
Ac k 1←

j 1←

Ac
k 1−( ) ncL⋅ j+

π

ncM

j

ncL
r⋅








2
j 1−

ncL
r⋅ j 1>if

0 m⋅ otherwise











2

−












⋅←

j j 1+←

j ncL≤while

k k 1+←

k ncM≤while

Acreturn

:=r
D

2
:=

nc 60=total number of concrete elements in the meshnc ncL ncM⋅:=meridian piecesncM 12:=annular layersncL 5:=

Mesh

D 50 cm⋅:=Circular section od D diameterSection

fc240compatibility of deformations STATUS of PC circular section subject to P
uxy

1 between 15 passive steels •

1 between 19 active prestressing steels or materials•

concentrical array of strands•

Setup for Units is the default to SI. 

Initialization ORIGIN 1≡ Count with fingers TOL 1:= CTOL 1:=

ton 1000 kgf⋅:= ksi 70.307
kgf

cm
2

⋅:= psi
ksi

1000
:= kip 453.592 kgf⋅:= MPa

N

mm
2

:=

AND2 a b,( )

1 b 1=if

0 otherwise

a 1=if

0 otherwise

:= OR2 a b,( ) 1 a 1=if

1 b 1=if

0 otherwise

otherwise

:= DIV a b,( ) floor
a

b









:= assumed both positive

1



Rc k 1←

j 1←

Rc
k 1−( ) ncL⋅ j+

2

3

sin
2 π⋅

ncM









2 π⋅

ncM

⋅

j

ncL
r⋅








3
j 1−

ncL
r⋅ j 1>if

0 m⋅ otherwise











3

−












j

ncL
r⋅








2
j 1−

ncL
r⋅ j 1>if

0 m⋅ otherwise











2

−
































⋅←

j j 1+←

j ncL≤while

k k 1+←

k ncM≤while

Rcreturn

:=

Xc k 1←

j 1←

Xc
k 1−( ) ncL⋅ j+

r sin
k 1−

ncM
2⋅ π⋅







Rc

k 1−( ) ncL⋅ j+
⋅+←

j j 1+←

j ncL≤while

k k 1+←

k ncM≤while

Xcreturn

:=

Yc k 1←

j 1←

Yc
k 1−( ) ncL⋅ j+

r cos
k 1−

ncM
2⋅ π⋅







Rc

k 1−( ) ncL⋅ j+
⋅−←

j j 1+←

j ncL≤while

k k 1+←

k ncM≤while

Ycreturn

:=

Solicited by
•
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assumed yield stress when Steel=1
fy

γy
3565.22

kgf

cm
2

=

yield strain when Steel =1εy 0.00201=εy
fy

Es
:=

Any perfectly elastic, perfectly plastic steel (1)

Will assume antimmetrical stress-strain laws

Es 2038903
kgf

cm
2

=
Es 2100000

kgf

cm
2

⋅ Steel 11≤if

29000 ksi⋅ otherwise

:=

US 
ksi denoted

will affect exclusively Steel type 1. fy 4100
kgf

cm
2

:=

Spanish
MPa denoted
as per code 

Input for and if Steel=1 (Perfectly Elastic-Perfectly Plastic steel)Any perfectly elastic-perfectly plastic1.
AEH-400 N2.
AEH-500 N3.
AEH-600 N4.
AEH-400 S5.
AEH-500 S6.
B 400 S7.
B 500 S8.
AEH-400 F9.
AEH-500 F10.
AEH-600 F11.
Grade 6012.
Grade 6513.
Grade 7014.
Grade 7515.

Steel Material 
Safety Factor 

Type 
following list

γy 1.15:=Steel 12:=

Choose one passive Steel type from the list below.•

If you choose one Safety Factor for Steel γy  (must be bigger than   -or equal to-   1 ) the strength assumed in •

calculation will be the real one divided by the steel strength reduction factor. Reduction will be by affinity. This normally 
will be safe
For earthquake loads safety factor must be 1 to properly capture behaviour•

You can assess the chosen steel performance by the stress-strain diagram as plotted below.•

Any number not corresponding to the list will default to case 1 (perfectly elastic-perfectly plastic steel)•

Passive Steel 

My 6 m⋅ ton⋅:=Enter (positive) 
compression

P 100 ton⋅:= Mx 20 m⋅ ton⋅:= enter both moments positive•

will be assumed to compress atop and towards right•

P assumed to act at center of gravity of gross section•

Mx  is respect axis paralell to abscissas and My  respect axis paralell to ordinates•

moments will be combined prior to solving for equilibrium; it is usually stated that •

otherwise solution is overconservative

3



fscold ε( ) Es ε⋅ ε 0.7

fy

γy

Es
⋅≤if

fss ε( ) otherwise

:=

fss ε( ) interp vs εs, σs, ε,( ):=vs cspline εs σs,( ):=

σsj σover_prop εsj( ):=εsj

fy

γy

Es

0.035

fy

γy

Es
−

Parts
j 1−( )⋅+:=j 1 Parts 1+..:=Parts 200:=

Ramberg-Osgood no closed form, and we want such, so we make a fit to it

σover_prop ε( )
kgf

cm
2
Find σx( )⋅:=

σx
Es

kgf

cm
2

0.823 γy
5

⋅
σx
fy

kgf

cm
2

0.7

γy
−












5

⋅+ ε=

Given
The Ramberg-Osgood branch thing

seed, implied kgf/cm2σx 5000:=

Cold strain-hardened deformed bar steels (9 to 11)
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Spanish Steels whose stress-strain diagrams are formed 
by only 2 straight lines per quadrant (2 to 8)

New B 400 S and B 500 S are made equal to AEH-400 S and AEH-500 S which are very similar 

fy 4100
kgf

cm
2

⋅:= fu 4305
kgf

cm
2

⋅:= εu 0.08:=

finc fu( ) fu fy−:= increment of stress from turning point (fy is surmised data)

E2 εy εu, fu,( )
finc fu( )
εu εy−

γy 1=if

finc fu( )

γy

εu

γy 1−

γy
fu⋅

Es
−













εy

γy
−

otherwise

:= slope at strain hardening if any

fs2lines ε εy, εu, fu,( ) Es ε⋅ ε
εy

γy
≤if

fy

γy
E2 εy εu, fu,( ) ε

εy

γy
−









⋅+ otherwise

:=

5



fUSA ε Row,( ) Es ε⋅ ε
USARow 5,

γy
≤if

kgf

cm
2

γy
USARow 2, ε USARow 6,≤if

YPAR ε Row,( ) USARow 3, USARow 2,−( )⋅  USARow 2,+ otherwise

⋅ otherwise

:=

YPAR ε Row,( )
USARow 8, XPAR ε Row,( )⋅ USARow 9, XPAR ε Row,( )2⋅+

1 USARow 9, USARow 10,⋅+ USARow 11, XPAR ε Row,( )2⋅+
:=

XPAR ε Row,( )
ε USARow 6,−

USARow 7, USARow 6,−
:=

The values are for static loads and don't take into account the higher values 
attainable under high strain  loading rates

USA

60

65

70

75

4218.42

4569.96

4921.49

5273.03

7354.11

7536.91

7719.71

7902.51

3135.69

2966.96

2798.22

2629.48

.002016

.002204

.002396

.002592

.0091

.0086

.0082

.0077

.0729

.0717

.0706

.0694

1.748272

1.75624

1.766823

1.780521

.173674

.145637−

.416587−

.655189−

.251726−

.243758−

.233175−

.219478−

1.173672

.854363

.583412

.344811















:=

DBeσυeψfσυGr

CAeσηDφ
σ

fψ

These we rarely will use with any (steel) strength reduction factor, since this is not usual in 
american codes; still, we will formulate this also for consistency and completeness of 
formulation.

American Reinforcing Passive Deformed Bars 
(12 to 15)
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Passive_SteelType "AEH-400 N" Steel 2=if

"AEH-500 N" Steel 3=if

"AEH-600 N" Steel 4=if

"AEH-400 S" Steel 5=if

"AEH-500 S" Steel 6=if

"B 400 S" Steel 7=if

"B 500 S" Steel 8=if

"AEH-400 F" Steel 9=if

"AEH-500 F" Steel 10=if

"AEH-600 F" Steel 11=if

"Grade 60" Steel 12=if

"Grade 65" Steel 13=if

"Grade 70" Steel 14=if

"Grade 75" Steel 15=if

"Generic Perfectly Elastic - Perfectly Plastic"return otherwise

:=
fs_positive ε( ) fs2lines ε

4100
kgf

cm
2

⋅

Es
, 0.1, 4100

kgf

cm
2

⋅,













Steel 2=if

fs2lines ε

5100
kgf

cm
2

⋅

Es
, 0.1, 5100

kgf

cm
2

⋅,













Steel 3=if

fs2lines ε

6100
kgf

cm
2

⋅

Es
, 0.1, 6100

kgf

cm
2

⋅,













Steel 4=if

fs2lines ε

4100
kgf

cm
2

⋅

Es
, 0.08, 4305

kgf

cm
2

⋅,













Steel 5=if

fs2lines ε

5100
kgf

cm
2

⋅

Es
, 0.05, 5355

kgf

cm
2

⋅,













Steel 6=if

fs2lines ε

4100
kgf

cm
2

⋅

Es
, 0.08, 4305

kgf

cm
2

⋅,













Steel 7=if

fs2lines ε

5100
kgf

cm
2

⋅

Es
, 0.05, 5355

kgf

cm
2

⋅,













Steel 8=if

fy 4100
kgf

cm
2

⋅←

fscold ε( )return

Steel 9=if

fy 5100
kgf

cm
2

⋅←

fscold ε( )return

Steel 10=if

fy 6100
kgf

cm
2

⋅←

fscold ε( )return

Steel 11=if

Row 1←

fUSA ε Row,( )return

Steel 12=if

:=
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fUSA ε Row,( )return

Row 2←

fUSA ε Row,( )return

Steel 13=if

Row 3←

fUSA ε Row,( )return

Steel 14=if

Row 4←

fUSA ε Row,( )return

Steel 15=if

Es ε⋅ ε
εy

γy
≤if

Es εy⋅

γy
otherwise

otherwise

fy 4100
kgf

cm
2

⋅ Steel 2=if

5100
kgf

cm
2

⋅ Steel 3=if

6100
kgf

cm
2

⋅ Steel 4=if

4100
kgf

cm
2

⋅ Steel 5=if

5100
kgf

cm
2

⋅ Steel 6=if

4100
kgf

cm
2

⋅ Steel 7=if

5100
kgf

cm
2

⋅ Steel 8=if

4100
kgf

cm
2

⋅ Steel 9=if

5100
kgf

cm
2

⋅ Steel 10=if

6100
kgf

cm
2

⋅ Steel 11=if

:=

8



centered angle, from (negative or) -Y axis towards lowest passive bar center, enter positive if such bar to be found counterclockwiseα0s 30 deg⋅:=

Cover_to_axis 5 cm⋅:=Φbar 20 mm⋅:=number of barsn 6:=

Passive Steel Geometry

Steel 12= Passive_SteelType "Grade 60"=γy 1.15=fy 4218.42
kgf

cm
2

=

0.03 0.02 0.01 0 0.01 0.02 0.03
6000

4000

2000

0

2000

4000

6000

ffs
j 1+

kgf

cm
2

ε s
j

ffs
j 1+

fs εs
j 1+

( ):=εs
j 1+

0.035

200
j 200−( )⋅:=j 0 400..:=

fs ε( ) fs_positive ε( ) ε 0≥if

fs_positive ε−( )− otherwise

:=

cm
2

60 ksi⋅ Steel 12=if

65 ksi⋅ Steel 13=if

70 ksi⋅ Steel 14=if

75 ksi⋅ Steel 15=if

fy otherwise
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Active (PRESTRESSING or POSTENSIONING) Steel (or FRP cable) 

Prestmat 11:= γpy 1:=

Type 
following list

Prest. Material 
Safety Factor 

fpyf 0.915:= this is fpy/fpu

fraction of fpu at which the prestressing material is assumed to pass the section (without taking into account the moment effects brought by prestress)•

this percent permits to evaluate the prestress forces, initial without moment and then in equilibrium with the moment •

must be lower than fpyf  (the prestressing material is not allowed to undergo anelastic deformation at prestress nor service level limit states)•

it is assumed the same degree of prestress will be imparted to all prestressing material. •

kps 0.55:=

Input for material 1 (only affects it) 

Ep1 20000 ksi⋅:= fpu1 250 ksi⋅:= εpu1
fpu1

Ep1
:=

Any perfectly elastic material till fracture1.
Y 1570 C wire2.
Y 1670 C wire3.
Y 1770 C wire4.
Y 1860 C wire5.
Y 1770 S2-wires6.
Y 1860 S3-wires7.
Y 1960 S3-wires8.
Y 2060 S3-wires9.
Y 1770 S7 strand10.
Y 1860 S7 strand11.
ASTM A 421 Grade 270 wire12.
ASTM A 416 Grade 270 strand13.
Lo-rex 300 strand14.
ASTM A 722 Grade 150 bar15.

Spanish
MPa denoted
as per code 

fpy1 fpu1:= fpu1 17576.75
kgf

cm
2

= εpu1 0.0125=

per definition
warranted strength

US 
ksi denoted

β atan
My

Mx









:= β 16.7deg= αs α0s β−:= the combination moment 
we will be checkingMu Mx

2
My

2+:= Mu 20.88m ton⋅=

the above defined passive bar is found (respect rotated -Y' axis --plane of flexion--, from moment combination) at αs 13.3deg= counterclockwise, if positive

Equilibrium will be defined respect such new X' and Y' axes. We will omit primes in our notation from now on.

r
D

2
:= rto_bar r Cover_to_axis−:= rto_bar 20cm=

j 1 n..:=
Xs

j
r rto_bar sin αs j 1−( )

360 deg⋅

n
⋅+








⋅+:= Ys
j

r rto_bar cos αs j 1−( )
360 deg⋅

n
⋅+








⋅−:= perpendicular and paralell to 
combination moment Y plane

since origin at lower left corner of encasing adjusted square

Change of axis we have made only to use single Mu; equilibrium we will establish nevertheless biaxially to account for any dissymmetry

A1_bar π
Φbar

2

4
⋅:= A1_bar 3.14cm

2= As
j

A1_bar:=

10



ASTM A 722 Grade 160 bar16.
ASTM A 722 Grade 157 bar17.
Leadline Grade 285 ksi FRP cable18.
CFCC Grade 250 ksi FRP cable19.Made in 

Japan

Choose one prestressing material from the list above.•

If you choose one Safety Factor for the prestressing material γpy  (must be bigger than   -or equal to-   1 ) the strength assumed in calculation will be the real one •

divided by the steel strength reduction factor. Reduction will be by affinity for whenever the Ramberg Osgood formulation is used and "proportional" (see formulation) 
for others. 
You can asess the choosen prestressing material performance by the stress-strain diagram as plotted below.•

Any number not corresponding to the list will default to case 1 (perfectly elastic material)•

Ensure the existence of the prestressing part as assumed from catalog•

We conservatively take Ep=28500 ksi for american strands from PCI 4th ed Hbk. instead of 28600 of ASTM.•

Lo-rex 300 ksi strand is modeled following spanish's Ramberg-Osgood model. This may be too much conservative and you may be wanting to alter formulation.•

7 wire Strands are usually 0.5" and 0.6", with respective areas 0.153 in2 and 0.217 in2•

The multi-strand cables made of paralell strands can take the same formulation than strands themselves. At least there are...•

multistrand 1/2" : 1 to 31, 37, 42, 55 and 61 strands
multistrand 0.6" : 1 to 22, 27, 31, 37 and 42 strands

Usual perstressing bars: •

5/8" (157 ksi) 

1", 11/4", 13/8" (150 and 160 ksi break strength)
FRPs Fiber Reinforced Plastics cables I wouldn't let to go overly compressed in any state, so check if you find some in your checked section•

Typical FRPs•

Leadline Ø8 mm
CFCC   Ø15.2 mm

We don't put a limit for the attainable strains for the given laws, but provide strength cutoffs fpr the prestressing materials; this will preclude the consideration of •

unattainable strains, given the biunivocal relationship between stress and strain..The assumption for the perfectly elastic material 1 is that it breaks when it reaches 
it maximum strength, so ensure by check the maximum strain prior to rupture is not attained under the investigated limit load. This caution is extensive to almost 

any of the used prestressing materials, since may of them attain higher strength than its limit one under such strain-stress laws (that have or should have limit strain 
for their application). Such assumption is unrealistic and non conservative and you must ensure by personal check  the modeled and solved status is right in 

strength and strain. 
Related with the previous paragraph, we limit our viewport for the assumed antimmetrical stress-strain prestressing material diagrams to the commonly assumed •

usable ranges Whenever the red line representing the stress-strain diagram cuts falls out of the viewport you might be over the real or purported warranted strength 
or outside the warranted attainable strain and you should not have your prestressing material at such (failure attained) strain.

(1) Any perfectly elastic prestressing material

εpu1 0.0125= assumed real limit strain when Prestressed 
material set to 1

fpu1

γpy
17576.75

kgf

cm
2

= assumed limit stress when  when Prestressed 
material set to 1

(18) Leadline
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Lacking a stress-strain •

diagram we use EHE's 
Ramberg-Osgood as well for 
lo-rex 300 and all other 
american prestressing steels 
(be they bar, wire or strand). 
This may prove to be too •

much conservative, and you 
might want to substitute your 
own more correct formulation.
250 ksi strand would be •

similar to (10) material 

Prestressing steels here admitted ruled by the Ramberg-Osgood 
diagram in the spanish codes (art. 32 EHE)
(2) Spanish prestressing steel designation (wire)  Y 1570 C 
(3) Spanish prestressing steel designation (wire)  Y 1670 C
(4) Spanish prestressing steel designation (wire)  Y 1770 C  
(5) Spanish prestressing steel designation (wire)  Y 1860 C
(6) Spanish prestressing steel designation (bi-wire)  Y 1770 S2
(7) Spanish prestressing steel designation (tri-wire)  Y 1860 S3
(8) Spanish prestressing steel designation (tri-wire)  Y 1960 S3
(9) Spanish prestressing steel designation (tri-wire)  Y 2060 S3
(10) Spanish prestressing steel designation (strand)  Y 1770 S7
(11) Spanish prestressing steel designation (strand)  Y 1860 S7
(12) ASTM A 421 Grade 270 wire
(13) ASTM A 416 Grade 270 strand
(14) Lo-rex 300 strand
(15) ASTM A 722 Grade 150 bar

fpu19

γpy
17576.75

kgf

cm
2

= assumed limit stress when  when Prestressed 
material set to 19

εpu19 0.0125=

assumed real limit strain when  when 
Prestressed material set to 19

value shown not as if 
affected by safety 
factor

per definition

εpu19 0.0125=fpu19 17576.75
kgf

cm
2

=fpy19 fpu18:=

εpu19
fpu19

Ep19
:=fpu19 250 ksi⋅:=Ep19 20000 ksi⋅:=

(19) CFCC carbon fiber cable

fpu18

γpy
20037.49

kgf

cm
2

= assumed limit stress when  when Prestressed 
material set to 18

εpu18 0.01338=

assumed real limit strain when  when 
Prestressed material set to 18

value shown not as if 
affected by safety 
factor

per definition

εpu18 0.01338=fpu18 20037.49
kgf

cm
2

=fpy18 fpu18:=

εpu18
fpu18

Ep18
:=fpu18 285 ksi⋅:=Ep18 21300 ksi⋅:=

12



(16) ASTM A 722 Grade 160 bar
(17) ASTM A 722 Grade 157 bar

Ep 200
1000 N⋅

mm
2

⋅ AND2 Prestmat 2≥ Prestmat 5≤,( )if

190
1000 N⋅

mm
2

⋅ AND2 Prestmat 6≥ Prestmat 11≤,( )if

29000 ksi⋅ AND2 Prestmat 15≥ Prestmat 17≤,( )if

29000 ksi⋅ Prestmat 12=if

28500 ksi⋅ AND2 Prestmat 13≥ Prestmat 14≤,( )if

Ep18 Prestmat 18=if

Ep19 Prestmat 19=if

Ep1 otherwise

otherwise

otherwise

otherwise

otherwise

otherwise

otherwise

:=
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fpu 1570 MPa⋅ Prestmat 2=if

1670 MPa⋅ Prestmat 3=if

1770 MPa⋅ Prestmat 4=if

1860 MPa⋅ Prestmat 5=if

1770 MPa⋅ Prestmat 6=if

1860 MPa⋅ Prestmat 7=if

1960 MPa⋅ Prestmat 8=if

2060 MPa⋅ Prestmat 9=if

1770 MPa⋅ Prestmat 10=if

1860 MPa⋅ Prestmat 11=if

270 ksi⋅ Prestmat 12=if

270 ksi⋅ Prestmat 13=if

300 ksi⋅ Prestmat 14=if

150 ksi⋅ Prestmat 15=if

160 ksi⋅ Prestmat 16=if

157 ksi⋅ Prestmat 17=if

fpu19 Prestmat 19=if

fpu18 Prestmat 18=if

fpu1 otherwise

:=

fpy fpyf fpu⋅ AND2 Prestmat 2≥ Prestmat 17≤,( )if

fpu otherwise

:=

σpx 15000:= seed, implied kgf/cm2

The Ramberg-Osgood branch thing
Given

σpx
Ep

kgf

cm
2

0.823 γpy
5

⋅
σpx
fpy

kgf

cm
2

0.7

γpy
−












5

⋅+ ε=

σover_prop_p ε( )
kgf

cm
2
Find σpx( )⋅:=

Ramberg-Osgood no closed form and we want such so we build a fitted curve
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Parts 200:= j 1 Parts 1+..:= εsj

fpy

γpy

Ep

0.035

fpy

γpy

Ep
−

Parts
j 1−( )⋅+:= σsj σover_prop_p εsj( ):=

vs cspline εs σs,( ):= fpss ε( ) interp vs εs, σs, ε,( ):=

fpsRO ε( ) Ep ε⋅ ε 0.7

fpy

γpy

Ep
⋅≤if

fpss ε( ) otherwise

:=

fps_positive ε( ) fpsRO ε( ) AND2 Prestmat 2≥ Prestmat 17≤,( )if

Ep ε⋅ otherwise

:=

εpu 0.035 AND2 Prestmat 2≥ Prestmat 17≤,( )if

fpu19

Ep19
Prestmat 19=if

fpu18

Ep18
Prestmat 18=if

fpu1

Ep1
otherwise

otherwise

otherwise

:=

fps ε( ) fps_positive ε( ) ε 0≥if

fps_positive ε−( )− otherwise

:=

j 0 400..:=

εps
j 1+

εpu

200
j 200−( )⋅:=

ffps
j 1+

fps εps
j 1+

( ):=

15



Prestressing Materials Geometry

np 4:= number of strands or whatever Ap1 1 cm
2⋅:= cp 10 cm⋅:=

α0p 45 deg⋅:= centered angle, from (negative or) -Y axis towards lowest passive bar center, enter positive if such bar to be found counterclockwise

αp α0p β−:=

the above defined passive bar is found (respect rotated -Y' axis --plane of flexion--, from moment combination) at αp 28.3deg= counterclockwise, if positive

Equilibrium will be defined respect such new X' and Y' axes. We will omit primes in our notation from now on.

r
D

2
:= rto_p_bar r cp−:= rto_p_bar 15cm=

0.03 0.02 0.01 0 0.01 0.02 0.03

1 .10
4

0

1 .10
4

ffps
j 1+

kgf

cm
2

εps
j

0.03 0.02 0.01 0 0.01 0.02 0.03

1000

0

1000

ffps
j 1+

MPa

εps
j

0.03 0.02 0.01

200

100

0

100

200

ffps
j 1+

ksi

Prestmat 11=
fpu 18966.72

kgf

cm
2

= fpy 17354.55
kgf

cm
2

= Ep 1.94 10
6×
kgf

cm
2

= fpu 1860MPa= fpy 1701.9MPa= Ep 190000MPa=
fpu 269.77ksi=

εpu 0.035=

Prestress 

ε0
fpu kps⋅

Ep
−:= ε0 0.00538−= negative since initial tensile status of prestressing material

fps_as_prestressed fps ε0( ):= fps_as_prestressed 1023− MPa= negative since tensile

16



fc fc28 νSL⋅:=

εfc evaluation εfc fc( ) .0015 .002

fc
cm

2

kgf
⋅

1300
⋅+:=

The strain at which concrete reachs its higher strenght fc is εfc fc( ) 0.00194=

εfct evaluation

You can alternatively make kfct= 6.7

if for strenght or simply to be more 
conservative

kfct 7.5:= fct fc( ) kfct fc psi⋅:=

fct fc( ) 33.6
kgf

cm
2

= fct fc( ) 33.6
kgf

cm
2

= fct fc( ) 33.6
kgf

cm
2

=

We could get approximately the strain at which the ultimate tensile strain is reached, but will 
do exactly solving the equation in first quadrant: 

fc 285.52
kgf

cm
2

= Reminder 

We'll solve the limit tensile strain without 
units since Mathcad 8 doesn't seem able 
to manage here properly these

Our unwarranted guess ε .0005
cm

cm
⋅:=

fct fc( ) kfct fc psi⋅:= fct fc( ) 33.6
kgf

cm
2

=

perpendicular and paralell to 
combination moment Y plane

j 1 np..:=
Xp

j
r rto_p_bar sin αp j 1−( )

360 deg⋅

np
⋅+








⋅+:= Yp
j

r rto_p_bar cos αp j 1−( )
360 deg⋅

np
⋅+








⋅−:=

since origin at lower left corner of encasing adjusted square

Change of axis we have made only to use single Mu; equilibrium we will establish nevertheless biaxially to account for any dissymmetry

Ap
j

Ap1:=

Concrete You may feel adequate 
to enter a fcd reduced 
one, or a mean 
(probabilistic) real value

Take into account? Take into account? Note 
Formulation believed to be 
adequate even for the most 
exacting HPC, VHS concretes. 

1 for YES

0 for NO
1 for YES

0 for NOfc28 35 MPa⋅:= Confinement 0:= Tensile_stress 0:=

confinement 1 only if per ACI 318

the Sustained Loading strength reduction factor will have 
scarce effect in the strength of beams designed to fail by 
steel fracture, but will be essential to the safety of columns

νSL 0.8:= Sustained Loading strength reduction factor (from 0.75 to 0.85)
see fig 39.3 in EHE code (preferably not bigger than 0.8)
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( ) ( )

as per disgressionkεcu 0.91=kεcu if Confinement 0.98, 0.91,( ):=

Stress in concrete corresponding to strain εσ(ε) evaluation

εcu fc( ) 0.00371=The ultimate strain for the given fc for a flexural condition like this is then

εcu fc( ) interp vs Stress, Strain, fc,( ):=vs lspline Stress Strain,( ):=

Strain

.0039

.0035

.0028

.0028

.0034

















:=Stress
kgf

cm
2

100

350

500

800

1200

















⋅:=

ε
cu

kg/cm2
εcu evaluation

εfct fc( ) 0=εfct fc( ) if Tensile_stress εfct0, 0,( ):=

εfct0 0.00012−=εfct0 Find ε( )−:=

fct fc( )
fc

2
ε

εfc fc( )
⋅







ε

εfc fc( )








2

−=

Given

εfc fc( ) 0.00194
cm

cm
=

εfc fc( ) .0015 .002

fc
cm

2

kgf
⋅

1300
⋅+:=
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σ ε( ) fc 0 ε εfct fc( )<if

1− 2
ε−

εfc fc( )
⋅







ε−

εfc fc( )








2

−








⋅ εfct fc( ) ε≤ 0≤if

2
ε

εfc fc( )
⋅







ε

εfc fc( )








2

− 0 ε< εfc fc( )≤if

1 1 kεcu−( )
ε
2

2 ε⋅ εfc fc( )⋅− εfc fc( )
2

+

εcu fc( )
2

2 εfc fc( )⋅ εcu fc( )⋅− εfc fc( )
2

+
− εfc fc( ) ε< εcu fc( )≤if

0 ε εcu fc( )>if otherwise

otherwise

otherwise

otherwise

⋅:=

will rule stress determination in concrete for input ε

Say ε 0.00114:= σ ε( ) 237.02
kgf

cm
2

=

Parts 400:= j 1 Parts 1+..:= εc
j

εcu fc( ) εfct fc( )−

Parts
j 1−( )⋅:= ffc

j
σ εc

j
( ):=

fc28 35MPa= fc 28MPa=

0 5 .10
4

0.001 0.0015 0.002 0.0025 0.003 0.0035

0

5

10

15

20

25

30

ffc
j

MPa

ε c
j

the stress-strain diagram needs to be scaled down to give the •

effective (really available) strenght for sustained loads. 
any load that must be held about two hours is to strength effects •

a sustained load, and for what I know most structures are used 
for, if any overload can occur it is almost sure it can also stay 
for such time or more, i.e., the sustained load strenght reduction 
factor is required.
this means you can only count on about 80% of the average •

strength you would get from probes tested at the normal rate.
probability considerations, the fact of that part of the load is live •

load and if it grows it won't know when to stop (so the failure is 
likely to be by instantaneous overload), the safety factors, and 
the growth of strength of concrete with age make that a 
sustained load reduction factor bigger than 0.8 can be taken 
without much structural concern; in fact 0.9 is explicitly 
permitted by some codes (may be undermining a bit safety for 
short term sustained loads); we prefer our more substantiated 
value of 0.8 applied to specified strength
this sustained loads strength reduction factor is completely •

different from any within codes; this is required in a compatibility 
of deformations setup to get the real strength of the structural 
member, while those of codes must further diminish the resulting 
strength to compare with factored loads; not all code writers 
seem fully aware of this.
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We will take into account the displaced concrete diminishing the ability of steel to contribute to 
equilibrium in exactly the value of the displaced (absent) concrete force. So, the corresponding 
total forces for passive steel with the effect of displaced concrete dumped unto them are

ε x y, ε1, ε2, ε3,( ) ε1
y

D
ε2 ε1−( )⋅+

x

D
ε3 ε1−( )⋅+:=

Now we establish the strain in any point in the plane by interpolation

bottom right vertex (on abscissas axis)ε3 0.0005:=

referred to bottom left corner of the encasing adjusted squaretop left vertex (on ordinate axis)ε2 0.0005:=

at common origin (bottom, left)ε1 0.000:=

We set these unwarranted assumptions

We need 3 epsilons to define a status of the section in the plane remain plane hypothesis.

We take compression stresses positive, and tension stresses negative.
We dump the areas of both steel reinforcement and concrete layers at their c.o.g.

e_to_bottom 45.88cm=e_to_bottom eto_center
D

2
+:=

We will be assuming P, Mu data referred to center of brute section as usual 
and will establish equilibrium integrating moments respect bottom of the 
section; that is, the moment of the P as per above implied positioned will be 
in place equilibrated by the moments of inner forces in steel and concrete; 
all moments will be referred to bottom edge of section.

eto_center 20.88cm=eto_center
Mu

P
:=

Pref 385.43 ton= Integration of the first branch parabolic fc growth of strength along 
D for a circular section, the circular section decompression 
milestone against which to gauge how much we will be curtailing 
the strain towards that of at maximum compressive strength from 
that of a non compressively loaded case. 

Pref

0 m⋅

r

z
fc

4 r
2⋅
z⋅ 4 r⋅ z−( )⋅ b z r,( )⋅

⌠


⌡

d

r

2 r⋅

z
fc

4 r
2⋅
z⋅ 4 r⋅ z−( )⋅ b1 z r,( )⋅

⌠


⌡

d+:=

b1 z r,( ) b r z r−( )− r,[ ]:=b z r,( ) 2 r⋅ sin acos
r z−

r

















⋅:=

full section at fc, a reference valuePmax 560.62 ton=

we accept to no make it interact with atop and at bottom strains for 
steel voids deductions

Pmax π
D

2









2

⋅ fc⋅:=
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Totalmoment_Y ε1 ε2, ε3,( ) SteelMoment_Y ε1 ε2, ε3,( ) ConcreteMoment_Y ε1 ε2, ε3,( )+ PrestressMoment_Y ε1 ε2, ε3,( )+:=

Totalmoment_X ε1 ε2, ε3,( ) SteelMoment_X ε1 ε2, ε3,( ) ConcreteMoment_X ε1 ε2, ε3,( )+ PrestressMoment_X ε1 ε2, ε3,( )+:=

Totalforce ε1 ε2, ε3,( ) SteelForce ε1 ε2, ε3,( ) ConcreteForce ε1 ε2, ε3,( )+ PrestressForce ε1 ε2, ε3,( )+:=

respect left (ordinates) axisConcreteMoment_Y ε1 ε2, ε3,( )
1

nc

k

Xc
k
Ac

k
⋅ σ ε Xc

k
Yc

k
, ε1, ε2, ε3,( )( )⋅∑

=

:=

respect bottom (abscissas) axis
ConcreteMoment_X ε1 ε2, ε3,( )

1

nc

k

Yc
k
Ac

k
⋅ σ ε Xc

k
Yc

k
, ε1, ε2, ε3,( )( )⋅∑

=

:=

ConcreteForce ε1 ε2, ε3,( )
1

nc

k

Ac
k
σ ε Xc

k
Yc

k
, ε1, ε2, ε3,( )( )⋅∑

=

:=

With discretization, integration of stresses for concrete becomes summation

PrestressMoment_Y ε1 ε2, ε3,( )
1

np

k

Xp
k
Ap

k
⋅ fps ε0 ε Xp

k
Yp

k
, ε1, ε2, ε3,( )+( ) σ ε Xp

k
Yp

k
, ε1, ε2, ε3,( )( )−( )⋅∑

=

:=

PrestressMoment_X ε1 ε2, ε3,( )
1

np

k

Yp
k
Ap

k
⋅ fps ε0 ε Xp

k
Yp

k
, ε1, ε2, ε3,( )+( ) σ ε Xp

k
Yp

k
, ε1, ε2, ε3,( )( )−( )⋅∑

=

:=

PrestressForce ε1 ε2, ε3,( )
1

np

k

Ap
k

fps ε0 ε Xp
k
Yp

k
, ε1, ε2, ε3,( )+( ) σ ε Xp

k
Yp

k
, ε1, ε2, ε3,( )( )−( )⋅∑

=

:=

respect left (ordinates) axisSteelMoment_Y ε1 ε2, ε3,( )
1

n

k

Xs
k

As
k

fs ε Xs
k
Ys

k
, ε1, ε2, ε3,( )( ) σ ε Xs

k
Ys

k
, ε1, ε2, ε3,( )( )−( )⋅ 

⋅∑
=

:=

respect bottom (abscissas) axisSteelMoment_X ε1 ε2, ε3,( )
1

n

k

Ys
k

As
k

fs ε Xs
k
Ys

k
, ε1, ε2, ε3,( )( ) σ ε Xs

k
Ys

k
, ε1, ε2, ε3,( )( )−( )⋅ 

⋅∑
=

:=

SteelForce ε1 ε2, ε3,( )
1

n

k

As
k

fs ε Xs
k
Ys

k
, ε1, ε2, ε3,( )( ) σ ε Xs

k
Ys

k
, ε1, ε2, ε3,( )( )−( )⋅∑

=

:=
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( )( )

fc_max_inferred σ ε 0 m⋅ D, ε1, ε2, ε3,( )( ):=Max_Concrete_stress σ MaxCstrain ε1 ε2, ε3,( )( ):=

fconc x y,( ) σ ε x y, ε1, ε2, ε3,( )( ):=

ε4 ε D D, ε1, ε2, ε3,( ):=

ε3 Result3:=ε2 Result2:=ε1 Result1:=

Result Find ε1 ε2, ε3,( ):=

MaxCstrain ε1 ε2, ε3,( ) εcu_current ε1 ε2, ε3,( )≤

since we have reduced the problem to plane P, MTotalmoment_Y ε1 ε2, ε3,( ) P r⋅=

Totalmoment_X ε1 ε2, ε3,( ) P r
Mu

P
+









⋅=

Totalforce ε1 ε2, ε3,( ) P=

Given

Solving the problem

εcu_current ε1 ε2, ε3,( ) εcu fc( ) ConcreteForce ε1 ε2, ε3,( ) Pref≤if

εcu fc( ) εfc fc( ) εcu fc( )−( )

ConcreteForce ε1 ε2, ε3,( )
Pmax

Pref

Pmax

−








2

1
Pref

Pmax

−








2
+

















otherwise

:=

the maximum (mean) compresive stress 
in our meshed elements

MaxCstrain ε1 ε2, ε3,( ) maxe 0←

maxe ε Xc
j
Yc

j
, ε1, ε2, ε3,( )← ε Xc

j
Yc

j
, ε1, ε2, ε3,( ) maxe≥if

j 1 nc..∈for

maxe

:=
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Totalmoment_Y ε1 ε2, ε3,( ) 25m ton⋅=
P r⋅ 25m ton⋅=

Concrete Strains and Stresses

inferred worst solicitations, 
derived from solution

value atop, extrapolated from 
the plane that produces 
equilibrium

in calculated fibers

MaxCstrain ε1 ε2, ε3,( ) 0.0011= εc_max_inferred 0.00126=

Max_Concrete_stress 232.09
kgf

cm
2

= fc_max_inferred 250.23
kgf

cm
2

=

MaxCstrain ε1 ε2, ε3,( )
εcu_current ε1 ε2, ε3,( )

29.68%=
εc_max_inferred

εcu_current ε1 ε2, ε3,( )
33.92%=

i 1 nc..:= xi Xc
i

:= yi Yc
i

:= zi fconc xi yi,( ):=

fsteel xa ya,( ) fs ε xa ya, ε1, ε2, ε3,( )( ):= εc_max_inferred ε 0 m⋅ D, ε1, ε2, ε3,( ):=

AttackAngle 0 deg⋅:=
MaxCstrain ε1 ε2, ε3,( ) 0.0011=

TraceAngle atan
D

D

ε1

ε1 ε2−

ε3

ε3 ε4−
−









⋅








:=

fps_at_equilibrium fps ε0 ε r r, ε1, ε2, ε3,( )+( ):=

Please note we have solved equilibrium in axes different from those data, so rotated  β 16.7deg= where β atan
My

Mx









:=

Equilibrium Attack and Response Angles

Totalforce ε1 ε2, ε3,( ) 100 ton=
P 100 ton=

AttackAngle 0deg=

Totalmoment_X ε1 ε2, ε3,( ) 45.88m ton⋅=
Mu P r⋅+ 45.88m ton⋅=

TraceAngle 0.02− deg=
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Higher_Steel_stress

fy
48.52%=

Lower_Steel_stress

fy
37.61− %=

if positive compressiveIf negative tensile

if negative tensile•

if positive compressive•

Higher_Steel_stress 2046.6
kgf

cm
2

=Lower_Steel_stress 1586.61−
kgf

cm
2

=Steel stresses 

Higher_Steel_stress max zz( ):=

Lower_Steel_stress min zz( ):=

zzj fsteel xxj yyj,( ):=yyj Ys
j

:=xxj Xs
j

:=j 1 n..:=

Plot curtailed to •

centers of 
considered 
concrete elements
If you want more •

precision use 
elements of lesser 
size

Concrete Stresses

x

cm

y

cm
,

z

kgf

cm
2

,








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∆p2 136.31MPa=∆p1 93.45− MPa=

Higher_Prestress_Mat_stress

fpu
47.67− %=

Lower_Prestress_Mat_stress

fpu
60.02− %=

If negative tensile
if positive compressive, 
otherwise remains tensile

if negative tensile•

if positive compressive•

Higher_Prestress_Mat_stress 886.69− MPa=Lower_Prestress_Mat_stress 1116.45− MPa=

∆p2 fps_as_prestressed Higher_Prestress_Mat_stress−( )−:=Higher_Prestress_Mat_stress max zzz( ):=

∆p1 fps_as_prestressed Lower_Prestress_Mat_stress−( )−:=Lower_Prestress_Mat_stress min zzz( ):=

zzz j fps ε0 ε xxxj yyy j, ε1, ε2, ε3,( )+( ):=yyy j Yp
j

:=xxxj Xp
j

:=j 1 np..:=

fps_as_prestressed 1023− MPa=Prior to apply moments and axial forcePrestressing Material Stresses

Steel Stresses

xx

cm

yy

cm
,

zz

kgf

cm
2

,








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Prestressing Material Stresses

xxx

cm

yyy

cm
,

zzz

MPa
,








Strains

i 1 nc..:= xi Xc
i

:= yi Yc
i

:= epsiloni ε xi yi, ε1, ε2, ε3,( ):=

Concrete Strains

x

cm

y

cm
, epsilon,








Plot curtailed to centers of •

considered concrete 
elements
If you want more precision •

use elements of lesser size
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0.01 0 0.01 0.02 0.03

εps
j

fpy 246.84ksi= Ep 27557.15ksi=
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