AC VOLTAGE PHASORS

OPEN WYE-OPEN DELTA STATION SERVICE

3 PHASE, 4 WIRE, 240/120V SOLID NEUTRAL WITH LIGHTING TRANSFORMER CONNECTED TO LEADING PHASE; LOW SIDE CURRENT LEADS HIGH SIDE CURRENT BY 30^A

AC CURRENT PHASORS

Vac	DEVELOPED	ВΥ	(IS	ΙN	PHASE	WITH)	VANh
	DEVELOPED						
Vba	DEVELOPED	ВҮ	(IS	ΙN	PHASE	WITH)	-[VCNh+VANh

LET Vac = 2∠0 THEN Vcb = 2∠120 AND Vba = -[2∠0+2∠120] = 2∠-120 = 2∠240

ALSO Van = $\frac{1}{2}$ Vac = 1 $\angle 0$ Vcn = $-\frac{1}{2}$ Vac = $-1\angle 0$ = 1 $\angle 180$ Vbn = Vba+ $\frac{1}{2}$ Vac = 2 $\angle 240+1\angle 0$ = 1.73 $\angle -90$ = 1.73 $\angle 270$

| Idc DEVELOPED BY (IS IN PHASE WITH) | IAh | Icb DEVELOPED BY (IS IN PHASE WITH) | ICh | Ibd DEVELOPED BY (IS IN PHASE WITH) - [ICh+IAh]

ALSO Ia = Iac-Iba = 1∠0-1∠240 = 1.73∠30 Ic = Icb-Iac = 1∠120-1∠0 = 1.73∠150 Ib = Iba-Icb = 1∠240-1∠120 = 1.73∠-90 = 1.73∠270

ALSO Ian = $\frac{1}{2}$ Iac = $\frac{1}{2}$ $\angle 0$ Icn = -1ac = $-\frac{1}{2}$ $\angle 0$ = $\frac{1}{2}$ $\angle 180$ Ibn = $\frac{1}{2}$ Iac = $\frac{1}{2}$ $\angle 40 + \frac{1}{2}$ $\angle 0$ = .866 $\angle -90$ = .866 $\angle 270$

SYSTEM SUMMARY:

OPEN-DELTA

DRAWING -