Finding a solution using elementary rules

44
Finding a solution using elementary rules
In this example we will follow the reasoning process that is followed when search-
ing for a solution for a feature of type STEP1HOLE with a diameter 12H7.

First the candidate rules will be selected. These are the rules that produce a feature
of type STEP1HOLE. By filtering the Table View on STEP1HOLE we can create
that list in the MKE. NX Operation Selection will create the same list internally.

Operation Selection will first try the candiate Rule with highest priority. We have
given the rules priorities such that the least expensive has the highest priority. In the
example this means that Drill_S1H is tried first. It cannot be applied because a
diameter tolerance of H7 is not achievable when using a twist drill.

That is one of the Rule’s application criteria. This road ends which is denoted by:
Machining Knowledge Editor Training V7.5- How it works

Finding a solution using elementary rules
Then the next expensive Rule, Drill_in_center_S1H is tried. Also this Rule will fail
for the same reason as Drill_S1H : a tolerance of H7 cannot be achieved with a
twist drill.
Machining Knowledge Editor Training V7.5- How it works 45

Finding a solution using elementary rules

46
We skip a few candiate Rules that are rejected and arrive at Ream_S1H. For this
Rule all conditions are true, and it is really applied which is denoted by a new node:
Machining Knowledge Editor Training V7.5- How it works

Finding a solution using elementary rules
The new node is an in-process feature of, again, type STEP1HOLE. The
Ream_S1H conditions will have loosened the tolerance on its diameter.

The in-process STEP1HOLE is the new target for the Operation Selection. And
what we have seen before happens again: the candidate list with Rules is tried in
order of priority, highest first.

We see that Drill_S1H is rejected because of a general application settings that
rejects drilling directly without centering first.

The second Rule is Drill_in_center_S1H. For this Rule all conditions are true, and
it is really applied which is denoted by a new node:
Machining Knowledge Editor Training V7.5- How it works 47

Finding a solution using elementary rules

48
The new node is an in-process feature of type POCKET_ROUND_TAPERED.

The in-process POCKET_ROUND_TAPERED is the new target for the Operation
Selection. And what we have seen before happens again: the candidate list with
Rules is tried in order of priority, highest first.

The applied Rule is Spot_Drill. For this Rule all conditions are true, and it is really
applied which is denoted by a new node:

The input feature of Spot_Drill is of type BLANK.

The Operation Selection has successfully found a suitable set of rules to completely
machine this feature.

The resulting process in this simplified example is : Spot_Drill => Drill => Ream.

NX will now create the operations in the Operation Navigator.

As you have surely noticed, the result is found in the reversed order, reasoning
backward from the final feature to the blank feature. Please take a few moments to
consider the human approach in finding such a solution. Do we solve this sort of
problems much different ?

Information Window
On your %temp% directory you will find a file MSAnalysis.lis. It has the analysis
of the reasoning process including candidate Rules that were rejected.

For a full understanding of how the solution came about, this file is essential.
Machining Knowledge Editor Training V7.5- How it works

Finding a solution using elementary rules
With File > Utilities > Customer Defaults...you can activate the check box “Display
Information...etc” to have the file popping up after each Create Feature Process...
Machining Knowledge Editor Training V7.5- How it works 49

Finding a solution using elementary rules

50
 Machining Knowledge Editor Training V7.5- How it works

CHAPTER 3 Machining Knowledge Editor
Exercises Part 1: Hole Making
Before proceeding, please make sure you have completed reading “Machining
Knowledge Editor Concepts”.

In this chapter you find exercises to create a number of example MachiningRules:

• Drill
• Tap
• Ream
• Drill-up
• Thread Mill (to be done)

After completing these exercises you are well equiped to ‘translate’ your com-
pany’s best manufacturing practices into MachiningRules that can be used by NX.

The exercises provide detailed instructions. It should be possible to follow this
training off-line, self-paced.

Each major subject has a time estimation to complete. In total these add up to
almost 12 hours.
Machining Knowledge Editor Training 51

Creating a new RuleLibrary file

52
Creating a new RuleLibrary file
10 minutes

The Rule Library file is an xml source file containing

• MachiningRules
• FeatureRecognitionRules
• MappingRules

We will focus on MachiningRu-
les in this part of the Tutorial.

There are two options to create a new RuleLibrary file:

1. Copy an existing RuleLibrary file. Advised when your new MachiningRuleLi-
brary will have a lot in common with the old MachiningRuleLibrary. This is for
example when you are going to add extra MachiningRules to an existing
MachiningRuleLibrary.

2. Create a new RuleLibrary file from scratch.

Copying an existing RuleLibrary file

This can be done in the following steps:

• Go to the UGII_CAM_MACHINING_KNOWLEDGE_DIR configuration
directory.

• Copy the configuration file that is linked to the existing RuleLibrary.
• Rename the copy.
• Edit the copy of the configuration file by assigning a new library name to the

MACHINING_KNOWLEDGE_LIBRARY entry.
• Go to the configuration directory. Depending on the installation this is either the

UGII_CAM_CONFIG_DIR directory or the UGII_CAM_CUSTOM_DIR
directory.

• Copy the configuration file that is linked to the existing RuleLibrary.
• Rename the copy.
• Edit the copy of the configuration file. Defining the

MACHINING_KNOWLEDGE entry to point to the new file that was created in
the UGII_CAM_MACHINING_KNOWLEDGE_DIR configuration directory.

• Start the Machining Knowledge Editor.
Machining Knowledge Editor Training

Creating a new RuleLibrary file
• In the main menu select View > Options.
• Check the ‘Update Upon Load’ box in the ‘Customization’ box. Close the dia-

log with the ‘OK’ button.
• Open the existing RuleLibrary file. When the ‘NX Configuration Files’ dialog

appears, select the .dat file that you created and press the OK button.
• Save the file with the new library name using the File > Save As command.

Creating a new RuleLibrary file.

This requires the following steps:

• Go to the UGII_CAM_MACHINING_KNOWLEDGE_DIR configuration
directory.

• Copy an existing configuration file.
• Rename the copy.
• Edit the copy of the configuration file. Assign a new library name to the

MACHINING_KNOWLEDGE_LIBRARY entry.
• Go to the configuration directory. Depending on the installation this is either the

UGII_CAM_CONFIG_DIR directory or the UGII_CAM_CUSTOM_DIR
directory.

• Copy the configuration file that pointed to the original configuration file in the
UGII_CAM_MACHINING_KNOWLEDGE_DIR.

• Rename the copy.
• Edit the copy of the configuration file by defining as the

MACHINING_KNOWLEDGE entry to point to the new file that was created in
the UGII_CAM_MACHINING_KNOWLEDGE_DIR configuration directory.

• Start the Machining Knowledge Editor.
• Choose File >New.
• In the NX Configuration Files dialog box, from the Configuration Folders list,

select the location for the configuration file:
- If you use a standard NX configuration, select UGII_CAM_CONFIG_DIR.
- If you have custom configurations, select UGII_CAM_CUSTOM_DIR.
- Or you can use Browse to select a configuration file from anywhere on the file
system.

• From the Configuration Files list, select the file you copied and renamed.
Machining Knowledge Editor Training 53

Creating a new RuleLibrary file

54
• Select the unit system and click OK.
• Save the file with a new name using the File > Save As command.

As we will start from scratch we need to create a new RuleLibrary file.

Activity: Creating a new RuleLibrary file
• Create a file ‘my_feature_machining.dat’ on the UGII_CAM_CONFIG_DIR

pointing to MyRules.dat.
• Create a file ‘MyRules.dat’ on the

UGII_CAM_MACHINING_KNOWLEDGE_DIR pointing to MyRules.
• Launch the MKE from the Start menu > UGS NX 7.5 > Manufacturing Tools >

Machining Knowledge Editor.
• Create a new RuleLibrary with File > New.
• Use ‘my_feature_machining.dat’ from the UGII_CAM_CONFIG_DIR.
• Save the initial source file as MyRules.xml

Activity: Setting the Cutter Diameter and Cutter Length

Since we are working on a new source file, we must appoint one of each tool’s
attributes to be the Cutter Diameter.

• Open the Customization View by selecting View > Customization from the main
menu.

• Expand the Tools tree.
• Right-click TWIST_DRILL in the tree and select Set as Cutter Diameter
• Select the attribute ‘Diameter’ and press the > arrow to move it to the ‘Group

by’ box.
• Press OK.
• Repeat this for classes TAP , CHUCKING_REAMER and BORE.
• Repeat with Set as Cutter Length....
Machining Knowledge Editor Training

Defining a first Rule
Defining a first Rule

What this example intends to explain
• The basics of creating a single Machiningrule
• How to Build the MachiningRuleLibrary
• How to test the MachiningRule

All conditions for this MachiningRule are presented here. Please keep in mind that
these are just examples, as is the MachiningRule itself. Especially conditions of cat-
egory “Application Criteria” are always customer specific.

60 minutes.

Explanatory picture

We start by defining a MachiningRule which describes how to drill a straight hole
in full material using a common drill. When creating a new MachiningRule, we
have to define the following items:

• The More Worked Feature class, describing the shape of the end geometry.
• The Less Worked Feature class, describing the shape of the starting geometry.
• The cutting tool class.
• The operation class describing the machining strategy.

In our example, this maps to the following:

• More Worked Feature: a straight through hole corresponds to the feature class
‘STEP1HOLE’.

• Less Worked Feature: when starting from full material this corresponds to the
feature class ‘BLANK’.
Machining Knowledge Editor Training 55

Defining a first Rule

56
• Tool: the common drill corresponds to the ‘TWIST_DRILL’ cutting tool class.
• Operation: the drill motion is defined by the ‘DRILLING’ strategy.

Activity: Define a MachiningRule for Drilling a Step1Hole
• Activate the Machining Knowledge tab in the TreeView and expand the tree.
• Move the mouse over ‘MachiningRuleLibrary’, right-click and choose New...

from the menu.
• Check class MachiningRule and leave the amount to 1.
• Expand ‘MachiningRuleLibrary’ by clicking the + sign and select Machinin-

gRule*.
• Rename MachiningRule* to Drill_STEP1HOLE_Direct. You can either do this

in the Name field or by pressing F2 on the node name in the Tree.
• Press F8 in the OperationClass field and select DRILLING from the list.
• Press F8 in the More Worked Features field and select STEP1HOLE from the

list.
• Press F8 in the Less Worked Features field and select BLANK from the list.
• Press F8 in the Tool field and select TWIST_DRILL from the list
• Set the Priority = 3.

Conditions
By creating the MachiningRule, we only defined that you can drill a straight hole
with a drill. But we did not yet define any such details as:

• when we want to use this MachiningRule,
• what size of tool do we want to use,
• or how deep we want to drill.

As a result, the system will use this operation for any hole independent of size or
quality, and will select any drill without regard of the size. In order to create a use-
ful MachiningRule, this information needs to be added. This is done by defining
conditions for the MachiningRule. In general, the conditions can be grouped into 4
categories:

• “(1) Application Criteria” describing when the MachiningRule is allowed.
• “(2) Tool attributes” describing the details of the tool.
Machining Knowledge Editor Training

Defining a first Rule
• “(3) Less Worked Feature attributes” describing the details of the starting geom-
etry.

• “(4) Operation Attributes” describing the details of the operation.

The next sections will detail these conditions.

(1) Application Criteria

Application criteria define when a MachiningRule is allowed. In general, these con-
ditions are related to the size and quality of the More Worked Feature. Examples
are:

• The roughnesses that can be achieved: e.g. drilling is only allowed until a cer-
tain roughness, otherwise reaming/boring should be used.

• The size tolerances that can be achieved: e.g. drilling is only allowed until a cer-
tain diameter tolerance, otherwise boring or reaming should be used.

• The shape of the feature: e.g. drilling with a straight drill will finish the shape
only when there are no chamfers.

• The size of the feature: e.g. drilling is only allowed when the feature is not too
deep or too large, otherwise another operation type should be used.

Conditions are defined as text in the Conditions tab of the Machining Knowledge
Editor. An example of a condition is the following group of lines:

REM This condition checks for the achievable side roughness
roughness_value(mwf.SIDE_ROUGHNESS_1) >= 1.6
$$$$ Cannot achieve roughness on side surface

Each line in this example has a different function. The first line starting with
‘REM’ is considered as remark and do not have any effect on the behavior of the
program. The programmer can use remarks to include short explanations or obser-
vations. It is advised to add remarks so others can understand the behavior of the
MachiningRule and the reason for the conditions. There can be several lines of
remarks following each other, but each line needs to start with ‘REM ’.

The second line

roughness_value(mwf.SIDE_ROUGHNESS_1) >= 1.6

is the actual condition defining in this case that the SIDE_ROUGHNESS_1
attribute of the mwf (More Worked Feature) should be larger or equal than 1.6. The
Machining Knowledge Editor Training 57

Defining a first Rule

58
MachiningRule is allowed if the condition is true. In this example, the Machinin-
gRule will be allowed if the SIDE_ROUGHNESS_1 = 1.6 or larger but will not be
allowed if SIDE_ROUGHNESS_1 = 1.5. If a condition is false, the whole Machin-
ingRule will be invalid and the system will continue with evaluating the next
MachiningRule.

The third line starting with $$ defines the message that will be displayed when the
previous condition is false. This message is part of the messages that users will see
if they want to analyze why a certain solution was found. Therefore these messages
should be clear enough for the users to understand why a MachiningRule was not
used.

Another example of an application criteria condition is:

mwf.DIAMETER_1 <= 25
$$ Diameter_1 is too big to drill at once

(2) Tool attributes

Tool attributes criteria define the shape of the tool that will be used for the opera-
tion. Examples are:

• The diameter of the tool should be corresponding to the diameter of the mwf:
e.g. the drill diameter should be smaller than the maximum toleranced size of
the mwf diameter but should be larger than the minimum toleranced size.

• The tool should be long enough: e.g. the length of the drill should be larger than
the depth of the hole.

This corresponds to criteria like:

tool.Diameter >= mwf.DIAMETER_1 + mwf.DIAMETER_1_LOWER

tool.Diameter <= mwf.DIAMETER_1 + mwf.DIAMETER_1_UPPER

tool.FluteLength > mwf.DEPTH + constant.Thru_Hole_Clearance

(3) Less Worked Feature attributes

When defining Less Worked Feature attribute values we define the in-process
geometry. Since we start drilling from blank, which means we do not bother about
the starting geometry, nothing needs to be specified here.
Machining Knowledge Editor Training

Defining a first Rule
(4) Operation Attributes

The last category of conditions specifies attributes of the MachiningRule’s opera-
tion. Examples are:

• The operation should be deep enough: e.g. the depth of the drill motion should
be equal to the depth of the mwf feature, or in case of a through hole should be
larger than the depth of the hole.

• The tool diameter can be larger than the modeled diameter, as long as it stays
within the tolerance range.

oper.Maximum_Depth_Distance = mwf.DEPTH +
constant.Thru_Hole_Clearance

oper.Through_Clearance = constant.Thru_Hole_Clearance

oper.Allow_Oversize_Tool = "true"

oper.Oversize_Tool_Percent = 100.0 * mwf.DIAMETER_1_UPPER /
mwf.DIAMETER_1

Output Load Tool. When you activate this option, the system outputs a LOAD or
TURRET command in the CLSF file, even if the tool has not changed. This option
can be defined as an operation parameter.

oper.Output_load_tool_Status ="true"

Activity: Define Conditions for Drilling a Step1Hole
• Click the Conditions Tab of MachiningRule Drill_STEP1HOLE_Direct
• Create or Copy the conditions from the previous sections into the conditions

area. Add the REM in front of the remarks. You can copy from a PDF document
if you choose Tools > Basic > Select in the Adobe Reader.
Machining Knowledge Editor Training 59

Defining a first Rule

60
• Move the mouse into the conditions area, click MB3 and choose Compile (selec-
tion)

• The result should look as depicted above. The lines containing an undefined
Constant are bookmarked.

Constants
The only constant used in the Conditions, Thru_Hole_Clearance, should be
declared and have a default value. It is good practice to declare a constant on the
MachiningRuleLibrary level, so its default value is shared by all MachiningRules
in the MachiningRuleLibrary.

Activity: Defining a Constant
• Select ‘MachiningRuleLibrary’ and click the Constants Tab.
• Define a new constant, either by clicking MB3 > New in the constant area or by

clicking the New icon.
• Define as Name = Thru_Hole_Clearance and as Default Value = 3.
• OK in the Options Dialog window.
• In the Machine/Material matrix, define a value = 4 mm for when the product

material is CARBON_STEEL.
Machining Knowledge Editor Training

Defining a first Rule
• In the tree, select node “Drill_STEP1HOLE_Direct”, right-click and choose
Compile.

• There should be no more compiler errors now.

Materials and Machines

Activity: Select for which Materials and Machines the MachiningRule is
valid
• Select “Drill_STEP1HOLE_Direct” and click the Materials tab.
• Unselect All Materials and select only “ALUMINIUM”.
• Click on the Machines tab.
• Unselect All Machines and mark only some of them.
• Undo your previous changes by checking “All Materials” as well as “All

Machines”.

Activity: Learn to use the explanation field
• Click the Explanation tab
• Enter a clear textual explanation of this MachiningRule. Be sure it will be

understandable for another person.
• Ask your tutor to review your explanation.

Activity: Adding an Image file to a MachiningRule
• Click the Image tab
• From the popup menu select Add Image....
• On the Training CD, locate file \training_data\Machining Knowledge Edi-

tor\Drill_STEP1HOLE_Direct.JPG and press OK.

Building the MachiningRuleLibrary
The MachiningRuleLibrary ‘contains only one MachiningRule up to now and that’s
enough to do a first test. Before we can test we must build the MachiningRuleLi-
brary.
Machining Knowledge Editor Training 61

Defining a first Rule

62
Activity: Building the MachiningRuleLibrary
• Choose File > Build
• This command will create a file MyRules.dll on the same location as the source

file MyRules.xml

Testing the MachiningRule
In order to test the MachiningRule we must have feature instances. In real Machin-
ingRuleLibrary development projects it’s crucial to collect ‘families’ of feature
instances in one reference product.

For testing the MachiningRuleLibrary we use the testmodel.prt .

Activity: Testing the MachiningRule
• Load the testmodel.prt in NX.
• Start the Manufacturing Application.
• Select the configuration that you created in the beginning of this chapter.
• Switch to the ‘Operation Navigator -Geometry’. Define the MCS and the

WORKPIECE.
• Switch to the Feature Navigator. Start the Find Features command.
• Recognize only the STEP1 feature

types.

• Use the top face of the product to
define the Machining Access
Direction.

• Press the Find Features command icon.

• Execute Create Feature Process... on the recognized features
Machining Knowledge Editor Training

Defining a first Rule
• Select the checkbox for Machinin-
gRuleLibrary.

• Leave the allocation to Geometry
objects at Automatic.

• Press OK
• The rule must have been applied

on 6 features. 3 Feature Geometry Groups each hold 2 features.
• Check the selected tools, 2 different drills are used.
• Verify the tool path of Drill_STEP1HOLE_Direct.

Detailing the MachiningRule with Add-ons
In these activities we will further

• “(1)Define the Cycle Type and Parameters” This is done by creating an Add-on
to the rule.

• “(2) Define a Start/End UDE.”
• “(3) Define Markers”

Activity: (1)Define the Cycle Type and Parameters
• Click the Add-ons Tab
• Click New Add-on
Machining Knowledge Editor Training 63

Defining a first Rule

64
• You can choose any name for the object, like dd in this example.

• The Type of the Add-on object is Cycle.
• Choose the class of Cycle, like Drill_Deep in this example.

In the expression area you can enter expressions by typing the name of the object
followed by a dot. You get a list of attributes that can be used in your expressions.
Machining Knowledge Editor Training

Defining a first Rule
In your expressions you can use more worked feature attributes (mwf.) and tool
attributes (tool.) to calculate the values of the cycle attributes. Also you can use
conditional constructions with IF THEN ELSE. Use of less worked features
attributes (lwf.) and operation attributes (oper.) is allowed but this seems not very
likely in practice.

• Define expressions for ‘dd’ as in screenshot above.

On a single MachiningRule you can define multiple Cycle Add-on objects as
shown below.

The system will create the first Cycle object of which all conditions are True. In this
example the criterion is the depth/diameter ratio of 3.

• Create a second Add-on named ‘bc’ with expressions as in screenshot above.

Activity: (2) Define a Start/End UDE.

If you define multiple UDE’s, the system will create all UDE objects of which all
conditions are True. This is different from Cycle type objects where only one object
will be created.
Machining Knowledge Editor Training 65

Defining a first Rule

66
To create a User Defined Event (UDE) you first create an Add-on object of type
UDE_Start_of_Path or UDE_End_of_Path. Choose a name and the class, like ude1
below.

In the expression area you type the name of the Add-on Object followed by a dot.
Then you can choose from the list of available attributes.

UDEs can be conditional using IF THEN ELSE constructs in the expression.

The sequence of the UDEs in the 'Defined list' is the order in the list of
Add-ons. UDEs can be moved up and down using the arrow buttons.

• Create an Add-on like ‘ude1’ with expressions as in screenshots above.
Machining Knowledge Editor Training

Defining a second MachiningRule
Activity: (3) Define Markers

Markers will generally not
have any conditions.
Markers serve to tell the
system where to output an
event. For instance, the
Tool Change Marker
allows you to specify
where you want the sys-
tem to output the tool
change event. When you
insert this marker into the
list of Add-ons, the system
writes the commands
above the marker to the

CLSF before the LOAD or TURRET command, and it writes the commands below
the marker to the CLSF after the LOAD or TURRET command.

• Create a few markers like in this screenshot:

Defining a second MachiningRule

What this example intends to explain
We will define a MachiningRule to tap a STEP1HOLE_THREAD by cutting
the thread. This will help to explain two important things:

1. In addition to the previous example, you learn the basics of in-process geometry
by specifying Less Worked Feature attribute values.

2. Tapping a feature will rarely be the only operation. There will usually be a
drillling operation before. And we will see that Drill_STEP1HOLE_Direct,
which we defined earlier, can do that job too. We only need to define the Tap-
ping MachiningRule.
Machining Knowledge Editor Training 67

Defining a second MachiningRule

68
Note The drilling and tapping could be combined into a single tool, yes, but let’s
assume our company does not have these tools so they’re not in our customization.
Note The instructions for defining the MachiningRule will be less detailed now.

30 minutes.

Explanatory picture

Conditions

Application Criteria

For now we do not define any Application Criteria. We always want to use this
MachiningRule whenever a thread has been defined in the model.

Tool attributes

Since machine taps are usually standard tools from a catalogue, it is enough we
specify just the selection criteria to select the correct tool. Most importantly these
are the diameter, pitch and length.

tool.Diameter = mwf.THREAD_MAJOR_DIAMETER

tool.Pitch = mwf.THREAD_PITCH

tool.FluteLength > CEIL(mwf.THREAD_LENGTH)

The function CEIL gives us the smallest whole number that is larger then its argu-
ment.

Less Worked Feature attributes
Machining Knowledge Editor Training

Defining a second MachiningRule
We need to define the diameter of the less worked feature to match the core of the
threaded hole. This is done with the following conditions:

REMARK The core diameter is usually calculated according to a simple formula:

lwf.DIAMETER_1 = mwf.THREAD_TAPPED_DRILL_SIZE

lwf.DIAMETER_1_UPPER = 0

lwf.DIAMETER_1_LOWER = mwf.DIAMETER_1_LOWER

Operation Attributes

REMARK the tapping tool should go as deep as the thread length.

oper.Maximum_Depth_Distance = mwf.THREAD_LENGTH

Constants
We do not make use of a constant parameter in this MachiningRule.

Materials and Machines
We will make the MachiningRule valid for Aluminum only. We make the Machin-
ingRule valid for all machine tool type names.

Explanation
Tapping by cutting is done whenever a thread feature has been defined.

Image
See “Adding an Image file to a MachiningRule” on page 61.

Activity: Tapping a Step1Hole_Thread
• Create the MachiningRule and change the name to

“Tap_STEP1HOLE_THREAD”.
• Define the MachiningRule definition components to match the explanatory pic-

ture.
• Create or Copy the above conditions into the conditions area.
• In the Materials tab, select ALUMINIUM.
Machining Knowledge Editor Training 69

Defining a ‘competing’ MachiningRule

70
• Provide an Explanation in your own words.
• Add an Image to the MachiningRule. There’s an image on the training CD for

this MachiningRule. Create one yourself if you have time.
• Check if the Cutter Diameter and Cutter Length are defined for the TAP tool

class in the customization. (Use command Set as Cutter Diameter/ Length...)

Activity: Build the MachiningRuleLibrary and test the tapping Rule
• Move the mouse over ‘MachiningRuleLibrary’, click MB3 and choose Build.
• Test the MachiningRules with Create Feature Process.
• Check the selected tools and operations
• Verify the tool paths

At this point it is important to understand that Rule Drill_STEP1HOLE_Direct is
used for machining a feature that is a ‘final’ manufacturing feature, as well as for an
in-process feature. The MachiningRule is the same in both cases.

Defining a ‘competing’ MachiningRule

What this example intends to explain
We will define a MachiningRule for reaming a STEP1HOLE.

In addition to the previous examples, you learn the basics of ‘competition’ between
two or more MachiningRules having the same More Worked Feature class. The
Reaming Rule you are going to create in this exercise is an alternative for Drilling
and can be seen as a ‘competitor’ for Drilling.

The competition between MachiningRules is controlled using the Machinin-
gRule.Priority together with the MachiningRule’s conditions.

The MachiningRule.Priority is a numerical value which determines the relative
priority of the MachiningRule, compared with other MachiningRules, producing
the same More Worked Feature. The priority defines which MachiningRule will be
tried first, when there are alternative MachiningRules to machine the same feature.
Generally, we recommend to give cheaper MachiningRules a higher priority than
Machining Knowledge Editor Training

Defining a ‘competing’ MachiningRule
expensive MachiningRules. This way we can be sure the system will try cheap
MachiningRules first and only when these cannot be applied (because of Applica-
tion Criteria) try the next more expensive MachiningRule etcetera. See “How Oper-
ation Selection works” on page 39.

30 minutes.

Explanatory picture

Conditions

Application Criteria

We will test on the side roughness of the STEP1HOLE, and on the diameter tol-
erance bandwidth.

REM Application Criteria

roughness_value(mwf.SIDE_ROUGHNESS_1) >= 0.8
$$ Feature has a too smooth surface for reaming.

IT_class_ISO(mwf.DIAMETER_1,mwf.DIAMETER_1_UPPER,mwf.DIAM
ETER_1_LOWER) >= 6
$$ IT class Diameter_1 cannot be achieved.

Tool attributes

tool.Diameter >= mwf.DIAMETER_1 + mwf.DIAMETER_1_LOWER

tool.Diameter <= mwf.DIAMETER_1 + mwf.DIAMETER_1_UPPER

tool.FluteLength > CEIL(mwf.DEPTH + constant.Thru_Hole_Clearance)
Machining Knowledge Editor Training 71

Defining a ‘competing’ MachiningRule

72
Less Worked Feature attributes

lwf.DIAMETER_1 >= mwf.DIAMETER_1-
constant.ALLOWANCE_REAM_MAX

lwf.DIAMETER_1 <= mwf.DIAMETER_1-
constant.ALLOWANCE_REAM_MIN

lwf.DIAMETER_1_UPPER = 0.2

lwf.DIAMETER_1_LOWER = -0.2

lwf.SIDE_ROUGHNESS_1 = “12.5”

Operation Attributes

oper.Maximum_Depth_Distance = mwf.DEPTH + constant.Thru_Hole_Clearance

oper.Through_Clearance = constant.Thru_Hole_Clearance

Constants
We introduced a new constant.ALLOWANCE_REAM_MAX in the Less
Worked Feature Attributes conditions above. So we must declare this one, with a
default value = 2.

Similarly, declare constant.ALLOWANCE_REAM_MIN with a default value =
1.

Materials and Machines
MachiningRule is valid for all Materials and all Machines.

Explanation
Please enter an explanation text in your own words.

Image
Also for this MachiningRule you can find a picture in the training CD.
Machining Knowledge Editor Training

Defining a ‘competing’ MachiningRule
Activity: Reaming a Step1Hole
• Copy Rule “Drill_STEP1HOLE_Direct” by dragging it onto its parent‘Machin-

ingRuleLibrary’.
• Change the MachiningRule definition components to match the explanatory pic-

ture.
• Since Reaming is more expensive than Drilling we should give Reaming a lower

priority. Give this MachiningRule a priority = 1 and verify this is lower than the
priority of Drill_STEP1HOLE_Direct.

• Check if the cutter diameter is defined for the CHUCKING_REAMER tool class
in the Customization view.

• Work on all Tabs, starting with Conditions, and enter the expressions provided
above.

• Replace the image and delete the Add-ons (all were copied).
• When finished, move the mouse over ‘MachiningRuleLibrary’, click MB3 and

choose Build.
• Test the rules on all features with Create Feature Process.(First delete all pre-

viously generated operations, tools and geometry groups.)
• Locate file MSAnalysis.lis on your %TEMP% directory and try to understand

how the reasoning process found a solution for this feature. Observe that
MachiningRule “Drill_STEP1HOLE_Direct” is rejected the first time because
it cannot achieve the required surface roughness.

Then Ream_STEP1HOLE is the next in the priority list and it is applied. The in-
process geometry is then made by “Drill_STEP1HOLE_Direct”.
Machining Knowledge Editor Training 73

Minimizing the number of different tools

74
Minimizing the number of different tools

What this example intends to explain

We will define a MachiningRule Drill_STEP1HOLE_Big for drilling up a big
STEP1HOLE with a Diameter larger than 25. Such STEP1HOLE needs to be
pre-drilled. The size of the pre-drill has to be within a range with a lower- and
upper boundary.

In addition to the previous examples, you learn the basics of working with ranges
for in-process geometry and the NX capability to choose the in-process dimensions
such that the total number of different tools is minimized. We will see that the in-
process dimension is chosen such that we can use a cutting tool that is already used
by another operation.

30 minutes.

Explanatory picture

Conditions
Starting with a copy of “Drill_STEP1HOLE_Direct”, only a few conditions need to
be changed, these are:

Application Criteria

mwf.DIAMETER_1 > 25
Machining Knowledge Editor Training

Minimizing the number of different tools
$$ Rejected because Diameter_1 is too small

Tool Attributes

No changes.

Less Worked Feature attributes

It is good practice for the in-process diameter to be within 20% and 40% of the fea-
ture diameter. So:

lwf.DIAMETER_1 >= 0.2 * mwf.DIAMETER_1
lwf.DIAMETER_1 <= 0.4 * mwf.DIAMETER_1

lwf.DIAMETER_1_UPPER = 0.2
lwf.DIAMETER_1_LOWER = -0.2

Operation Attributes

No changes.

Constants
No new constant used here. But if you want you can replace the 0.2 and 0.4 by Con-
stants.

Materials and Machines
Valid for all.

Explanation
Please enter a text in your own words.

The in-process diameter must be within 20% and 40% of the More Worked Feature
diameter.
For a mwf.DIAMETER_1 = 30 this means:

 6 <= lwf.DIAMETER_1 <= 12
Machining Knowledge Editor Training 75

Thread Milling

76
Image
Also here we provided a .jpg image on the CD.

Activity: Create MachiningRule for drilling a big hole
• Drag “Drill_STEP1HOLE_Direct” on its parent‘MachiningRuleLibrary’. This

will create a copy.
• Rename the copy to “Drill_STEP1HOLE_Big”.
• Change the Less Worked Feature to STEP1HOLE.
• Set the priority to 2
• Work on all Tabs, starting with Conditions, and enter the expressions provided

above. Replace the Image and delete the Add-ons that were copied.
• When finished, move the mouse over ‘MachiningRuleLibrary’, click MB3 and

choose Build.
• Test the rules with Create Feature Process.

Thread Milling
Thread Milling is new in NX 7.5

Training material is still under development.

Using functions

What this example intends to explain

We will define two MachiningRules: Drill_chamfered_STEP1HOLE for drilling
a STEP1HOLE with a chamfer starting from a spot drilled pocket, and
Spot_drill for drilling the spot drilled pocket.

In addition to the previous examples, you learn to use some functions available in
the Machining Knowledge Editor.
Machining Knowledge Editor Training

Using functions
30 minutes.

Explanatory picture

We first will define a new MachiningRule Drill_chamfered_STEP1HOLE for
drilling a STEP1HOLE with a chamfer starting from a spot drilled pocket. This
MachiningRule can be started as copy from the existing
Drill_STEP1HOLE_Direct. The main changes will be in the less worked feature,
which will be changed to a POCKET_ROUND_TAPERED and we will give the
rule a higher priority.

Conditions

Starting with a copy of “Drill_STEP1HOLE_Direct”, only a few conditions need
to be changed, these are:

Application Criteria

We need to add 2 additional conditions to check for the existance of a top chamfer:

mwf.DEPTH_TOP_CHAMFER > 0

$$ There is no top chamfer defined.

mwf.ANGLE_TOP_CHAMFER > 0

$$ Feature has no top chamfer angle.

Tool Attributes
Machining Knowledge Editor Training 77

Using functions

78
No changes in the copied MachiningRule.

Less Worked Feature attributes

We need to define the shape of the pocket_round_tapered. This shape depends on
the top chamfer parameters and can be described with:

lwf.DIAMETER_1 = mwf.DIAMETER_1 +
2*mwf.DEPTH_TOP_CHAMFER*TAN(mwf.ANGLE_TOP_CHAMFER)

lwf.DIAMETER_2 = 0

lwf.DEPTH=lwf.DIAMETER_1/2 * TAN(mwf.ANGLE_TOP_CHAMFER)

Operation Attributes

No changes.

Constants

No changes.

Materials and Machines
Valid for all.

Explanation
Please enter a text in your own words.

Image
None provided.

Activity: Create MachiningRule for drilling a chamfered hole
• Drag “Drill_STEP1HOLE_Direct” on ‘MachiningRuleLibrary’. This will cre-

ate a copy.
• Rename the copy to “Drill_Chamfered_STEP1HOLE”.
Machining Knowledge Editor Training

Using functions
• Change the Less Worked Feature to POCKET_ROUND_TAPERED.
• Set the priority to 4
• Work on all Tabs, starting with Conditions, and enter the expressions provided

above.

Explanatory picture

Next we define a new MachiningRule Spot_drill for drilling the
POCKET_ROUND_TAPERED. This requires a new MachiningRule with as
more worked feature a POCKET_ROUND_TAPERED feature, a less worked
feature BLANK, a tool SPOT_DRILL and an operation class
SPOT_DRILLING.

Conditions

All conditions need to be defined since we are not copying an existing rule.

Application Criteria

We will not need any application criteria as the operation should be used whenever
there is a POCKET_ROUND_TAPERED.

Tool Attributes

The tool should be large enough for the diameter and have the correct point angle.
This is defined with:

tool.Diameter > mwf.DIAMETER_1

tool.PointAngle = 2*ATAN(0.5*mwf.DIAMETER_1/mwf.DEPTH)
Machining Knowledge Editor Training 79

Using functions

80
Less Worked Feature attributes

The less worked feature is a BLANK feature. We do not need to define any condi-
tions.

Operation Attributes

No extra conditions, so we will use the template settings.

Constants

No constants needed.

Materials and Machines
Valid for all.

Explanation
Please enter a text in your own words.

Image
None provided.

Activity: Create MachiningRule for spot drilling
• Create a new Rule ‘Spot_drill’ according to the previous description.
• When finished, move the mouse over ‘MachiningRuleLibrary’, click MB3 and

choose Build.
• Test the rules with Create Feature Process.
Machining Knowledge Editor Training

Using TableView to query the MachiningRuleLibrary
Using TableView to query the
MachiningRuleLibrary

What this example intends to explain
We are able to search MachiningRules by filtering on the Rule Definition compo-
nents.

Estimated 10 minutes.

Activity: Searching MachiningRules with MWF = STEP1HOLE
• Select TableView configuration Knowledge > Rule
• Activate all Rules of your own Library
• Press TableView toolbar button Autofilter

• Select STEP1HOLE from the drop down list.

• Verify there are 3 MachiningRules with that output feature.
Machining Knowledge Editor Training 81

Using Find and Replace functions

82
Using Find and Replace functions
Estimated 30 minutes.

Activity: Using Find in all Rule Conditions
• Deactivate all nodes
• Press MB3 while the cursor is in the Conditions Tab of the first MachiningRule

of your Library.
• Execute Find in all Rule Conditions...
• Enter something as search string, like DIAMETER_2 and press OK.
• Verify if the activated Rule(s) have a condition on the search string.

Activity: Using Find/Replace
• Replace REM by REMARK and find out that both compile OK.

Additional stuff

What this example intends to explain
This exercise prepares us for ‘knowledge acquisition’ that is part of each customi-
zation project and further elaborated in “Machining Knowledge Customization
Project” on page 131.

Estimated 90 minutes.

In case there’s still time, create a set of Rules for machining a
POCKET_RECTANGULAR_STRAIGHT feature. In general, defining a RuleLi-
brary requires:

• identifying the feature types that should be covered
• defining possible operation sequences for each feature type
• defining the decision criteria to select between the sequences
• defining MachiningRules for each step in the sequence
Machining Knowledge Editor Training

Additional stuff
This analysis always starts by questioning the experts on common work practices.
During the process, iterations are often necessary as common work practices con-
tain decision criteria or sequences that are not always clearly and consistently
defined (‘I always do it that way’) and sometimes implicitly (‘Of course, you never
use the same tool for roughing and finishing’). This normally leads to problems
during testing and to the need of additional criteria to get the right sequences. The
task of the knowledge engineer is to identify possible problem areas and to ask for
additional information in these areas.

An example of the definition of a set of sequences can be the following (based on
the feature type POCKET_RECTANGULAR_STRAIGHT):

• Finishing is only necessary if one of the surfaces has a roughness < 6.3
• Only the surfaces with a roughness < 6.3 should be finished. This finishing

requires a stock of 0.5 mm.
• Bottom and side surfaces can only be finished together if the depth <= 5 mm
• If roughing requires more than two passes along the side surfaces, then rough-

ing should be split in to two operations: one with the largest possible mill
removing the bulk of the material, followed by a second operation removing the
remaining material in the corners.

Activity: Create a set of MachiningRules for
POCKET_RECTANGULAR_STRAIGHT features (1)
• Based on the description in the previous section, identify how many Machinin-

gRules are necessary.
• Analyze if the data is complete
• What should a test product look like?

In this specification there are already lots of unspecified items where additional
information is necessary, like:

• What operation types should be used?
• Which tool classes should be used?
• Can the same tool be used for roughing and finishing? If not: what is the differ-

ence between a roughing tool and a finishing tool?
• Are the specified limits general or specific for a certain material?
Machining Knowledge Editor Training 83

Additional stuff

84
• When only a section of the feature is finished, what is the required distance to
the other surfaces that are not going to be finished in the operation?

• When the operation is manufacturing the corners: can the tool diameter be equal
to the corner radius of the feature or should the tool diameter be smaller?

• When does roughing require more than two passes?

Activity: Create a set of MachiningRules for
POCKET_RECTANGULAR_STRAIGHT features (2)
• Define the MachiningRules. Use OperationClass=’CAVITY_MILL’ for rough-

ing operations and OperationClass=’FACE_MILLING_AREA’ for finishing
operations. Use as Resources=’END_MILL_NON_INDEXABLE’.

• Test the MachiningRules on a product covering all situations.
Machining Knowledge Editor Training

CHAPTER 4 Machining Features from opposite
directions
When both sides of a hole need chamfering

What this example intends to explain
Estimated 60 minutes.

It can be necessary to machine a feature from opposite directions, for instance when
chamfering both sides of a through hole. That requires an operation chamfering the
top of the feature and an operation chamfering the bottom of the feature. These
operations can come from opposite directions.

Currently, with the Machining Knowledge Editor, we cannot define the operation
direction. This is done implicitly through the vector attribute orientation_d of the
feature. Consequently, when a feature needs to be machined from two directions,
the feature should be split in two features each with their own (opposite) direction.
Once the feature has been split, the created features will be solved using normal
MachiningRules.
85

Machining Features from opposite directions

86
Creating a rule to split features
This section explains the definition of a
MachiningRule which splits a feature into
two features each with their own (opposite)
direction. This is described with the example
of chamfering a through hole from both sides.
In this case the feature will be split in two:

• A section which will be used to drill the
hole and to chamfer the top of the hole.

• A section which will be used to chamfer
the bottom of the hole.

Splitting the original feature in two sections is accomplished by defining a
MachiningRule in the knowledge editor with the following definition compo-
nents (see screenshot below):

• OperationClass: DummyOperation. This type of operation does not require a
tool and will not show up in the final operation sequence.

• OutputFeatures: the complete original feature. In this example the hole with
chamfers on both sides is recognized as a STEP1HOLE.

• InputFeatures: the different features in which the original feature is split. All
features should be separated by commas. In this example the top section is a
STEP1HOLE and the bottom section a POCKET_ROUND_TAPERED.
The sequence of classes is important for the conditions: the attributes of the first
InputFeature can be accessed with lwf_1., the attributes of the second with
lwf_2., etc.

• Resources: Should remain empty with a DummyOperation operation.
• Priority: If this rule should be considered as first operation then the priority

must necessarily be high.

When both sides of a hole need chamfering
Defining the conditions

The decision when to use this MachiningRule is at first sight simple: there has to
be a bottom chamfer, otherwise it is not necessary to chamfer from the back side of
the feature. This can be defined with the following Application Criteria conditions:

mwf.DEPTH_BOTTOM_CHAMFER_1 > 0
$$ This feature does not have a chamfer on the back side

mwf.ANGLE_BOTTOM_CHAMFER_1 > 0
$$ This method does not support rounded chamfers

The main portion of the conditions will be the definition of the InputFeatures. The
definition uses a notation using lwf_1, lwf_2, etc where the number is the position
of the feature in the InputFeatures field. In the example lwf_1 will be the
STEP1HOLE, lwf_2 is the POCKET_ROUND_TAPERED.

In the example, the position and orientation of the STEP1HOLE are the same as
the position and orientation of the original feature. As this operation has multiple
InputFeatures, the software will not automatically copy the attributes from Output-
Feature to InputFeature. Therefore all InputFeatures attributes have to be explicitly
defined. The position and orientation of the STEP1HOLE have to be defined
explicitly with the following conditions:

REM lwf top feature has the same position as mwf feature
lwf_1.X_POSITION = mwf.X_POSITION
lwf_1.Y_POSITION = mwf.Y_POSITION
lwf_1.Z_POSITION = mwf.Z_POSITION

REM lwf top feature has the same direction as mwf feature
lwf_1.X_ORIENTATION_D = mwf.X_ORIENTATION_D
lwf_1.Y_ORIENTATION_D = mwf.Y_ORIENTATION_D
lwf_1.Z_ORIENTATION_D = mwf.Z_ORIENTATION_D

Also the other attributes of the STEP1HOLE have to be defined as nothing is
copied automatically:

REM set the depth of the lwf top feature
lwf_1.DEPTH = mwf.DEPTH
lwf_1.DEPTH_LOWER = mwf.DEPTH_LOWER
lwf_1.DEPTH_UPPER = mwf.DEPTH_UPPER
lwf_1.DIAMETER_1 = mwf.DIAMETER_1
lwf_1.DIAMETER_1_LOWER = mwf.DIAMETER_1_LOWER
87

Machining Features from opposite directions

88
lwf_1.DIAMETER_1_UPPER = mwf.DIAMETER_1_UPPER
…….

The exception is the definition of the lower chamfer. The new feature should not
have a bottom chamfer. If it had, the reasoning engine would get in an infinite loop.
Not having a bottom chamfer is defined by:

REM remove the bottom chamfer from the lwf top feature
lwf_1.ANGLE_BOTTOM_CHAMFER_1 = 0
lwf_1.DEPTH_BOTTOM_CHAMFER_1 = 0
lwf_1.RADIUS_BOTTOM_CHAMFER_1 = 0

The position of the POCKET_ROUND_TAPERED is at the opposite side of
the original feature. This position is defined with the following conditions:

REM the position of the lwf bottom feature is on the opposite side of the mwf fea-
ture
lwf_2.X_POSITION = mwf.X_POSITION + mwf.DEPTH * mwf.X_ORIENTATION_D
lwf_2.Y_POSITION = mwf.Y_POSITION + mwf.DEPTH * mwf.Y_ORIENTATION_D
lwf_2.Z_POSITION = mwf.Z_POSITION + mwf.DEPTH * mwf.Z_ORIENTATION_D

The orientation of the POCKET_ROUND_TAPERED is opposite from the
original feature. This orientation is defined with the following conditions:

REM lwf bottom feature has the opposite direction as mwf feature
lwf_2.X_ORIENTATION_D = - mwf.X_ORIENTATION_D
lwf_2.Y_ORIENTATION_D = - mwf.Y_ORIENTATION_D
lwf_2.Z_ORIENTATION_D = - mwf.Z_ORIENTATION_D

Also the other attributes of the POCKET_ROUND_TAPERED have to be
defined:

REM define depth of lwf bottom feature
lwf_2.DEPTH = mwf.DEPTH_BOTTOM_CHAMFER_1 +
(mwf.DIAMETER_1 / (2 * TAN(mwf.ANGLE_BOTTOM_CHAMFER_1)))

REM define top diameter of lwf bottom feature
lwf_2.DIAMETER_1 = mwf.DIAMETER_1 + (2 *
mwf.DEPTH_BOTTOM_CHAMFER_1 *
TAN(mwf.ANGLE_BOTTOM_CHAMFER_1))

REM define bottom diameter of lwf bottom feature
lwf_2.DIAMETER_2 = 0

When both sides of a hole need chamfering
Activity: Creating a MachiningRule for splitting a STEP1HOLE feature
with back chamfer
• Create a MachiningRule with Rule definition components as described above.

Complete the conditions for all InputFeature attributes.
• File > Build... when you’re ready.

Testing the rule
You may have to design your own model for testing this rule. A simple block with a
thru hole that is chamfered on both ends will do. Create a manufacturing setup for
this part and perform Find Features...

The product has to have an MCS for every machining
direction. Each MCS should be defined with Tool Axis
= +Z of MCS. In this screenshot, two MCS’s have
been defined with opposite directions.

In case the dialog on the MCS does not show the Tool
Axis box as in picture below, you must use mb3
Object > Customize... on the MCS object and add
ToolAxis to the dialog.

Activity: Test the Rule for splitting a STEP1HOLE feature with back
chamfer
• Define the necessary MCS objects for the test model, as below.

89

Machining Features from opposite directions

90
• Run Create Feature Process...

• In the Location box, choose Geometry = Automatic.
The Automatic allocation to Geometry moves the operations under an MCS if they
match the MCS direction. The MCS’s are tried in a top-down order. Operations that
cannot be moved under MCS_1 are subsequently tried under MCS_2 etc.

• Press OK

The result for a feature that is
split looks like right picture.
(With operations generated.)

Note that the dummy operation
Split_back_Chamfer_S1H is not
a real operation and will there-
fore not appear in the Operation
Navigator.

Drilling a deep hole from opposite directions
Drilling a deep hole from opposite directions
Deep holes can be too deep to be drilled from a single direction. A solution can be
to drill from two directions. This section elaborates on that.

Adding a face attribute prior to Find Features...
You can manually add an attribute to a model face. This attribute and its value will
be picked up by command Find Features... and will appear as a feature attribute.

• Choose selection class Face

• Click MB3 on a model face and choose Properties.

• Enter the Title and Value fields as shown above and press Apply or OK.
• Execute command Find Features

and find back the face attribute as
a feature attribute.

Another convenient way of adding attributes to model faces and features is by fea-
ture tagging. See the NX help and command finder with keyword tag.
91

Machining Features from opposite directions

92
Testing the value of a Feature Attribute
We introduced a feature attribute MACHINE_TWO_SIDED, type String, with
value Yes or No.

This attribute and its value can be assigned to a model face prior to command Find
Features... or via tagging.

It can also be added automatically using a Knowledge Fusion function. See “Auto-
mating 2-sided machining using the KF functions added in NX6.0.3” on page 95.

The value of the attribute (Yes or No) can be tested by a dummy rule which splits
the feature when Yes. When No, the rule will be rejected and there will be no split-
ting.

Adding MACHINE_TWO_SIDED to the customization
When we want to test the attribute value in the MKE, of course the attribute must
be available. This is accomplished by adding it to the customization.
(MACHINE_TWO_SIDED is not a standard attribute of the features.)

Activity: Adding an Attribute to the Customization
• With MyRules.xml loaded in the MKE, choose View > Customization
• Drill down to STEP1HOLE

Drilling a deep hole from opposite directions
• In the attributes window, click MB3 and choose Add...
• Enter the Name and press OK.

• You see the custom attribute underlined and in a different color.

• Note that the attribute will be
inherited by all children of the
STEP1HOLE

• Save MyRules.xml

With the attribute available, we can test it in a MachiningRule.
93

Machining Features from opposite directions

94
Creating a rule to split a feature
This MachiningRule can be a copy of the Split_back_Chamfer_S1H we created
earlier.

However, we need to change a few things. The lwf features are both
STEP1HOLE. And in the conditions we need to have the following:

REM Application Criteria

is_defined(mwf.MACHINE_TWO_SIDED)

$$ Attribute MACHINE_TWO_SIDED has no value or does not exist on the fea-
ture

mwf.MACHINE_TWO_SIDED = "YES"

$$ Attribute MACHINE_TWO_SIDED exists with value other than YES.

REM Less Worked Feature Attributes

These conditions are a bit different too.

• Both STEP1HOLE features need to keep the same diameter as the original.
• The position of lwf_2 will be at the bottom and its orientation reversed.
• The depths will be half the original mwf depth.
• The top chamfer attributes of lwf_2 are the bottom_chamfer attributes of the

mwf.
• Both lwf_1 and lwf_2 must get MACHINE_TWO_SIDED = "NO " to prevent

another round of splitting.

Decision making through multiple MCS’s and Knowledge Fusion
Activity: Creating a rule to split a STEP1HOLE
• Copy Split_back_Chamfer_S1H and rename the copy to Split_S1H_into_2S1H
• In the Conditions Tab, remove existing application criteria and enter the appli-

cation criteria given above.
• Work out the LWF assignments as outlined above.
• When in doubt you can import the MachiningRule “Split_S1H_into_2S1H”

from the machining_knowledge.xml into your source file. (Use the Export/
Import eBOP functions)

Activity: Testing a rule to split a STEP1HOLE
• You can use the same steps as described in “Test the Rule for splitting a

STEP1HOLE feature with back chamfer” on page 89

The result for a feature that is
split looks like right picture.
(With operations generated.)

Note that the dummy operation
Split_back_Chamfer_S1H is not
a real operation and will there-
fore not appear in the Operation
Navigator.

Decision making through multiple MCS’s and
Knowledge Fusion

Automating 2-sided machining using the KF functions added in
NX6.0.3

The following KF functions were added to this purpose in NX 6.0.3:
95

Machining Features from opposite directions

96
ug_cam_askOrderedMcsNamesAndToolAxes() [ug_cam_func.dfa]

• This function retrieves an ordered list of pairs of MCS names and tool axes.
The tool axis of an MCS is based on the tool axis parameter, if the tool axis
parameter is ‘All axes’ or when the tool axis parameter is not available, like in
MCS’s of turning or wire EDM, the vector (0,0,0) is returned.

• Sample input:

• Sample output:
{ {“MCS_ALL_AXES”,Vector(0,0,0) },
 {“MCS_SETUP11”, Vector(0,0,-1) },
 {“MCS_SETUP12”, Vector(0,0,1)},
 {“MCS_SETUP2”, Vector(0,1,0) },
 {“MCS_WEDM”,Vector(0,0,0) },
 {“MCS_SPINDLE_TURN”,Vector(0,0,0) }

ug_fbm_postCreateFeaturesCustomFunction_MachineFeatures
FromTwoSides() [ug_cam_samples.dfa]

• This postCreateFeatures sample function demonstrates how you could decide if
a feature has to be machined from two sides. The function sets a

Decision making through multiple MCS’s and Knowledge Fusion
MACHINE_TWO_SIDES attribute, which can be used in the Machining Knowl-
edge to create a process accordingly.

• This sample function uses the new KF function
ug_cam_askOrderedMcsNamesAndToolAxes (see 1). This sample
only uses the tool axes information and the ordered MCS names are only printed
(see d).

Note Make sure that this function is renamed to
ug_fbm_postCreateFeaturesCustomFunction(), so it will be called
upon the OK button of the Find Features... dialog.

The sample code:
#+

-
Description:
 This sample function shows how to decide if a just recognized feature
 has to be machined from two sides and sets the MACHINE_TWO_SIDED attribute.

 Make sure you rename the function to

ug_fbm_postCreateFeaturesCustomFunction(),
 so it will be called on the OK button of the Find Features dialog.

-
#-
Defun: ug_fbm_postCreateFeaturesCustomFunction_MachineFeaturesFromTwoSides(
Instance $instance)
#Defun: ug_fbm_postCreateFeaturesCustomFunction(Instance $instance)
@{
 # Get the features to process
 $list_features << ug_fbm_askPostCreateFeatures();

 # Get the ordered MCS pairs
 $ordered_mcs_pairs << ug_cam_askOrderedMcsNamesAndToolAxes();

 # Collect the tool axes from the MCS pairs
 $ordered_mcs_axes << Loop
 {
 for $mcs_pair in $ordered_mcs_pairs;

 do printValue("MCS> " + First($mcs_pair) + " - " + ug_vectorToString(Second(
$mcs_pair)));

collect Second($mcs_pair);
 };

 $result << if (length($list_features) > 0) & (length($ordered_mcs_axes)
> 0) then
 Loop
 {
 # Process all features
97

Machining Features from opposite directions

98
 for $feature in $list_features;

 # Check if the feature needs to be machined from two sides
 for $split_feat is ug_cam_askMachineFromTwoSides($feature,

$ordered_mcs_axes);

 # Set the split feature attribute
 do if ($split_feat) then ug_fbm_AddfeatureAttribute($fea-

ture,"MACHINE_TWO_SIDED", "YES")
 else ug_fbm_AddfeatureAttribute($feature, "MACHINE_TWO_SIDED",

"NO");

 return is true;
 }
 else false;

 $result;
} Boolean;

The logic of ug_cam_askMachineFromTwoSides is also defined in
ug_cam_samples.dfa. It states that the attribute MACHINE_TWO_SIDED is set to
“YES” when the feature has an alternative machining direction and an MCS with
that alternative machining direction appears in the ordered list of MCS’s before the
main orientation. This is just a convention, so you must create the list of MCS’s
with this behaviour in mind.

Defun: ug_cam_askMachineFromTwoSides(Any $feature, List $tool_axes)

@{

Context information

$feat_name << ug_fbm_askFeatureName($feature);

Get the list of accessible feature vectors

$feat_normals << ug_cam_askAccessibleVectorsOfNcFeature($feature);

 # This example only supports two alternative feature directions, default is
no split

$do_split << if length($feat_normals) = 2 then

 @{

 $major_dir << First($feat_normals);

 $alt_dir << Last($feat_normals);

 printValue($feat_name + "> Major direction - " + ug_vectorToString(
$major_dir));

Decision making through multiple MCS’s and Knowledge Fusion
 printValue($feat_name + "> Alternative direction - " + ug_vectorToString(
$alt_dir));

 # First check if the alternative feature direction is available, if not do
not split

 if member($alt_dir, $tool_axes) & member($major_dir, $tool_axes) then

 @{

 $major_index << Position($major_dir, $tool_axes);

 $alt_index << Position($alt_dir, $tool_axes);

Check if the alternative feature direction is before the major feature direc-
tion,

if so split the feature otherwise do not split the feature

 if ($alt_index < $major_index) then

 true

else false;

 }

 else false;

}

else false;

 # Function result

 printValue($feat_name + "> Split feature = " + StringValue($do_split));

 $do_split;

} Boolean;
99

Machining Features from opposite directions

100
• Post_feature_recognition functions from the current online help:

Checking for tool availability
Another, perhaps more tricky, use of the DummyOperation type is when it can
help us to decide if we can machine a very deep thru hole from both sides. When

Checking for tool availability
the hole is very deep we can split it up in 2 holes. This only makes sense when we
know there is a tool long enough to machine at least half the depth. If no such tool
exists we do not need to split up, since we will not find a good solution anyway.

For this purpose we can create a DummyOperation with a tool. When there is a drill
with a diameter equal to the feature diameter and a length greater than half the fea-
ture depth, the rule will set lwf.machine_two_sided to Yes. So, the actual splitting
of the mwf into 2 lwf’s is not done by this rule, it merely sets the lwf attribute
which means “I can be split up in two”.
101

Machining Features from opposite directions

102

CHAPTER 5 Machining Knowledge Editor
Exercises Part 2: Turning

Machining Knowledge Editor Exercises Part 2: Turning

104
Feature Based Turning

This chapter shows the new capabilities of NX 7.5 in Feature Based Turning.

You can now create Feature Based Machining processes for Turning. The workflow
is identical to feature based milling and drilling. The standard Feature Based
Machining installation includes an initial set of predefined Turning features that are
recognized, and the Manufacturing Rules for these features.

The set of predefined Turning features includes:

• TURNING_GROOVE_ID
• TURNING_GROOVE_OD
• TURNING_GROOVE_FACE

Future versions of NX will offer tools for easy definition of additional types.

Feature Recognition
• Load the cam_sample_fbm_2_mm.prt
• Start Manufacturing if necessary.

• Use Ctrl_Shift+K or the command icon in the Tool Bar to make the

workpiece solid model visible.

• Click on the Machining Feature Navigator icon. . The MFN comes up.

(hint: when you double click the icon, you can dock the MFN)
• In the MFN, right click in the background and choose

• In dialog box Type, select Parametric Recognition.
• In dialog box Geometry to Search, select Workpiece or All Geometry. Note that

the number of entities changes from 1 to 39. Both will work.

Feature Based Turning
• In dialog box Features to Recognize,
first deselect all by deselecting the top node, then select only Turning in the Fdl-
RecognitionRuleLibrary.

• Click the Find Features icon in the lower right corner of the dialogue.

.
• The Recognized Features shows 6 features (2 of each type that is currently rec-

ognized automatically) …..

• Click OK to accept the result.
• In addition to the turning features, you will find a STEP1HOLE that was

already recognized before.
• Browse through the new TURNING features one by one. When you select a Fea-

ture in the MFN, its faces are highlighted in the selection color. Note: the
TURNING_GROOVE_ID faces are inside the model.
105

Machining Knowledge Editor Exercises Part 2: Turning

106
Operation Selection
• Hide the model geometry by pressing Ctrl + B and select the body, or use the

Show/Hide command icon in the Tool Bar.

• Press Ctrl + Alt + T for an orthogonal view on the Workplane.
• In the Machining Feature Navigator, select all Features, right click and execute

• In the Create Feature Process dialog, verify the Type field is set to Rule Based.
• In the Knowledge Libaries dialog box, select Turning and click OK.

• In the location dialog box, choose turning_workpiece.

• Press OK in the Create Feature Process dialog. NX will now automatically
select operations for the selected turning features.

• Select the TURNING_GROOVE_FACE feature on the left side of the product.
This feature cannot be machined in the current setup.

• Execute command Find Related Operations on this feature.

• In the Operation Navigatir, switch to Program Order View and move the opera-
tion to the Unused Items folder.

• Select the Program folder and execute command Generate Tool Path.
• Verify the Tool Path with 2D Material Removal switched on.

Feature Based Turning
Machining Knowledge Editor

Part 2 of this demo lifts the curtain on how these automatic results came into exist-
ence, and where you could edit them if desired.

• Start > UGS NX 7.5 > Manufacturing Tools > Machining Knowledge Editor
• File > Open.
• Select machining_knowledge.xml and press Open.

• Click on the Machining Knowledge Tab
• Expand Turning library and select rule Rough_Groove_OD.

• Click on the tab Add-ons.
• Select the add-on of type GeometryParent and class CONTAINMENT.

• On the right hand side you see the definition of the axial and radial contain-
ment, which can be expressed using the parameters of the
TURNING_GROOVE_OD feature.
107

Machining Knowledge Editor Exercises Part 2: Turning

108
• This specifies the axial and radial containment limits for the turning operation:

• Click on the Conditions tab to inspect the conditions that were defined for Rule
Rough_Groove_OD.

Note that the Non Cutting Moves (NCM) for the turning operation are attributes
of the GROOVE_OD operation type.

• Choose View > Customization in the menu bar.
• Expand the customization tree until TurningRough like this:

Feature Based Turning
• The right-hand side of the customization view displays all attributes for the
TurningRough operations which include GROOVE_OD.
Click once on the Display Name column header to sort alphabetically on Dis-
play Name.

This field is used to display the path in the OOTB NX user interface dialog for
each operation Attribute. It helps the knowledge engineer in finding the NX
operation Attribute when the place in NX user interface is known and vice
versa.

• Close the customization view by clicking the .
• Exit the Machining Knowledge Editor.

End of short demo of Feature Based Turning.
109

Machining Knowledge Editor Exercises Part 2: Turning

110

CHAPTER 6 Color and Attribute Features
111

Color and Attribute Features

112
Face color and attribute recognition
What is it?

You can specify any combination of face colors and face attributes to specify
regions of a solid body or sheet body for feature recognition. Face attributes may
also include a value that could determine or influence the recognition result.

Why should I use it?

You can use color and attribute recognition to help specify regions for machining
that may be difficult to recognize by topology or shape.

Where do I find it?

Machining Knowledge Editor > Customization view.

Below you find an example of

• how a feature is declared,
• how to define a recognition rule and
• how to use these in NX 7.5 Feature Based Machining.

Declaring a new "Color&Attribute" Feature Type
• Start > UGS NX 7.5 > Manufacturing Tools > Machining Knowledge Editor
• File > Open
• Select machining_knowledge.xml and press Open.
• Choose View > Customization
• Expand Wedm Feature, right click and choose Add Class…

Face color and attribute recognition
Note you can Add Class anywhere in the tree, WedmFeature is just an example.
• In the Add Class dialog, enter Name = MAGENTA and press OK.

• A feature of type MAGENTA is declared. You recognize that it's a customer
defined feature by the underlined type name and the dark blue color.
113

Color and Attribute Features

114
• Right click in the attributes area (right part of the screen) and choose Add… to
add an extra attribute to the feature class. Give it any name you like, and choose
the rest of the fields as shown in this example:

• Press the Save icon

• Dismiss the Customization view window by clicking the in the upper right
corner of the screen.

This concludes the declaration of a new Color&Attributes feature type.

Defining a Recognition Rule for the new Feature Type

• Click on the Recognition Tab

Face color and attribute recognition
• Create a new Library node by right clicking the upper node and choose New…

• Rename the new Library to "C&A Recognition Rule Library"

• Create a new ColorAndAttributeRecognitionRule under the new library.
• Rename the ColorAndAttributeRecognitionRule* to MyMagentaFeature. (You

are free to choose any name.)

• In the Definition Block, select the previously declared Feature class MAGENTA
from the drop down list.

• In the Face grouping block, leave Face grouping at Connected faces. This
means that the faces of a recognized feature of type MAGENTA must be con-
nected.
115

Color and Attribute Features

116
• In the Surface types block, check Plane, Cone and Cylinder. This means that the
faces of a recognized feature of type MAGENTA must be of one of these Surface
types.

• In the Edge types block, mark all connection types. This means that all connec-
tion types are allowed. (This is only meaningful when option 'Connected faces'
was chosen previously, which we did.)

• Create a condition that requires the feature's faces to be of color magenta..

This condition means that each face belonging to the feature must have display
color = 181.

Face color and attribute recognition
Note The value (=181 in this case) corresponds to an RGB value set and a color
name as defined in the Color Definition File used by the Part.
• Right click in the header area or hit the Insert key to add a second condition.

• State that MY_LOGICAL_ATTRIBUTE must be 'true' by selecting from the drop
down lists.

This condition means that each face belonging to the feature must have a Face
Attribute named MY_LOGICAL_ATTRIB having value = "true".

Note If a face has no such attribute or it has but its value is not "true" then it will
not be in the recognized feature's face list.

• Save the xml source file by pressing

This concludes the definition of the recognition recipe named MyMagenta for a
feature of type MAGENTA.

Recognizing MAGENTA
CA_Slide.prt can be downloaded from the FBM mycommunity site. When you
have no access, send an e-mail to machining.support.plm@siemens.com requesting
CA_slide.prt and you will receive the part via e-mail. In fact every model with
color attributes can serve to recognize a feature of type MAGENTA.

• Start NX
• Load CA_Slide.prt
• Start Manufacturing if necessary.
• Open the feature navigator
• Right-click and choose Find Features…
117

Color and Attribute Features

118
• In the Type box, choose Parametric Recognition
• In the Geometry to Search box, choose All Geometry
• In the Features to Recognize window, check MAGENTA
• Press Find Features
• Press OK and select the recognized feature.
• Note that MY_LOGICAL_ATTRIB is one of the feature's attributes.
• Also note that one of the cavity's faces is not part of the feature: when you select

the feature, this face is not highlighted in the selection color.
• Select this face, right click for the Properties and you see why:
• Change the value of MY_LOGICAL_ATTRIB to true.
• Delete feature MAGENTA_1.
• Right-click and choose Find Features…
• Verify that the recognized feature has al faces of the cavity.

Machining Direction of C&A Features
In NX 7.5, the direction of C&A features is chosen arbitrarily. In many cases this
will result in a wrong direction. We can manually adjust the direction by supplying
the correct values for the depth orientation vector, as done in screenshot below:

Machining Rules for a Color & Attribute feature
There is no difference between a parametrically recognized feature, and identified
feature and a C&A feature when it comes to defining a Machining Rule. The source
of the feature is irrelevant for the Operation Selection module. Therefore, creating a
Machininig Rule for feature type MAGENTA follows the same path as for any
aother feature.

Machining Rules for a Color & Attribute feature
Exercise: Create a Machining Rule for a Color and Attribute Feature
• Launch Machining Knowledge Editor if necessary and open the

machining_knowledge.xml source
• Create a new Rule under the RuleLibrary
• Further specify the Rule as per this suggestion:

• Choose a tool with a Diameter that is small enough to machine the corners:

Note we used a constant named mm here
with value = 1. This makes the condition
valid for inch parts too.
• File > Build...
• In NX, Create Feature Process... on fea-

ture magenta.
• Verify the result,as below:
119

Color and Attribute Features

120

CHAPTER 7 Wire EDM
content for wedm is still under development
121

Wire EDM

122

CHAPTER 8 Feature Mapping
Feature Mapping is a powerful capability enabling us to transform features immedi-
ately after the NX command Find Features before they appear in the Machining
Feature Navigator. Feature Mapping is treated in this tutorial since mapping rules
are created with the MKE, very similar to machining rules.
123

Feature Mapping

124
Using Feature Mapping -case 1

The route sketched on the right-hand side in the above scheme. Allows customers
who use their private best machining practice to benefit from the improved para-
metric machining feature recognition since NX 6.

• By mapping recognized features to customer specific UDF features.
• So existing automatic process selection can be applied to components that were

not designed using customer specific UDF features.

Using Feature Mapping -case 2

The route sketched on the left-hand side in the above scheme. Allows customers
using UDF based design to work with NX 6 best machining practices even though
these practices do not reference the UDF types.

• By mapping customer UDF features to standard NX parametric features.

Example
 The below picture illuminates how a SCREW_CLR_COUNTER_BORE_HOLE

(identified feature) can be mapped to a STEP2HOLE (parametric feature) and vice
versa. Not only the type of the feature is changed by the Mapping Rule, also most
of the parameter values can be deduced. Sometimes parameter values are identical
so they can simply be copied.

Example
Mapping Rules are defined with the Machining Knowledge Editor (MKE) very
similar to machining rules.

The Conditions of the mapping rule define how the parameters of the features map

on each other.

Note that a mapping rule always has operation class DummyOperation and has no
Resource.
125

Feature Mapping

126
Mapping to Hole or Pocket feature types?
The feature type SIMPLE_HOLE can usually be through or blind. There is not
always an easy decision criterium when we want to map this feature to either a
STEP1HOLE or a STEP1POCKET. The same applies to most other identified fea-
tures types.

In the ootb mapping rules we only map an identified feature to a through hole when
we are sure the identified feature is through. The decision is made on the attribute
DEPTH_LIMIT. The following conditions must be true:

When DEPTH_LIMIT does not exists or it has no value or its value is not one of the
three mentioned above, there is a rule to map to a POCKET feature. The mapping
rule to a pocket feature has a slightly lower priority.

Activity: Feature Identification not followed by feature mapping
• Load the testmodel.prt and delete all operations and features.

Identification or Recognition
• Execute Find Features... on the testmodel

• In the Type box, select Feature Identification.
• In Features to Identify, select the 3 check boxes as in screenshot above.
• Press the Find Features command icon.
•

Activity: Feature Identification followed by feature mapping
• Load the test_model.prt and delete all operations and features.
• to be complete in 7.5.028 or later

Identification or Recognition

Feature Identification
• Re-uses the design feature’s Type and Attributes
• The model faces are retrieved from the design feature.
127

Feature Mapping

128
Strength:

• Directly re-use information from the Design model
• No loss of information
• No need for “recognition”

Weakness:

• Requires that Designers model with machining features only
• A machining feature must REMOVE material (a rib can not be machined)
• Works only for models designed in NX
• Does not work together with Synchronous Modeling
• Design features often don’t really define correctly what needs to be machined.

Continue to use Feature Identification when:

• You work predominantly with in-house designed parts
• and the parts have been modeled using UDF’s
• and your company is not yet using PMI
• You work with MW and/or PDW

Feature Recognition
• Performs geometrical search against a library of “known” feature types to find

features and their faces
• Performs attribute extraction per feature type.
• Recognition is not trivial and can not guarantee 100% perfect results, sometimes

due to feature intersections.

The way to go when Feature Identification is not applicable.

What this example intends to explain

OperationClass class DummyOperation allows the definition of MachiningRu-
les without a Tool. These can be used to transform a more worked feature into a less
worked feature without a real machining operation.

Identification or Recognition
Estimated 30 minutes.

Conditions
REM Application Criteria: there are none.
REM Tool Attributes: there are none.
REM Less Worked Feature attributes: just copy

lwf.DIAMETER_1 = mwf.DIAMETER

lwf.DIAMETER_1_LOWER = constant.LWF_DIAM_LO

lwf.DIAMETER_1_UPPER = constant.LWF_DIAM_UP

lwf.DEPTH_LOWER = constant.LWF_DEPTH_LO

lwf.DEPTH_UPPER = constant.LWF_DEPTH_UP

lwf.SIDE_ROUGHNESS_1 = constant.achievable_Roughness_DRILL_Upper_str

REM Operation Attributes: there are none.

Activity: Transformation of classes using a DummyOperation
• Create a MachiningRule with MWF SIMPLE_HOLE, LWF STEP1HOLE,

OperationClass DummyOperation
• Enter the Conditions as presented under “Conditions” on page 129.
• Work on all Tabs and when finished, move the mouse over ‘MachiningRuleLi-

brary’, click MB3 and choose Build.
• Execute Create Feature Process on feature SIMPLE_HOLE.
• Verify that the SIMPLE_HOLE is machined in 2 operations and the last is the

“Dummy: Transform” operation.

One of the places where DummyRules are heavily used is in Feature Mapping.
There you can do a lot of powerful things like:

• Transform legacy feature types like SIMPLE_HOLE into STEP1HOLE.
• Transform STEP1HOLE into feature types like SIMPLE_HOLE.
• Interpret user-attributes for tolerance information and translate them into

explicit numerical tolerance values
• See “Feature Mapping” on page 123.
129

Feature Mapping

130

CHAPTER 9 Machining Knowledge
Customization Project
This chapter describes the OOTB content, the tasks commonly found in a customi-
zation project and the milestones to be reached.

In the context of this tutorial, the term Customization is used to describe a universe
of

• machining features
• operation types
• tools
• workpiece materials
• machine tools

Since NX 7.5 this is extended with

• NX Objects such as CutLevels, Cycles, UDE’s and more.
Machining Knowledge Editor Training 131

Customization Files

132
Customization Files

CAM Configuration dependent customization

The root file is the CAM configuration file in the UGII_CAM_CONFIG_DIR. An
example is feature_machining.dat. The .dat file is changed compared to NX6, since
the key FEATURE_MACHINING is obsoleted in NX 7.5.

• MACHINING_KNOWLEDGE: now also points to the feature recognition rule
library that is used by the Find Features... command.

• MACHINING_KNOWLEDGE: now (since NX 7.5) also points to the mapping
knowledge library that is optionally used by the Find Features... command.

• MACHINING_KNOWLEDGE: points to the machining knowledge library
used by the Create Feature Process.... command
.

Tools, Machines and Part Materials

More entries in the .dat file relevant for the customization are:

• LIBRARY_TOOL (the tool library)
• LIBRARY_MACHINE (the machine library)
• LIBRARY_PART_MATERIAL (materials library)
MKE Training- Customization Project

Customization Files
Operation Types

The TEMPLATE_OPERATION entry defines which template parts will be avail-
able and hence which operation types. If an operation type is used in more than one
of the template parts, then the definition in the last template part will be used, in
order of appearance in the .opt file.

Features
When you generate or update the customization with the Machining Knowledge
Editor, the feature customization is built up from the following parts:

• The parametric feature types which can be recognized by command Find Fea-
tures.

• Any additional customer defined feature for which a recognition rule exists in
the Recognition Rule Library.

• The UDF library (User Defined Features).
• Feature_definitions.def for legacy feature recognition.
• Feature_identification.def.

Default Customization

In directory MACH\machining_knowledge_editor\data there is one single system
file containing the base customization of the knowledge library.

• customization_base.xml

This file should not be modified as it will be replaced by software updates.

Additional Customization

Your company's specific additions can be added interactively.

Typical additions to the customization are:

• New customer specific feature types and their attributes.
MKE Training - Customization Project 133

Customization Files

134
On each node in the Features branch in the Custom-
ization View you can can click MB3 and use com-
mands to Add, Remove and Edit a feature class.

• New attributes to feature types.
For each node in the Feature branch you can can click
MB3 in the attributes list and use commands to Add,
Remove and Edit attributes of the selected feature class.

NX Version upgrades

With each NX version, improvements and extensions to customization_base.xml
can be expected. The knowledge library customization can be updated by checking
active the ‘Update Upon Load’ in the View > Options. Then reload the
machining_knowledge xml source.

Exercise: Understanding the customization files
• Trace back the files mentioned in feature_machining.dat in the

UGII_CAM_CONFIG_DIR. Open them in NotePad and read their contents.
• In the customization view of Machining Knowledge Editor, try to understand the

customization of the tools, materials and machines in relation to the data listed
in the files.
MKE Training- Customization Project

OOTB content
OOTB content
The ootb rule content is shipped with each major release of NX. It is continuously
improved based on feedback from the field. Please visit the FBM site and pull the
latest Content Kit from there:

https://myc2005.ugs.com/marketing/partmfg/nxfbm/default.aspx

The ootb rule content is captured in the following source file:

• MACH\resource\machining_knowledge\machining_knowledge.xml

You can easily view the ootb rule content outside the Machining Knowledge Editor
application with:

• machining_knowledge.chm

The ootb rule content is based on this template part (only the unit system is differ-
ent):

• MACH\resource\template_part\metric\machining_knowledge.prt
• MACH\resource\template_part\english\machining_knowledge.prt

An explanation of the OOTB Rules

What do all these achievable... constants mean?
The majority of the constants we use are threshold values for the quality that can be
obtained with a Drill, Mill, Reamer or Boring bar.

The two qualities checked in the rule’s conditions are derived from the PMI and are
the surface roughness and the dimensional tolerance.

For Drill, Mill, Reamer or Boring bar there are _upper and _lower threshold values
of achievable surface roughness and achievable dimensional quality.
That gives 4 x (2 plus 2) = 16 constants. You see them in the screenshot below that
MKE Training - Customization Project 135

An explanation of the OOTB Rules

136
was taken from the Machining Knowledge Editor. The names of these constants are
always something like ‘Achievable...’.

Roughing operations like Drill can be applied when these 2 conditions are both
true:

IT_class_ISO(mwf.DIAMETER_1,mwf.DIAMETER_1_UPPER, mwf.DIAMETER_1_LOWER) >=
constant.Achievable_IT_Class_DRILL_Lower

roughness_value(mwf.SIDE_ROUGHNESS_1) >=

constant.Achievable_Roughness_DRILL_Lower

Finishing operations like Ream and Bore can be applied when either the roughness
or the diameter tolerance is in the achievable interval for reaming and boring.
MKE Training- Customization Project

An explanation of the OOTB Rules
The expressions have a form like this and are found in the conditions of all finish-
ing rules in the library:

IT_class_ISO(mwf.DIAMETER_1,mwf.DIAMETER_1_UPPER, mwf.DIAMETER_1_LOWER) >=
constant.Achievable_IT_Class_REAM_Lower
AND
(
roughness_value(mwf.SIDE_ROUGHNESS_1) >=
constant.Achievable_Roughness_REAM_Lower
AND
roughness_value(mwf.SIDE_ROUGHNESS_1) <=
constant.Achievable_Roughness_REAM_Upper
)

OR

roughness_value(mwf.SIDE_ROUGHNESS_1) >=
constant.Achievable_Roughness_REAM_Lower
AND
(
IT_class_ISO(mwf.DIAMETER_1,mwf.DIAMETER_1_UPPER, mwf.DIAMETER_1_LOWER) >=
constant.Achievable_IT_Class_REAM_Lower
AND
IT_class_ISO(mwf.DIAMETER_1,mwf.DIAMETER_1_UPPER, mwf.DIAMETER_1_LOWER) <=
constant.Achievable_IT_Class_REAM_Upper
)

Note Since NX 6.0.3 the roughness condition and IT class condition are logically
OR. That implies that only one of them needs to be TRUE and the rule will be
applied. It was a design choice not to restrict possible application of Rules too
much. You may want to be more strict by changing the Roughness condition and
the IT_class condition to be logically AND.

Exercise: Find conditions on the PMI in the rules.
• Select a rule, for instance Drill_Up_S1H
• Press the Conditions Tab
• Find the section as depicted here

• Find the expressions on the achievable IT_class in this rule.

For Milling there is an extra threshold value for the achievable roughness. This
defines the roughness value that requires finishing the surface.

Clearly, a feature’s IT-class (usually defined on its Diameter) and its lowest surface
roughness value determine the tools that are required.
MKE Training - Customization Project 137

An explanation of the OOTB Rules

138
All this information can be captured into a single table from which we can derive
the required tool, given a combination of IT-class and Surface Roughness.

We made the assumption that Drilling is cheaper than Boring which is cheaper than
Reaming. When in this table we read D,B,R the preferred solution is using a Drill,
when that is not available, try a Boring bar and when that is not available look for a
suitable Reamer.

Exercise: Understanding the tolerance threshold values
• Lookup the Achievable... constants in the Machining Knowledge Editor.
• What is the only tool that can machine a feature with a diameter tolerance =

IT5?
• For which combinations of IT-class and surface roughness, all tools (Drill,

Bore, Ream) could be used?

Discussion of some other constants...

For a minimal explanation please see the Explanation field in the constant’s
Options dialog. (Select the RuleLibrary node, press the Constants tab and double
click the constant.)

TABLE 1. Operation (Tool) selection in order of priority for combinations of
IT grade and Surface Roughness

Roughness Ra
IT
5

IT
6

IT
7

IT
8

IT
9

IT
10

IT
11

IT
12

IT
13

IT
14

IT
16

0.4 µm (16 µin) R R R R R R R R R R R

0.8 (32) or
1.6 (63) or
3.2 (125)

R B
R

B
R

B
R

B
R

B
R

D
B
R

D
B
R

D
B
R

D
B
R

D
B
R

6.3 (250) or
12.5 (500)

R B
R

B
R

B
R

B
R

B
R

D
B

D
B

D
B

D
B

D
B

25 (1000) R B
R

B
R

B
R

B
R

B
R

D D D D D

50(2000) R B
R

B
R

B
R

B
R

B
R

D D D D D
MKE Training- Customization Project

Modify the OOTB or Start from Scratch?
Modify the OOTB or Start from Scratch?
When is modification of the out of the box content the better option:

• You do not have User Defined Features or your UDF’s can easily be mapped on
the standard parametric feature types.

• You use the standard tool library that comes with NX or Teamcenter.
• Your processes are relatively simple and you are quite satisfied with the results

that are generated ootb.

When is it better to start from scratch.

• Your company has defined its own best practices or is planning to do so.
• You think your processes are very different from what is supplied ootb.
• You do not want to invest in understanding the ootb content.

Workflow in a customization project
Each customization project consists of the following phases.

TABLE 2. Activities and Milestones in a FBM customization project.

Activity Milestone

“Analyze your products for manufacturing features” “Milestone: A list with all
feature types”

“Milestone: One or more
reference models.”

“Analyze your operation sequences” “Milestone: List of Opera-
tion Sequences for all
selected features.”

“Analyze your tool libraries” “Milestone: A list with all
tool types”

“Implement Knowledge” “Milestone: Implemented
Rule Library”

“Maintain knowledge”
MKE Training - Customization Project 139

Analyze your products for manufacturing features

140
Analyze your products for manufacturing features
Although it is theoretically possible to automate the complete operation generation
of feature based products, it is often too costly to do so. We advise to start with the
features most common within the typical product families.

The first step is to analyze which are typical products in your organization. This
normally results in product families where you can describe how often products
will be programmed, how many of the operations are standard within the products,
etc. In general one of those product families should be chosen for a first project
phase.

The next step will be to identify the common features within this product family.
This should result in a list of common features with the percentage of occurrence
within a product. This will normally result in a list of features where it also should
be visible which feature types are the most common. In general the first project
phase should include those feature types that cover 20% of the feature occurrences
within the product family. In a typical second phase, this should be extended with
those feature types which would extend this to 50% and in a third phase to 80%.

The last step in selecting the feature types is to check on some of the typical prod-
ucts, how the software will recognize or identify these features. It is no use trying to
focus on feature types that are not recognized properly.

What comes OOTB
When you generate the customization automatically, the software takes into
account:

• The parametric feature types which can be recognized by command Find Fea-
tures.

• The UDF library
• Feature_definition.def
• Feature_identification.def

The NX CAM help library includes a listing of the recognized parametric features.
Browse to CAM > Feature-based machining > Manufacturing features > Paramet-
ric Feature Recognition.

For your convenience we reproduce (and updated) that list in the appendix. See “D:
Definition of the standard non-STEPPED features” on page 154.
MKE Training- Customization Project

Analyze your products for manufacturing features
How to add features that are not standard.
Use an xml editor like xml spy (www.xmlspy.com) or any other which you find
convenient.

In the following exercise we will demonstrate how to add MY_UDF to the custom-
ization, a new feature type which has 3 attributes of different types.

Exercise: Adding a User Defined Feature (UDF) to the customization
• Open an existing xml source file with File > Open... or start a new file with File

> New...
• Choose View > Customization
• Expand the Feature branch in the Tree View.
• MB3 on Customer Feature, choose Add Class...
• Enter Name value MY_UDF, leave the other fields at their defaults and press

OK.
• With MY_UDF selected, choose Add... in the attribute window pane.
• Enter Name value FIRST_ATTRIBUTE, choose Type Double and Unit Type

Length as shown.
MKE Training - Customization Project 141

Analyze your products for manufacturing features

142
• Define a 2nd and 3rd attribute of type Integer resp String.
Note The Display Name, when not specified, is equal to the Name.
• Close the customization view.

Exercise: Creating a Recognition Rule for the new UDF
• Press the Recognition tab to have access to the various Recognition rules.
Note This manual is not (yet) a guide on how to define parametric feature recogni-
tion.
• to be completed when -Prolog style- feature recognition becomes available.

Exercise: Creating a Manufacturing Rule for the new UDF
• Create a new rule with Output Feature = MY_UDF.

Note Adding customer enumerated types like one,two,three as above is not any-
more possible since NX 7.5
• Playwise, enter conditions using the three UDF attributes as above.

Milestone: A list with all feature types. It is the complete list of features you can
expect in your production models. This should include a percentage of occurrences
within the typical products.

Milestone: One or more reference models. The models have instances of the fea-
tures types you can expect in your production models, including PMI. These mod-
els should be a mix of typical products and of specific test models designed to
analyze problem areas.
MKE Training- Customization Project

Analyze your operation sequences
Analyze your operation sequences
What comes OOTB

You need to invest time exploring the ootb rules. There are a few options:

• try them on your selected features.
• explore them in the Machining Knowledge Editor.
• explore them in the generated documentation which is obtained with MKE com-

mand Write Documentation.

If you use operation sequences that are not standard ootb.

In fact that is more than likely. Analyze your operation sequences. For every feature
type all possible operation sequences should be described. Although there is no sin-
gle best way of doing this, it helps to use forms like “Sequence Form: Step2Hole”
on page 132. This allows for a common sequence description.

Important is to identify why this sequence is chosen and not one of the other possi-
ble sequences, and if this sequence will change based on material or available
resources. It is necessary to check if the decision criteria are based on feature
attributes or on other factors. In the last case, it can be worth to add additional
attributes to the features, which allow the user to define the choice, and to add tag-
ging for these feature attributes to the system.

A next step in the analysis of your operation sequences is to create a table as in the
example below. It lists all sequences identified in the previous step and enables you
to identify common steps within the sequences.
MKE Training - Customization Project 143

Analyze your operation sequences

144
Horizontally you have the produced features. These are the ones obtained from the
first milestone. And directly below you have a column for each anticipated
sequence of operations that will finally produce that feature.
MKE Training- Customization Project

The first column holds the individual operations, sorted by the feature it produces,
which can be an in-process feature.

The matrix is then filled by numbers which define the exact order in which the
operations are performed.

Note, for instance, that sequence nr 3 which produces a STEP1HOLE is defined as:

 Spot_Drill
 Drill_in_center_S1P
 Gun_Drill_S1H
 [Chamfer_S1H_Drill, Chamfer_S1H_Mill] (one of the two)

The following step is to describe the separate operations in more detail. An exam-
ple could be as in “Step2hole operation” on page 133.

With all this information available, you must decide which operation sequences
need to be implemented. It could be that some operation sequences are exotic and it
is not worth to implement them.

Milestone: List of Operation Sequences for all selected features.

This should detail which operation sequences must be implemented.

Analyze your tool libraries

What comes OOTB.

The tool customization is based on the standard tool library that comes with NX, or
with TeamCenter when you work in a managed environment.

How to add tools that are not standard.
• When you need tool classes that are not standard you must add the tool class

and then update the customization (only once). This is done automatically with
MKE option “Update upon Load”.
MKE Training - Customization Project 145

Implement Knowledge

146
• When adding a new tool class, tell NX which attribute is to be interpreted as the
Cutter Diameter and Cutter Length. This is done with MB3 commands in the
customization view.

• When you need tools of existing classes with dimensions that are not in the stan-
dard database you only need to add that tool to the library population.

• Please refer to existing NX training manuals and documentation about defining
tool classes and populating them.

Milestone: A list with all tool types. It has all the tool types you anticipate to use
for your manufacturing features. These should match with the list of operations as
chosen in the previous milestone.

Implement Knowledge

This section is just a collection of a few notes. But it’s the bulk of the project.

In general, it is worth to consider, that the users always will need to define some
operations manually. To speed up the process and assist the users, customized tem-
plates will be used for operations that are created frequently. It is wise to use these
templates also in the knowledge definition. This results in uniformity between man-
ually and automatically generated operations.

It is important to understand that other changes to the default software configura-
tion can help in the success of the implementation. Examples are:

• Adding tagging data for features, which help the user to force the generation of
certain sequences.

• Adding default program order groups, which help in generating an initial pro-
gram sequence that will work without the user having to move operations.

• Adding KF post_create functionality to assist the user in putting the operations
in the correct program order groups.

How to go about implementing the rules is treated in chapter “Machining Knowl-
edge Editor Concepts” and chapter “Machining Knowledge Editor Exercises Part 1:
Hole Making” .

Milestone: Implemented Rule Library.
MKE Training- Customization Project

Maintain Knowledge
Maintain Knowledge

Of course the manufacturing knowledge should be kept up-to-date. As best prac-
tices change also the knowledge should change accordingly. Regularly the knowl-
edge should be checked against:

• How many manual changes need to be made before the operations generate cor-
rectly?

• How many operations are generated manually?

There should be a feedback loop from end-user(s) to the knowledge engineer.
MKE Training - Customization Project 147

Maintain Knowledge

148
 MKE Training- Customization Project

CHAPTER 10 Appendices
Machining Knowledge Editor Training 149

A: Glossary of Terms

150
A: Glossary of Terms
• Machining Rule: Captures 'best practices', describes the relation between manu-

facturing features, operations and tools. Often abbreviated to ‘Rule’.
• Machining Knowledge Source: Set of rules including the corresponding cus-

tomization.
• Machining Knowledge Editor: Application to create and modify a Machining

Knowledge Source.
• Machining Knowledge Library: Linked and compiled Machining Knowledge

Source (the 'dll').
• Knowledge Engineer: Superuser who is able to modify the machining knowl-

edge in the Machining Knowledge Source.

B: Naming conventions for Manufacturing Features
A few naming conventions apply to all standard features:

• HOLE features have no bottom, and can generally be reached from 2 sides.
• POCKET features have a bottom and can be machined from one side only.
• STEP1,2,3,4,5,6 features describe a single feature with a number of diameters.
• STEP3POCKET for instance is a blind hole with 3 diameters where the 1st

diameter is larger than the 2nd and the 2nd diameter is larger than the 3rd.

• STEP3HOLE1 is a hole with 3 diameters where the 3rd is larger than the 2nd.
Machining Knowledge Editor Training

C: Definition of the standard STEPPED features
• STEP4HOLE1 is a hole with 4 diameters where the 4th is larger than the 3rd.

• STEP5HOLE2 is a hole with 5 diameters where the 4th is larger than the 3rd
and the 5th is larger than the 4th.

C: Definition of the standard STEPPED features
• Chamfer surfaces can be either torodial or conical
• Bottom surfaces are either planar or conical
• Chamfers are optional
• Bottom_ is optional if bottom_chamfer_1 or top_chamfer_2 is torodial

Picture above shows the most general constitution of a STEP2HOLE. For features
with more STEPPED levels, section STP with elements 4,5,6,7 is repeated. Each
added cylinder will get a higher index number.
Machining Knowledge Editor Training 151

C: Definition of the standard STEPPED features

152
Picture below show the parameters of the most general constitution of a
STEP2HOLE.
Machining Knowledge Editor Training

C: Definition of the standard STEPPED features
Picture below shows constituent faces and parameters of the most general form of a
STEP2POCKET.

•

Machining Knowledge Editor Training 153

D: Definition of the standard non-STEPPED features

154
D: Definition of the standard non-STEPPED features
This is a list of standard recognized parametric manufacturing features.

TABLE 1. Feature Types occurrence

Feature Type name Notes
CORNER_
NOTCH_
RECTANGULAR

CORNER_
NOTCH_
ROUND_
CONCAVE

CORNER_
NOTCH_
STRAIGHT

CORNER_
NOTCH_
U_
SHAPED

GROOVE_
AX_
CIRCULAR_
RECT
Machining Knowledge Editor Training

D: Definition of the standard non-STEPPED features
GROOVE_
INS_
RAD_
RECT

HOLE_
FREE_SHAPED_
STRAIGHT

HOLE_
OBROUND_
STRAIGHT

HOLE_
RECTANGULAR_
STRAIGHT

HOLE_
ROUND_
TAPERED

POCKET_
FREE_SHAPED_
STRAIGHT

TABLE 1. Feature Types occurrence

Feature Type name Notes
Machining Knowledge Editor Training 155

D: Definition of the standard non-STEPPED features

156
POCKET_
OBROUND_
STRAIGHT

POCKET_
RECTANGULAR_
STRAIGHT

POCKET_
ROUND_
TAPERED

SIDE_
NOTCH_
RECTANGULAR_1

SIDE_
NOTCH_
RECTANGULAR_2

SIDE_
NOTCH_
ROUND_
CONCAVE_1

TABLE 1. Feature Types occurrence

Feature Type name Notes
Machining Knowledge Editor Training

D: Definition of the standard non-STEPPED features
SIDE_
NOTCH_
ROUND_
CONCAVE_2

SIDE_
NOTCH_
ROUND_
CONVEX_2

SIDE_
NOTCH_
U_SHAPED_1

SIDE_
NOTCH_
U_SHAPED_2

SLOT_
90_DEGREE

SLOT_
DOVE_TAIL

TABLE 1. Feature Types occurrence

Feature Type name Notes
Machining Knowledge Editor Training 157

D: Definition of the standard non-STEPPED features

158
SLOT_
OBROUND_1

SLOT_
OBROUND_2

SLOT_
PARTIAL_
OBROUND

SLOT_
PARTIAL_
RECTANGULAR

SLOT_
PARTIAL_
ROUND

SLOT_
PARTIAL_
U_SHAPED

TABLE 1. Feature Types occurrence

Feature Type name Notes
Machining Knowledge Editor Training

D: Definition of the standard non-STEPPED features
SLOT_
RECTANGULAR_1

SLOT_
RECTANGULAR_2

SLOT_
RECTANGULAR_3

SLOT_
ROUND_1

SLOT_
ROUND_2

SLOT_
T_SHAPED

TABLE 1. Feature Types occurrence

Feature Type name Notes
Machining Knowledge Editor Training 159

D: Definition of the standard non-STEPPED features

160
SLOT_
UPSIDE_DOWN_
DOVE_TAIL

SLOT_
U_SHAPED_1

SLOT_
U_SHAPED_2

SLOT_
V_SHAPED

SURFACE_
PLANAR_
RECTANGULAR

TABLE 1. Feature Types occurrence

Feature Type name Notes
Machining Knowledge Editor Training

D: Definition of the standard non-STEPPED features
SURFACE_
PLANAR

Any flat sur-
face, not nec-
essarily
rectangular.

SURFACE_
PLANAR_
ROUND

TABLE 1. Feature Types occurrence

Feature Type name Notes
Machining Knowledge Editor Training 161

E: Tips and Tricks

162
E: Tips and Tricks

Choosing priority for the MACHINING_RULE

The MachiningRule.priority is an attribute which determines the sequence in
which MachiningRules are tried, where a higher value means that the rule is
tried earlier. The value has a meaning within a set of rules that have the same type
of More Worked Feature. When, for instance, rule 1 machines a step1hole and
rule 2 machines a step1pocket, the relative priorities are not important, since
these rules are not competing. If rule 1 and rule 2 both machine a step1hole, the
rule with higher priority will be tried first and only if it is rejected rule 2 will be
tried.

Generally it is good practice to give the cheaper rule a higher priority. Conditions
on the cheaper rule must then be designed such that it is applied only when that is
allowed. This is typically customer specific knowledge, allthough a general frame-
work comes with the ootb knowledge.

How to use the MACHINING_RULE conditions
The rules contain conditions like:

mwf.MACHINING_RULE = "TWIST_DRILL"

or

lwf.MACHINING_RULE = "TWIST_DRILL"

These conditions are used to create a certain sequence of operations. An example is
the sequence where tapping is always preceded by a drilling operation. In this case
the tapping rule (for example ‘Tap_S1H_thread’) can contain the condition:

lwf.MACHINING_RULE = "TWIST_DRILL"

and the drilling rule (for example ‘Drill_S1H’) contains:

mwf.MACHINING_RULE = "TWIST_DRILL"

This prevents other rules are used. For example the boring rules contain the condi-
tion:
Machining Knowledge Editor Training

E: Tips and Tricks
mwf.MACHINING_RULE = "BORE"

For this feature, the boring rules will be rejected when the Tapping rule was applied
before. (Of course the operation sequence in time is the reverse.)

This condition is not causing conflicts when the drilling operation should be the
first operation. This is because the attribute MACHINING_RULE is normally not
defined for recognized features so it will not exists on the feature and the condition
on MACHINING_RULE is not applicable.

An exception would be if a face attribute MACHINING_RULE were defined on
the model. In that case the feature recognition will define the attribute on the recog-
nized feature and as a consequence the conditions containing the
mwf.MACHINING_RULE will not be skipped. You can use face attributes to
influence the sequence of operations when not enough data is available to choose
between certain sequences or if a specific sequence is required.
Machining Knowledge Editor Training 163

	CHAPTER 1 Machining Knowledge Editor Concepts
	Best practice definition. The example of a hole.
	Machining Rule concept
	RuleLibrary
	Starting the Machining Knowledge Editor
	Loading the Rule Library
	The Machining Knowledge Editor User Interface
	Tree View
	Selecting nodes
	Activating nodes
	Renaming nodes
	Ordering nodes
	Copying nodes
	Deleting nodes

	Table View
	Selecting nodes in Table View
	Commands in Table View
	Table View Toolbar
	Sorting cells
	Editing cells

	Rule View
	Conditions Tab
	Constants Tab
	Materials Tab
	Machines Tab
	Explanations Tab
	Image Tab
	Add-on Tab

	Conditions concept
	Application Criteria
	Tool Attributes
	Less Worked Feature Attributes
	Operation Attributes

	Expression syntax | Functions
	Functions

	Constants concept
	Scope of a Constant
	Constant Command Icons
	Using Constants in Expressions

	Finding Rules based on criteria
	Find in all Rule Conditions
	Using TableView autofilter
	Using TableView Filter Column

	Testing the Rules
	Check Validity
	Building
	Testing in NX with Create Feature Process
	Reading the Information window and the MSAnalysis.lis

	Rules for multiple More Worked Features
	Customization view
	Making changes to the customization

	CHAPTER 2 How Operation Selection works
	Machining Knowledge Editor and NX
	Examples of operation sequences
	STEP1HOLE and STEP1HOLE_THREAD in 4 operations.

	Finding a solution using elementary rules
	Information Window

	CHAPTER 3 Machining Knowledge Editor Exercises Part 1: Hole Making
	Creating a new RuleLibrary file
	Copying an existing RuleLibrary file
	Creating a new RuleLibrary file.

	Defining a first Rule
	What this example intends to explain
	Explanatory picture
	Conditions
	Constants
	Materials and Machines
	Building the MachiningRuleLibrary
	Testing the MachiningRule
	Detailing the MachiningRule with Add-ons

	Defining a second MachiningRule
	What this example intends to explain
	Explanatory picture
	Conditions
	Constants
	Materials and Machines
	Explanation
	Image

	Defining a ‘competing’ MachiningRule
	What this example intends to explain
	Explanatory picture
	Conditions
	Constants
	Materials and Machines
	Explanation
	Image

	Minimizing the number of different tools
	What this example intends to explain
	Explanatory picture
	Conditions
	Constants
	Materials and Machines
	Explanation
	Image

	Thread Milling
	Using functions
	What this example intends to explain
	Explanatory picture
	Constants
	Materials and Machines
	Explanation
	Image
	Explanatory picture
	Constants
	Materials and Machines
	Explanation
	Image

	Using TableView to query the MachiningRuleLibrary
	What this example intends to explain

	Using Find and Replace functions
	Additional stuff
	What this example intends to explain

	CHAPTER 4 Machining Features from opposite directions
	When both sides of a hole need chamfering
	What this example intends to explain
	Creating a rule to split features
	Defining the conditions
	Testing the rule

	Drilling a deep hole from opposite directions
	Adding a face attribute prior to Find Features...
	Testing the value of a Feature Attribute
	Adding MACHINE_TWO_SIDED to the customization
	Creating a rule to split a feature

	Decision making through multiple MCS’s and Knowledge Fusion
	Automating 2-sided machining using the KF functions added in NX6.0.3

	Checking for tool availability

	CHAPTER 5 Machining Knowledge Editor Exercises Part 2: Turning
	Feature Based Turning
	Feature Recognition
	Operation Selection
	Machining Knowledge Editor

	CHAPTER 6 Color and Attribute Features
	Face color and attribute recognition
	Declaring a new "Color&Attribute" Feature Type
	Defining a Recognition Rule for the new Feature Type
	Recognizing MAGENTA
	Machining Direction of C&A Features

	Machining Rules for a Color & Attribute feature

	CHAPTER 7 Wire EDM
	CHAPTER 8 Feature Mapping
	Using Feature Mapping -case 1
	Using Feature Mapping -case 2
	Example
	Mapping to Hole or Pocket feature types?
	Identification or Recognition
	Feature Identification
	Feature Recognition
	What this example intends to explain
	Conditions

	CHAPTER 9 Machining Knowledge Customization Project
	Customization Files
	CAM Configuration dependent customization
	Tools, Machines and Part Materials
	Operation Types
	Features
	Default Customization
	Additional Customization
	NX Version upgrades

	OOTB content
	An explanation of the OOTB Rules
	What do all these achievable... constants mean?
	Discussion of some other constants...

	Modify the OOTB or Start from Scratch?
	Workflow in a customization project
	Analyze your products for manufacturing features
	What comes OOTB
	How to add features that are not standard.

	Analyze your operation sequences
	Analyze your tool libraries
	What comes OOTB.
	How to add tools that are not standard.

	Implement Knowledge
	Maintain Knowledge

	CHAPTER 10 Appendices
	A: Glossary of Terms
	B: Naming conventions for Manufacturing Features
	C: Definition of the standard STEPPED features
	D: Definition of the standard non-STEPPED features
	E: Tips and Tricks
	Choosing priority for the MACHINING_RULE
	How to use the MACHINING_RULE conditions

