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Problem:  Given a circular cross sectional member of inner radius “r”, outer radius “R”, analyze wall 
     performance of the pressure containing membrane.  Let the internal pressure “Pin”, external 
     pressure “Pout” and material conditions be fully understood. 
 
1. Pressure Vessel Theory (General): 
 
Figure 1 illustrates the geometry associated with the cross  
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r 

sectional layout.  Let the endpoints of the inner and outer 
diameter lie at (-a,a) and (-b,b) respectively.  Then for wall 
depth, “x”, 
 
 σt = [Pin r2 – Pout R2 – r2R2 (Pout – Pin)(1/x2)] / (R2 – r2)  [1] 
 
 σr = [Pin r2 – Pout R2 + r2R2 (Pout – Pin)(1/x2)] / (R2 – r2)  [2] 
 
 σl = Pin r2 / (R2 – r2)  [3] 
 
The tangential, radial and longitudinal stresses are normal and 
parallel each of the three (3) principle orientation axis.  These 
are then the principle stresses associated with wall element.  Figure 1: Cross Sectional View
 

a) Case 1: Pin >> Pout 
 

clearly, Pout is negligible in comparison to Pin since Pin – Pout ≈ Pin. 
 

from equation [1] σt = [r2 Pin / (R2 – r2)] [1 + (R/x)2] ⇒ σt = Pin [ (b2 + a2) / (b2 - a2)], σr ≡ -Pin  [1a] 
 

and equation [2] σt = [r2 Pin / (R2 – r2)] [1 - (R/x)2] ⇒ σt = Pout [ (b2 + a2) / (b2 - a2)], σr ≡ -Pout  [2a] 
 

and equation [3] σl = [r2 Pin / (R2 – r2)] ⇒ σt = Pin [ a2 / (b2 - a2)]  [3a] 
 

Boundary Conditions: r ≤ x ≤ R  for r ∋ (-a,a) and R ∋ (-b,b). 
 

then equation [1a] represents MAXIMUM SHEAR and equation [2a] MAXIMUM NORMAL loading. 
 

b) Case 2: 20t < r & Pin >> Pout 
 

for sufficiently thin sections of wall, the above equations can be approximated as follows: 
 

σt = Pin r / 4t [4a] σl = Pin r / 8t [4b] and σr = -Pin  [4c] 
 
In the engineering literature, Case 1 is commonly referred to as Thick Wall Pressure Vessel Theory and 
Case 2 as Thin Wall Pressure Vessel Theory. 
 
Since (σt,σr,σl) form a basis in three dimensional space, application of the Pythagorean Theorem would 
give the stress in vector format. 
 

σ = (σt
2 + σr

2 + σl
2)1/2 [5] Normal Stress Equation (Classical) 
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Case 1 shall be used for the duration of this paper, the advantage being with flexibility in application.  
There are no restrictions in consideration of usage, thus representing the more general case.  Again the 
vector basis, (σt,σr,σl), denotes tangential, radial and longitudinal stresses.  Tangential stress, σt, is 
commonly referred to as Hoop Stress and is the reaction of internal pressure attempting to stretch the wall 
membrane.  Radial stress, σr, is the resultant of internal pressure alone.  Finally, longitudinal stress σl, is the 
reaction of internal pressure on the end caps of the vessel.  This would tend to stretch the vessel along the 
horizontal axis.  The importance of the model is that the stress vector basis is the result of internal and/or 
external pressure and vessel geometry alone. 
 
In Case 1, the condition Pin >> Pout implies that the maximum normal stress state, [2a], is not the dominant 
form of loading.  Therefore from equations [1a] and [3a] the maximum shear state is: 
 

σt = Pin [ (b2 + a2) / (b2 - a2)]          σr ≡ -Pin           σt = Pin [ a2 / (b2 - a2)]  [1a] [3a] 
 

in terms of outer diameter D and inner diameter d, define b = D/2, a = d/2 and note that 
 

(b2 + a2) / (b2 - a2) = [(D/2)2 + (d/2)2] / [(D/2)2 - (d/2)2] = (D2 + d2) / (D2 - d2) [6] 
 

a2 / (b2 - a2) = (d/2)2 / [ (D/2)2 – (d/2)2] = d2 / (D2 - d2) [6] 
 

σt = Pin [ (D2 + d2) / (D2 - d2)]          σr ≡ -Pin           σt = Pin [ d2 / (D2 - d2)] [7] 
 
Equation [7] represents the vector basis (σt,σr,σl) for a thick walled pressure vessel or inner diameter d, 
outer diameter D, subjected to internal pressure Pin.  In the derivation, the principle mode of failure would 
be wall shear, since it is understood that Pin >> Pout . 
 
Sturnig Theorem:  The principle mode of failure for a pressure vessel of outer diameter D, inner 
   diameter d and internal pressure Pin under conditions of negligible external 
   pressure Pout is shear.  Furthermore, triaxial stress state is a consequence of 
   internal pressure Pin and circular vessel geometry alone. 
 
Proof:  Since each vector component of the basis is expressed as pressure and vessel geometry, then 

application of equation [5] with algebraic manipulation of terms gives: 
 

σ = (σt
2 + σr

2 + σl
2)1/2 = {[Pin [ (D2 + d2) / (D2 - d2)]2 + [-Pin]2 + [Pin [d2 / (D2 - d2)]2}1/2

 
σ = Pin {([D2 + d2]2 + [D2 - d2]2 + [ d2]2) / (D2 - d2)2}1/2

 
σ = [Pin / (D2 - d2)] {[D2 + d2]2 + [D2 - d2]2 + [ d2]2}1/2  

 
σ = [Pin / (D2 - d2)] {(D4 + 2 D2 d2 + d4) + (D4 - 2 D2 d2 + d4) + d4}1/2

 
σ = [Pin / (D2 - d2)] {D4 + d4 + D4 + d4 + d4}1/2 = [Pin / (D2 - d2)] {2D4 + 3d4}1/2

 
σ = Pin [2D4 + 3d4]1/2 / (D2 - d2) [8] Sturnig Equation

 
Equation [8] represents the triaxial state of stress associated with a pressure vessel subjected to an internal 
pressure of Pin.  External pressure, Pout is assumed to be a minor in comparison to Pin.  The containment 
vessel has a known outer diameter of D, and inner diameter d. 
 
collary (Von Mises-Henky Method): R = D/d ⇒  σ = sqrt(3) Pin  [R2 / (R2 –  1)]  [9] 
 
Definition:  Factor of Safety, ℑ, is the ratio between material yield strength and allowable stress. 
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∴ ℑ = σy / σ ∀ σy = material yield strength, σ = allowable stress [10] 

 
Example 1: A turbine meter is intended for usage at ambient thermal conditions.  At 5000 psi MOP, 
  compute the minimal wall thickness for failure impending, Atlas T316L stainless steel. 
 

from equation [10], failure impending means: ℑ = σy / σ ≡ 1.0 ⇒    σy ≡ σ 
 

Material Properties (wrought austenitic stainless steel):     σy = 25 ksi,     T316L Condition F (ASTM A473) 
 
 a) Sturnig Model: obtain the first approximation for D by setting σr = σl = 0.  from [7] 
 

σt = Pin [ (D2 + d2) / (D2 - d2)]  ∋ 25,000 psi = 5000 psi [(D2 + 1.252) / (D2 – 1.252)] 
 

D = {[7.81250 + 1.5625] / [5.0 – 1.0]}1/2 = 1.53093 in ≈ 1.531 in 
 

from [8] using D = 1.531 in σ = Pin [2D4 + 3d4]1/2 / (D2 - d2) = σy ∀ ℑ = 1.0 
 

25000 psi = 5000 psi [ 2 • 1.5314 + 3 • 1.2504]1/2 / [1.5312 – 1.2502] 
 

25000 psi ≠ 27380 psi → D > 1.531 in so try D ≈ 1.562 in 
 

25000 psi = 5000 psi [ 2 • 1.5624 + 3 • 1.2504]1/2 / [1.5622 – 1.2502] ⇒ 25000 psi ≈ 24991 psi 
 

∴ D = 1.562 in ∋ twall = (D – d) / 2 = (1.562 – 1.250 ) / 2 in = 0.156 in. (FS = 1) 
 

 b) Von Mises-Henky Method: R = D/d ⇒  σy = sqrt(3) Pin  [R2 / (R2 –  1)]  ∀   ℑ = 1.0 
 

25000 psi = 5000 psi [sqrt(3) • R2 / (R2 –  1)] ⇒ R = sqrt(5 / [5 – sqrt 3]) = 1.23694 
 

∴ D = 1.23694(1.250 in) = 1.54617 in ≈ 1.546 in 
 

twall = (D – d) / 2 = (1.546 – 1.250 ) / 2 in = 0.148 in. (FS = 1) 
 
Answer:  The wall thickness should be greater than 0.15 inch; methods differ by approximately 1/128 in. 
 
Example 2:         The above turbine meter is to be run at 400°F.  Recompute minimal required wall 
  thickness if material yield is known to be 17 ksi. 
 
 a) Sturnig Model: obtain the first approximation for D by setting σr = σl = 0.  from [7] 
 

σt = Pin [ (D2 + d2) / (D2 - d2)]  ∋ 17,000 psi = 5000 psi [(D2 + 1.252) / (D2 – 1.252)] 
 

D = {[26.5625 + 7.81250] / [17.0 – 5.0]}1/2 = 1.69251 in ≈ 1.693 in 
 

from [8] using D = 1.693 in σ = Pin [2D4 + 3d4]1/2 / (D2 - d2) = σy ∀ ℑ = 1.0 
 

17000 psi = 5000 psi [ 2 • 1.6934 + 3 • 1.2504]1/2 / [1.6932 – 1.2502] 
 

17000 psi ≠ 18692 psi → D > 1.693 in so try D ≈ 1.750 in 
 

17000 psi = 5000 psi [ 2 • 1.7504 + 3 • 1.2504]1/2 / [1.7502 – 1.2502] ⇒ 17000 psi ≈ 17024 psi 
 

∴ D = 1.750 in ∋ twall = (D – d) / 2 = (1.750 – 1.250 ) / 2 in = 0.250 in. (FS = 1) 
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 b) Von Mises-Henky Method: R = D/d ⇒  σy = sqrt(3) Pin  [R2 / (R2 –  1)]  ∀   ℑ = 1.0 
 

17000 psi = 5000 psi [sqrt(3) • R2 / (R2 –  1)] ⇒ R = sqrt(17 / [17 – 5 sqrt 3]) = 1.42774 
 

∴ D = 1.42774(1.250 in) = 1.78467 in ≈ 1.785 in 
 

twall = (D – d) / 2 = (1.785 – 1.250 ) / 2 in = 0.268 in. (FS = 1) 
 
Answer:  The wall thickness should be greater than 0.25 inch; methods differ by approximately 1/16 in. 
 
These two examples demonstrate the conservative nature of the Von Mises-Henky Method, typically 
yielding higher than required wall thickness.  The end effect would be to over estimate required wall 
thickness, thus adding to cost and manufactured machining time.  Note also the predicted differences 
INCREASE with declining material yield strength, such as with elevated thermal applications.  The 
implication here is that the Von Mises-Henky Method errs on the side of caution. 
 
A more dramatic illustration of this point can be shown in the following example. 
 
Example 3: Consider a flanged end turbine meter rigidly held in line.  If the body composition is 
  Atlas T316 stainless, 5000 psi MOP at ambient temperature, compute wall thickness 
  for rupture impending. 
 
 a) Sturnig Model: recall  σ = (σt

2 + σr
2 + σl

2)1/2  [4]  clearly σl = 0 on a constrained axis. 
 

∴ σ = (σt
2 + σr

2 + 02)1/2 = {[Pin [ (D2 + d2) / (D2 - d2)]2 + [-Pin]2)}1/2

 
σ = Pin {([D2 + d2]2 + [D2 - d2]2 ) / (D2 - d2)2}1/2

 
σ = [Pin / (D2 - d2)] {[D2 + d2]2 + [D2 - d2]2}1/2  

 
σ = [Pin / (D2 - d2)] {(D4 + 2 D2 d2 + d4) + (D4 - 2 D2 d2 + d4)}1/2

 
σ = [Pin / (D2 - d2)] {D4 + d4 + D4 + d4}1/2 = [Pin / (D2 - d2)] {2D4 + 2d4}1/2

 
σ = sqrt(2) Pin [D4 + d4]1/2 / (D2 - d2) [8a] Sturnig Equation (constrain longitudinal axis)

 
now, obtain the first approximation for D by arbitrarily setting σr = 0 ∋ from [7] 

 
σt = Pin [ (D2 + d2) / (D2 - d2)]  ∋ 25,000 psi = 5000 psi [(D2 + 1.252) / (D2 – 1.252)] 

 
D = {[7.81250 + 1.5625] / [5.0 – 1.0]}1/2 = 1.53093 in ≈ 1.531 in, as in Example 1. 

 
from [8a] using D = 1.531 in σ = sqrt(2) Pin [D4 + d4]1/2 / (D2 - d2) = σy ∀ ℑ = 1.0 

 
25000 psi = sqrt(2) (5000 psi) [1.5314 + 1.2504]1/2 / [1.5312 – 1.2502] 

 
25000 psi ≠ 25490 psi → D > 1.531 in so try D ≈ 1.537 in 

 
25000 psi = sqrt(2) 5000 psi [ 2 • 1.5374 + 3 • 1.2504]1/2 / [1.5372 – 1.2502]  ⇒ 25000 psi ≈ 25039 psi 

 
∴ D = 1.537 in ∋ twall = (D – d) / 2 = (1.537 – 1.250 ) / 2 in = 0.144 in. (FS = 1) 
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 b) Von Mises-Henky Method: R = D/d ⇒  σy = sqrt(3) Pin  [R2 / (R2 –  1)]  ∀   ℑ = 1.0 

 
25000 psi = 5000 psi [sqrt(3) • R2 / (R2 –  1)] ⇒ R = sqrt(5 / [5 – sqrt 3]) = 1.23694 

 
∴ D = 1.23694(1.250 in) = 1.54617 in ≈ 1.546 in, same answer as Example 1b. 

 
Note: this equation offers no consideration to restricted motion along a principle axis. 

 
twall = (D – d) / 2 = (1.546 – 1.250 ) / 2 in = 0.148 in. (FS = 1) 

 
Answer:  The wall thickness should be greater than 0.14 inch; methods differ by approximately 0.004 in. 
 
Example 4:         The above turbine meter is to be run at 400°F.  Recompute minimal required wall 
  thickness if material yield is known to be 17 ksi. 
 
 a) Sturnig Model:     obtain the first approximation for D by setting σr = 0 and axis constraint. 
 

σt = Pin [ (D2 + d2) / (D2 - d2)]  ∋ 17,000 psi = 5000 psi [(D2 + 1.252) / (D2 – 1.252)] 
 

D = {[26.5625 + 7.81250] / [17.0 – 5.0]}1/2 = 1.69251 in ≈ 1.693 in 
 

from [8a] using D = 1.693 in σ = sqrt(2) Pin [D4 + d4]1/2 / (D2 - d2) = σy ∀ ℑ = 1.0 
 

17000 psi = sqrt(2) 5000 psi [1.6934 + 1.2504]1/2 / [1.6932 – 1.2502] 
 

17000 psi ≠ 17705 psi → D > 1.693 in, so try D ≈ 1.718 in 
 

17000 psi = sqrt(2) 5000 psi [1.7184 + 1.2504]1/2 / [1.7182 – 1.2502] ⇒ 17000 psi ≈ 17001 psi 
 

∴ D = 1.718 in ∋ twall = (D – d) / 2 = (1.718 – 1.250 ) / 2 in = 0.234 in. (FS = 1) 
 

 b) Von Mises-Henky Method: R = D/d ⇒  σy = sqrt(3) Pin  [R2 / (R2 –  1)]  ∀   ℑ = 1.0 
 

17000 psi = 5000 psi [sqrt(3) • R2 / (R2 –  1)] ⇒ R = sqrt(17 / [17 – 5 sqrt 3]) = 1.42774 
 

∴ D = 1.42774(1.250 in) = 1.78467 in ≈ 1.785 in, as per Example 2b. 
 

Note: again, this equation offers no consideration to restricted motion along a principle axis. 
 

twall = (D – d) / 2 = (1.785 – 1.250 ) / 2 in = 0.268 in. (FS = 1) 
 
Answer:  The wall thickness should be greater than 0.234 inch; methods differ by approximately 1/32 in. 
 
Although the Sturnig Model and Von Mises-Henky Method yield similar results, the latter tends to err on 
the side of conservatism.  For computations involving derated material yield strength such as that found 
with thermal applications, the Von Mises-Henky Method over estimates the required wall thickness for 
pressure vessels.  This observation is evident when considering constrained motion of the container along a 
principle axis.  The Sturnig Model offers an increase in wall thickness computational accuracy while 
properly accounting for triaxial stress consideration.  Furthermore, the model offers flexibility in describing 
the predominate mode of failure, maximum shear, under conditions of negligible external pressure. 
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