
εy 0=

fs ε( ) fy−( ) ε εy−≤if

Es ε⋅ ε εy≤if

fy otherwise

otherwise

:=
This equation will rule steel stress-strain relationship

Say ε .0005:= fs ε( ) 1050
kgf

cm
2

=

We won't state a limit strain for steel for the example

Concrete Take into account? Take into account? Note 
Formulation believed to be 
adequate even for the most 
exacting HPC, VHS concretes. 

You may feel adequate 
to enter a fcd reduced 
one, or a mean 
(probabilistic) real value

1 for YES

0 for NO
1 for YES

0 for NO
fc 250

kgf

cm
2

⋅:= Confinement 0:= Tensile_stress 0:=

confinement 1 only if per ACI 318

The feature that distinguishes the procedure of solving the merely flexural problem form the 
present flexocompression case is that in the flexocompression case upon growth of the force in 
the compressed block within the section we must impose concurrent decay of the limit strain 
that can be reached prior to failure at the most compressively strained fiber. This means than 
while solving for extreme strains we must simultaneously solve for the limit available 

fc204
compatibility of deformations P - M actual status of RC circular section

Set Units to None at the Math...Options...Unit System Dialog. You will be using any of the units below.

CTOL 1:=Initialization ORIGIN 1≡ Count with fingers TOL 1:=

ton 1000 kgf⋅:= kip 453.592 kgf⋅:= kN 1000 N⋅:=

MPa
N

mm
2

:= ksi 70.307
kgf

cm
2

⋅:= psi
ksi

1000
:=

For this problem we'll have a perfectly 
elastic-perfectly plastic steel of fy yield stress

fy 4100
kgf

cm
2

:= Es 2100000
kgf

cm
2

⋅:= Steel 

So εy
fy

Es
:=

1



εfct fc( ) 0=εfct fc( ) if Tensile_stress εfct0, 0,( ):=

εfct0 0.00012−=εfct0 Find ε( )−:=

fct fc( )
fc

2
ε

εfc fc( )
⋅







ε

εfc fc( )








2

−=

Given

εfc fc( ) 0
cm

cm
=εfc fc( ) .0015 .002

fc
cm

2

kgf
⋅

1300
⋅+:=

fct fc( ) 31.44
kgf

cm
2

=fct fc( ) kfct fc psi⋅:=

ε .0005
cm

cm
⋅:=Our unwarranted guess

We'll solve the limit tensile strain without 
units since Mathcad 8 doesn't seem able 
to manage here properly these

Reminder fc 250
kgf

cm
2

=

We could get approximately the strain at which the ultimate tensile strain is reached, but will 
do exactly solving the equation in first quadrant: 

fct fc( ) 3.08MPa=fct fc( ) 447.23psi=fct fc( ) 31.44
kgf

cm
2

=

fct fc( ) kfct fc psi⋅:=kfct 7.5:=
You can alternatively make kfct= 6.7

if for strenght or simply to be more 
conservative

e
fct
 evaluation

εfc fc( ) 0.001885=The strain at which concrete reachs its higher strenght fc is 

εfc fc( ) .0015 .002

fc
cm

2

kgf
⋅

1300
⋅+:=

e
fc
 evaluation

while solving for extreme strains we must simultaneously solve for the limit available 
compressive strain following the present compression to maximum compression ratio. This will 
be a fuction of current limit strains at surfaces, since concrete force is. To avoid constant 
redefinition of the decaying stress branch by the continuously varying 2nd point and being of 
little engineering significance (given tue o.91 to 0.98 of fc cutting point), for this first installment 
of the fxcomp programs we will merely curtail the constant formulation of s soon following at the 
appropriate level suggested by the compressed block. 

2



D 40 cm⋅:=Circular section od D diameter

In spite of this and as discussed above, the ultimate strain won't be that of flexure once the 
resultant of the compression block attains a value bigger than the one the (we will accept) 
brute section has when it has 0 stress in one face and fc at the other (concrete block resultant 
at decompression of face value), which for a rectangular section is equivalent to the full 
section at 2/3 of fc, given the parabolic law of the first branch of our law for stress-strain  

For this implementation, the formulation will rule stress determination in concrete for any input e

σ ε( ) fc 0 ε εfct fc( )<if

1− 2
ε−

εfc fc( )
⋅







ε−

εfc fc( )








2

−








⋅ εfct fc( ) ε≤ 0≤if

2
ε

εfc fc( )
⋅







ε

εfc fc( )








2

− 0 ε< εfc fc( )≤if

1 1 kεcu−( )
ε
2

2 ε⋅ εfc fc( )⋅− εfc fc( )
2

+

εcu fc( )
2

2 εfc fc( )⋅ εcu fc( )⋅− εfc fc( )
2

+
− εfc fc( ) ε< εcu fc( )≤if

0 ε εcu fc( )>if otherwise

otherwise

otherwise

otherwise

⋅:=

as per disgressionkεcu 0.91=kεcu if Confinement 0.98, 0.91,( ):=

Stress in concrete corresponding to strain es(e) evaluation

εcu fc( ) 0.003779=The ultimate strain for the given fc for a flexural condition like this is then

εcu fc( ) interp vs Stress, Strain, fc,( ):=vs lspline Stress Strain,( ):=

Strain

.0039

.0035

.0028

.0028

.0034

















:=Stress
kgf

cm
2

100

350

500

800

1200

















⋅:=

ecukgf/cm2
e
cu
 evaluation
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A1_bar 3.14cm
2=A1_bar π

Φbar
2

⋅:=

Say e1 represents strain at bottom surface and e2 is strain at top surface

We take compression stresses positive, and tension stresses negative.
We dump the areas of both steel reinforcement and concrete layers at layer's c.o.g.

e_to_bottom 28.51cm=e_to_bottom eto_center
D

2
+:=

We will be assuming P, M data referred to center of brute section as usual 
and will establish equilibrium integrating moments respect bottom of the 
section; that is, the moment of the P as per above implied positioned will be 
in place equilibrated by the moments of inner forces in steel and concrete; 
all moments will be referred to bottom edge of section.

eto_center 8.51cm=eto_center
M

P
:=

Pref 215.99 ton=
Integration of the first branch parabolic fc growth of strength along 
D for a circular section, the circular section decompression 
milestone against which to gauge how much we will be curtailing 
the strain towards that of at maximum compressive strength from 
that of a non compressively loaded case. 

Pref

0 m⋅

r

z
fc

4 r
2⋅
z⋅ 4 r⋅ z−( )⋅ b z r,( )⋅

⌠


⌡

d

r

2 r⋅

z
fc

4 r
2⋅
z⋅ 4 r⋅ z−( )⋅ b1 z r,( )⋅

⌠


⌡

d+:=

b1 z r,( ) b r z r−( )− r,[ ]:=b z r,( ) 2 r⋅ sin acos
r z−

r

















⋅:=

rto_bar 15cm=rto_bar r Cover_to_axis−:=

M 8 m⋅ ton⋅:= present moment, factored or non factored, enter positive and compressing atop

P 94 ton⋅:= present axial load, factored or non factored, compressive and positive till we further check the implementation  for tensile load equilibrium

Reinforced as follows n 6:= number of bars Φbar 20 mm⋅:= Cover_to_axis 5 cm⋅:=

centered angle, from 6 'o clock vector towards lowest bar center, clock or counterclockwise
(any effect of dissymmetry respect vertical axis is dismissed)α 30 deg⋅:=

Pmax π
D

2









2

⋅ fc⋅:= we accept to no make it interact with atop and at bottom strains for 
steel voids deductions

Pmax 314.16 ton= full section at fc, a reference value

r
D

2
:=

4



εcu_current ε1 ε2,( ) εcu fc( ) Concreteforce ε1 ε2,( ) Pref≤if

( ) 
2 

:=

We need also to define here what will be being taken as the ultimate compressive strain for 

the case, that will vary with ε1 ε2, , since the present compressive block does.

Totalmoment ε1 ε2,( ) Steelmoment ε1 ε2,( ) Concretemoment ε1 ε2,( )+:=

Totalforce ε1 ε2,( ) Steelforce ε1 ε2,( ) Concreteforce ε1 ε2,( )+:=

Concretemoment ε1 ε2,( )
0 m⋅

D

zz B z r,( )⋅ σ ε1
ε2 ε1−

D
z⋅+









⋅
⌠


⌡

d:=

Concreteforce ε1 ε2,( )
0 m⋅

D

zB z r,( ) σ ε1
ε2 ε1−

D
z⋅+









⋅
⌠


⌡

d:=

B z r,( ) b z r,( ) z r≤if

b1 z r,( ) otherwise

:=

Steelmoment ε1 ε2,( ) A1_bar

1

n

k

r rto_bar cos α k 1−( )
360 deg⋅

n
⋅+








⋅−






fs ε1

r rto_bar cos α k 1−( )
360 deg⋅

n
⋅+








⋅−

D
ε2 ε1−( )⋅+











σ ε1

r rto_bar cos α k 1−( )
360 deg⋅

n
⋅+








⋅−

D
ε2 ε1−( )⋅+











−











⋅∑
=

⋅:=

effective force and moment, so that concrete can be taken brute section in integration

Steelforce ε1 ε2,( ) A1_bar

1

n

k

fs ε1

r rto_bar cos α k 1−( )
360 deg⋅

n
⋅+








⋅−

D
ε2 ε1−( )⋅+











σ ε1

r rto_bar cos α k 1−( )
360 deg⋅

n
⋅+








⋅−

D
ε2 ε1−( )⋅+











−











∑
=

⋅:=

Determination of the steel force and moment as a function of surface strains

ε1 0.00033−
cm

cm
⋅:=

ε2 0.000189
cm

cm
⋅:=

guess values

Elements of Equilibrium

A1_bar 3.14cm=A1_bar π
4

⋅:=
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σ ε( ) 174.98
kgf

=Steel ε ε,( ) 9.18 ton=
consider only if positive

Observe that respect bottom and so different of data

ε2

εcu_current ε1 ε2,( )
22.55%=at top surface

ε2 0.00085=P e_to_bottom⋅ 26.8m ton⋅=Totalmoment ε1 ε2,( ) 26.8m ton⋅=

P 94 ton=Totalforce ε1 ε2,( ) 94 ton=
at bottom surfaceε1 0.00032−=

εk ε1

r rto_bar cos α k 1−( )
360 deg⋅

n
⋅+








⋅−

D
ε2 ε1−( )⋅+:= Fs

k
fs ε1

r rto_bar cos α k 1−( )
360 deg⋅

n
⋅+








⋅−

D
ε2 ε1−( )⋅+











:=

Vectorangle
k

α k 1−( )
360 deg⋅

n
⋅+:=yk r rto_bar cos α k 1−( )

360 deg⋅

n
⋅+








⋅−:=

k 1 n..:=

ε1

ε2









Find ε1 ε2,( ):=

ε2 εcu_current ε1 ε2,( )≤

Totalmoment ε1 ε2,( ) P e_to_bottom⋅=

Totalforce ε1 ε2,( ) P=

Given

Solving the problem

εcu fc( ) εfc fc( ) εcu fc( )−( )

Concreteforce ε1 ε2,( )
Pmax

Pref

Pmax

−








2

1
Pref

Pmax

−








2
+

















otherwise
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Note how circular columns show to be worse in a 
compatibility of deformations setup, due mainly to 
loss of efficiently positioned area.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

σσ

kgf

cm
2

zz

cm

Chart concrete stresses

σσ j σ ε1
ε2 ε1−

D
zzj⋅+









:=zzj
D

Nparts

j 1−( )⋅:=j 1 Nparts 1+..:=Nparts 100:=

bar results
compression positiveFs

245.18−

556.05

1357.28

1357.28

556.05

245.18−





















kgf

cm
2

=ε

0.000117−

0.000265

0.000646

0.000646

0.000265

0.000117−





















=y

7.01

20

32.99

32.99

20

7.01





















cm=Vectorangle

30

90

150

210

270

330





















deg=

εcu fc( ) 0.00378=

vs that of flexure

actual 

εcu_current ε1 ε2,( ) 0.00378=
σ ε2( ) 174.98

kgf

cm
2

=Steelforce ε1 ε2,( ) 9.18 ton=
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