fC24 Ocompatibility of deformations STATUS of PC circular section subject to P
ux

e 1 between 15 passive steels
e 1 between 19 active prestressing steels or materials

e concentrical array of strands

y

=]

Setup for Units is the default to Sl.

Initialization ORIGIN = 1  Count with fingers TOL := 1 CTOL := 1

kgf ksi N
g i - kip := 453.592-kgf MPa := ——

ton := 1000-kgf ksi := 70.307~—2 psi = 5
cm 1000 mm
AND2(a,b) = |if a=1 OR2(a,b) == |1 ifa=1 DIV(a,b) := ﬂoor(%) assumed both positive
Lifb=1 otherwise
0 otherwise 1 ifb=1
0 otherwise 0 otherwise
[«
Section Circular section od D diameter D := 50-cm
Mesh
ngp, = S5 annular layers ngyv i= 12 meridian pieces Ne = N NeM total number of concrete elements in the mesh ne = 60
=]

r:=5 Ao = |k« 1
while k < ngy
je1

while j < ng[,

- . 2 F_1
A RN Y ) B ) E Dk
(k=1)-ncL+] NeMm Nel, N¢l,

0-m otherwise

jej+1
kek+1

return A,



Re = |k« 1
while k < ngp
j< 1

while j < ng[,

j—1

Ncr,

if > 1

0-m otherwise

R
. T j DL,
Sin
2 NcM
RC (_ - * =
(k=Dyner+j 3 2-m ]
Neym —
Ncl,
jej+1
k«k+1
return R

Xei= |k«1

while k < ngp
je1

while j < ng[,

X < 1r+sin 2.1 |-R¢
NeM (k=1)nl+]

(k1) ner+]
jej+1
kek+1

return X,

Y. = |k« 1

while k < ngp

j 1

while j < ng[,
Yc(k—l)-ncL+j “«—r— cos( o .Z'RJ'RC(k—I)‘nCLﬂ
jej+1

k«k+1

return Y

j—1
NcL,

xif j> 1

0-m otherwise

Solicited by




enter both moments positive

P := 100-ton M := 20-m-ton will be assumed to compress atop and towards right
P assumed to act at center of gravity of gross section
Enter (positive) My = 6-m-ton e M, is respect axis paralell to abscissas and My respect axis paralell to ordinates
compression . . . . . o
P ! ¢ moments will be combined prior to solving for equilibrium; it is usually stated that
otherwise solution is overconservative
Passive Steel e Choose one passive Steel type from the list below.

e If you choose one Safety Factor for Steel Yy (must be bigger than -or equal to- 1) the strength assumed in

Steel := 12 Ty = 1.15

calculation will be the real one divided by the steel strength reduction factor. Reduction will be by affinity. This normally

will be safe
Type o Steel Material e For earthquake loads safety factor must be 1 to properly capture behaviour
following list Safety Factor e You can assess the chosen steel performance by the stress-strain diagram as plotted below.
Any number not corresponding to the list will default to case 1 (perfectly elastic-perfectly plastic steel)
1. Any perfectly elastic-perfectly plastic Input for and if Steel=1 (Perfectly Elastic-Perfectly Plastic steel)
Spanish 2. AEH-400 N
MPa denoted 3. AEH-500 N kgt .
as per code 4. AEH-600 N fy = 4100 — will affect exclusively Steel type 1.
5. AEH-400 S cm
6. AEH-500 S
7. B400S
8. B500S
9. AEHH400F
10. AEH-500 F
11. AEH-600 F
12. Grade 60
us 13. Grade 65
ksi denoted 14 Grade 70
15. Grade 75
kegf .
Eg = [2100000-—2— if Steel < 11 kef
em?> Es = 2038903 —

cm
29000-ksi otherwise

Will assume antimmetrical stress-strain laws

Any perfectly elastic, perfectly plastic steel (1)

f,
Y
By = E. g, = 0.00201 yield strain when Steel =1
S y
f,
A 3565.22g assumed vyield stress when Steel=1
Ty cm?



Cold strain-hardened deformed bar steels (9 to 11)
ox := 5000 seed, implied kgf/cm2

The Ramberg-Osgood branch thing

Given
5
0.7
+0823y,) | 2 -2 =¢

s vy
[ [
Cm2 Cm2
kgt .

csover_prop(g) = —Z'Flnd(GX)

cm
Ramberg-Osgood no closed form, and we want such, so we make a fit to it

fy
5 0035 -2
. yy ES .
Parts := 200 j:=1.Parts+1 gsji=—+——— (-1
E; Parts
VS = cspline(ss,css) fss(a) = interp(vs,as,cs,s)

fscold(g) = |Ege if € £0.7

F11|k;< |k<>-n

wn

fss(a) otherwise

GSj = Gover_prop(ssj)



Spanish Steels whose stress-strain diagrams are formed
by only 2 straight lines per quadrant (2 to 8)

New B 400 S and B 500 S are made equal to AEH-400 S and AEH-500 S which are very similar

kgf kgf
fy = 4100—=  f,:=4305—— ¢, :=0.08
2 2
cm cm
finc(fu) =1, - fy increment of stress from turning point (fy is surmised data)
fincl £
Ez(gy’gu’fu) = mc( u) if Yy = 1 slope at strain hardening if any
&y~ By
find(f0)
Ty .
" otherwise
y J—
y 'fu
Vy Ey
€y — -—
Eq Ty
. Ey
stlineS(gagyaguafu) = ES'8 if e <—
Vy

f,

€
A Ez(ay,au,fu)~ e —— | otherwise
Yy Yy




American Reinforcing Passive Deformed Bars
(12 to 15)

These we rarely will use with any (steel) strength reduction factor, since this is not usual in
american codes; still, we will formulate this also for consistency and completeness of
formulation.

U} D¢G € A C
€ B D

Gr fou e 50

]

60 4218.42 7354.11 3135.69 .002016 .0091 .0729 1.748272 .173674 -.251726 1.173672
USA 65 4569.96 7536.91 2966.96 .002204 .0086 .0717 1.75624 —.145637 -.243758 .854363
T 170 4921.49 7719.71 2798.22 .002396 .0082 .0706 1.766823 —.416587 —233175 .583412

75 5273.03 7902.51 2629.48 .002592 .0077 .0694 1.780521 -.655189 -.219478 .344811

The values are for static loads and don't take into account the higher values
attainable under high strain loading rates

€ — USAROW, 6

XPAR(g,Row) :=
USAROW,7 - USAROW,6

USARow, 3 XPAR(£,Row) + USARow.o- XPAR (& ,Row)”

YPAR(g,Row) := -
1+ USAROW,9'USAROW, 10+ USAROW, ll'XPAR(S ,ROW)

USA
fUSA(g,Row) = |Ege if g < —27Row,3
Ty
kef
cm2
- | USARow,2 if € < USARow,6 otherwise
Ty
[ YPAR(&,Row)-(USARow.3 — USARow.2) | + USARow,2 otherwise



fs_positive(g) =

4100-k;gf

folines| €5

5100-——
2

folines| €

6100-——
2

folines| €

4100-——
2

folines| €

5100-——
2

folines| €

4100-——
2

folines| €

5100-1(;gf
2

folines| €

Es

if Steel = 9

kgf

£, « 4100-—2
cm

return fscold(s)

if Steel = 10
kef
£, « 5100-—=
2
cm
return fscold(g)

if Steel = 11

£, < 61002
2

cm

return fyoq1q ( 8)

if Steel = 12

Row « 1

,0.1,4100-——
2

,0.1,5100-——
2

,0.1,6100-——
2

kgf

cm

kgf

cm

kgf

cm

kgf

,0.08,4305-—2

cm

kgf

,0.05,5355-——
2

cm

kgf

,0.08,4305-—2

cm

kgf

,0.05,5355-——
2

cm

retiirn frica (?. i Rnw)

if Steel = 2
if Steel = 3
if Steel = 4
if Steel =5
if Steel = 6
if Steel = 7
if Steel = 8

Passive_Steelrype =

"AEH-400 N" if Steel = 2
"AEH-500 N" if Steel = 3
"AEH-600 N" if Steel = 4
"AEH-400 S" if Steel =5
"AEH-500 S" if Steel = 6
"B 400 S" if Steel =7

"B 500 S" if Steel = 8
"AEH-400 F" if Steel = 9
"AEH-500 F" if Steel = 10
"AEH-600 F" if Steel = 11
"Grade 60" if Steel = 12
"Grade 65" if Steel = 13
"Grade 70" if Steel = 14
"Grade 75" if Steel = 15

return "Generic Perfectly Elastic - Perfectly Plastic" otherwise



4100-ki@f2

cm

510022
2

cm
6100-1(;gf
2

cm
4100-kif2

cm

cm

4100-g
2

cm
5100-1(;gf
2

cm
4100-kif2

cm

cm

6100-ki@f7

I STYTTEsT o TuoANT oS TY Ty

if Steel = 13
Row « 2
return fyg A(g ,Row)
if Steel = 14
Row « 3
return fyg A(g ,Row)
if Steel = 15

Row « 4

return fyg A(g , Row)

otherwise
€
Ege if ¢ < i
Ty
Ege
otherwise
Ty
if Steel = 2
if Steel = 3
if Steel = 4
if Steel = 5
if Steel = 6
if Steel = 7
if Steel = 8
if Steel = 9
if Steel = 10
if Steel = 11



cm
60-ksi if Steel = 12
65-ksi if Steel = 13
70-ksi if Steel = 14
75-ksi if Steel = 15

fy otherwise

fs(s) = fs_positive(s) ife2>0

—f _positive(_s) otherwise

0.035
j:=0..400 =—-(—200 ffy =1
j Bs. | = o0 (= 200) ‘o s(ssjﬂ)
=]
6000
//
4000
2000
ffsj+1
g 0
cm
—2000 '
~4000
//
76000 ~0.03 —0.02 —0.01 0 0.01 0.02 0.03
8S.
j
kgt 1 n n
fy = 4218.42—2 Yy = L.15 Steel = 12 Passive_Steelrype = "Grade 60
cm
Passive Steel Geometry
n := 6 number of bars Dy, = 20-mm Cover_to_axis := 5-cm
Qg = 30-deg centered angle, from (negative or) -Y axis towards lowest passive bar center, enter positive if such bar to be found counterclockwise
[+]



M
L Y _ . _ S
B := atan Ve B =16.7deg O = 0ps — P M, = /sz N Myz M, = 20.88 m-ton the combination moment

X we will be checking

the above defined passive bar is found (respect rotated -Y' axis --plane of flexion--, from moment combination) at og =133 deg counterclockwise, if positive
Equilibrium will be defined respect such new X' and Y' axes. We will omit primes in our notation from now on.

= 3 Tto bar := I — Cover_to_axis Tto bar = 20cm

perpendicular and paralell to
combination moment Y plane

360-deg:|

360-d
Xs ==T+Tt bar-sin|:ocs+(j— 1) —eg:|
j - n

YSj =r- rto_bar-cos|: os+(-1)-
since origin at lower left corner of encasing adjusted square

Change of axis we have made only to use single Mu; equilibrium we will establish nevertheless biaxially to account for any dissymmetry

2

Active (PRESTRESSING or POSTENSIONING) Steel (or FRP cable)

Prestmae := 11 v,y =1
Type Prest. Material
following list Safety Factor

fpyf := 0.915 this is fpy/fpu

Kew = 0.55 fraction of fpu at which the prestressing material is assumed to pass the section (without taking into account the moment effects brought by prestress)
ps -— Y=~ this percent permits to evaluate the prestress forces, initial without moment and then in equilibrium with the moment

e must be lower than fpyf (the prestressing material is not allowed to undergo anelastic deformation at prestress nor service level limit states)
e it is assumed the same degree of prestress will be imparted to all prestressing material.

Input for material 1 (only affects it)

. . fpul
Epp = 20000-ksi  f,y1 = 250-ksi Epul =
Ep1
Any perfectly elastic material till fracture kef
Spanish Y 1570 C wire foy1 = fpul four = 17576.75 — €pul = 0.0125
MPa denoted Y 1670 C wire Cm2
as per code Y 1770 C wire per definition
Y 1860 C wire warranted strength

Y 1770 S2-wires
Y 1860 S3-wires
Y 1960 S3-wires
Y 2060 S3-wires

10. Y 1770 S7 strand

11. Y 1860 S7 strand

12. ASTM A 421 Grade 270 wire
us 13. ASTM A 416 Grade 270 strand
ksi denoted 14 Lo-rex 300 strand

15. ASTM A 722 Grade 150 bar

©ONOOAWN =

10



16. ASTM A 722 Grade 160 bar
17. ASTM A 722 Grade 157 bar
18. Leadline Grade 285 ksi FRP cable

Made in 19. CFCC Grade 250 ksi FRP cable
Japan

Choose one prestressing material from the listabove.
If you choose one Safety Factor for the prestressing material Ypy (must be biggerthan -orequalto- 1)the strength assumed in calculation will be the real one

divided by the steel strength reduction factor. Reduction will be by affinity for whenever the Ramberg Osgood formulation is used and "proportional" (see formulation)
for others.
You can asess the choosen prestressing material performance by the stress-strain diagram as plotted below.
Any number not corresponding to the list will default to case 1 (perfectly elastic material)
Ensure the existence of the prestressing part as assumed from catalog
We conservatively take Ep=28500 ksi for american strands from PCI 4th ed Hbk. instead of 28600 of ASTM.
Lo-rex 300 ksi strand is modeled following spanish's Ramberg-Osgood model. This may be too much conservative and you may be wanting to alter formulation.
7 wire Strands are usually 0.5" and 0.6", with respective areas 0.153 in2 and 0.217 in2
The multi-strand cables made of paralell strands can take the same formulation than strands themselves. At least there are...
multistrand 1/2": 1 to 31, 37,42, 55 and 61 strands
multistrand 0.6": 1 to 22, 27, 31, 37 and 42 strands
Usual perstressing bars:

5/8" (157 ksi)

A" q1/4" 138" (150 and 160 ksi break strength)
FRPs Fiber Reinforced Plastics cables | wouldn't et to go overly compressed in any state, so check if you find some in your checked section
Typical FRPs

Leadline @8 mm

CFCC @152 mm
We don't put a limit for the attainable strains for the given laws, but provide strength cutoffs fpr the prestressing materials; this will preclude the consideration of
unattainable strains, given the biunivocal relationship between stress and strain..The assumption for the perfectly elastic material 1 is that it breaks when it reaches
it maximum strength, so ensure by check the maximum strain prior to rupture is not attained under the investigated limit load. This caution is extensive to almost
any of the used prestressing materials, since may of them attain higher strength than its limit one under such strain-stress laws (that have or should have limit strain
for their application). Such assumption is unrealistic and non conservative and you must ensure by personal check the modeled and solved status is right in
strength and strain.
Related with the previous paragraph, we limit our viewport for the assumed antimmetrical stress-strain prestressing material diagrams to the commonly assumed
usable ranges Whenever the red line representing the stress-strain diagram cuts falls out of the viewport you might be over the real or purported warranted strength
or outside the warranted attainable strain and you should not have your prestressing material at such (failure attained) strain.

(1) Any perfectly elastic prestressing material

€ny1 = 0.0125 assumed real limit strain when Prestressed

p material setto 1
f ul kef

L 17576.75 i assumed limit stress when when Prestressed
Ypy cm material setto 1

(18) Leadline

11



Eplg = 21300-ksi fpu18 = 285-ksi €puls =
Epis
' kgf
o cm
per definition value shown not as if
affected by safety assumed real limit strain when when
factor Prestressed material setto 18

€purg = 0.01338

fpu18 kgf assumed limit stress when when Prestressed

= 20037.49—2 material setto 18
Y py cm

(19) CFCC carbon fiber cable

. . fpu19
Epig := 20000-ksi fpulg = 250-ksi €pul9 =
Epi9
p
' kgf
o cm
per definition value shown not as if
affected by safety assumed real limit strain when when
factor Prestressed material setto 19
8pu19 = 0.0125
f kef imi
pul9 g assumed limit stress when when Prestressed
= 17576.75 — material setto 19
T py cm

Prestressing steels here admitted ruled by the Ramberg-Osgood
diagram in the spanish codes (art. 32 EHE)

(2) Spanish prestressing steel designation (wire) Y 1570 C

(3) Spanish prestressing steel designation (wire) Y 1670 C

(4) Spanish prestressing steel designation (wire) Y 1770 C

(5) Spanish prestressing steel designation (wire) Y 1860 C

(6) Spanish prestressing steel designation (bi-wire) Y 1770 S2
(7) Spanish prestressing steel designation (tri-wire) Y 1860 S3
(8) Spanish prestressing steel designation (tri-wire) Y 1960 S3
(9) Spanish prestressing steel designation (tri-wire) Y 2060 S3
(10) Spanish prestressing steel designation (strand) Y 1770 S7
(11) Spanish prestressing steel designation (strand) Y 1860 S7
(12) ASTM A 421 Grade 270 wire

(13) ASTM A 416 Grade 270 strand

(14) Lo-rex 300 strand

(15) ASTM A 722 Grade 150 bar

Lacking a stress-strain
diagram we use EHE's
Ramberg-Osgood as well for
lo-rex 300 and all other
american prestressing steels
(be they bar, wire or strand).
This may prove to be too
much conservative, and you
might want to substitute your
own more correct formulation.
250 ksi strand would be
similar to (10) material

12



(16) ASTM A 722 Grade 160 bar
(17) ASTM A 722 Grade 157 bar

1000-N

Ep = |200 if AND2(Prestyg; > 2, Prestyg; < 5)

mm

otherwise

1000-N
190-

if AND2(Prestmg > 6, Prestpq; < 11)
mm

otherwise
29000-ksi if AND2(Prestmat > 15,Prestyae < 17)

otherwise
29000-ksi if Presty, = 12

otherwise
28500-ksi if AND2(Prestmat > 13, Prestya < 14)

otherwise

Epig if Prestyae = 18

otherwise

Ep1 otherwise

13



fou == | 1570-MPa if Prestya = 2
1670-MPa if Prestyat = 3
1770-MPa if Presty,t = 4
1860-MPa if Prestya = 5
1770-MPa if Presty,t = 6
1860-MPa if Presty,t = 7
1960-MPa if Prestya = 8
2060-MPa if Presty, = 9
1770-MPa if Presty,e = 10
1860-MPa if Presty, = 11

270-ksi if Presty, = 12
270-ksi if Presty,s = 13
300-ksi if Presty, = 14
150-ksi if Prestya = 15
160-ksi if Presty, = 16

157-ksi if Presty, = 17

fpu1 otherwise

foy = | fpyf-fpu if AND2(Prestmqt > 2,Prestyy; < 17)

fou otherwise

opx = 15000 seed, implied kgflcm2
. The Ramberg-Osgood branch thin
Given g-vs9 o
opXx 5 ( opx 0.7 .
0823y, | P L] =
B oy vy
Kef kef
2 2
cm cm
kegf .
Gover_prop_p(s) = 2-F1nd(0px)
cm

Ramberg-Osgood no closed form and we want such so we build a fitted curve



fpy

By 0035 -2
. Ypy Ep
Parts := 200 J:=1.Parts+1 €S = +
Ep Parts
Vs = cspline(as,cs) fpss(a) = interp(vs,es,cs,a)

fpsRO(S) = |Epe if e < 0_7.&
Ep
fpss ( 8) otherwise

fhs J)ositive(g) = fpsRO(S) if AND2(Prestmat > 2,Prestyat < 17)

Ep-e otherwise
pu = [0.035 if AND2(Prestmy > 2,Prestyy < 17)

otherwise

fouto

if Prestpa = 19
Epi9

otherwise

fpu18

if Prestyg = 18
Ep18 me

f; ul
i otherwise
Epi

PS(S) = fps_positive(g) if €20

—fos _positive(—e) otherwise

j = 0..400
€
pu .
= —_— _ 2
s, 200 02 ff,

=1 (8 )
PSjan PSP

=0

Oveerp_p(gsj)

15



1-10* 1000
fh .
kef 0 o
T MPa
-1.10* ~1000
—0.03 —0.02 —-0.01 0 0.01 0.02 0.03 —0.03 —0.02 —0.01 0 0.01 0.02 0.03
spsj spsj
Prestyat = 11 kof kof kof
fou = 18966.72—2— £, = 1735455~ E, = 1.94x 10°—= fou = 1860MPa foy = 1701.9MPa  E, = 190000 MPa
2 2 2
cm cm cm
€pu = 0.035
Prestress
foukps
gp == — = g = —0.00538 negative since initial tensile status of prestressing material
p
fps as prestressed = fps(so) fos as prestressed = —1023 MPa negative since tensile

Prestressing Materials Geometry
np = 4number of strands or whatever App = l-cm2 Cp = 10-cm
:= 45-deg centered angle, from (negative or) -Y axis towards lowest passive bar center, enter positive if such bar to be found counterclockwise

(Xop

200

100

~100

~200

~0.03 ~0.02

fou = 269.77ksi

—0

oy = Olgp — P

the above defined passive bar is found (respect rotated -Y' axis --plane of flexion--, from moment combination) at o, = 28.3deg counterclockwise, if positive

p
Equilibrium will be defined respect such new X' and Y' axes. We will omit primes in our notation from now on.

I =

D
3 Tto p bar ‘=T —Cp Tto p bar = 15em

16



. : 360-deg
Xp =1+ rtOJ,_bar-s1n|: ap+(—1)———

ij =r-— rtOJ,_bar-cos|: o, + Gg-1):-

360-deg perpendicular and paralell to
combination moment Y plane

np

since origin at lower left corner of encasing adjusted square

Change of axis we have made only to use single Mu; equilibrium we will establish nevertheless biaxially to account for any dissymmetry

A, = A

P, pl
=
Concrete You may feel adequate Take into account? Take into account? Note
to enter a fcd reduced 1 for YES 1 for YES Formulation believed to be
feog := 35-MPao©ne, ora mean Confinement := 04 o NO Tensile_stress := 0 ¢ ¢or NO adequate even for the most
probabilistic) real value exacting , concretes.
(probabilistic) real val ting HPC, VHS t
confinement 1 only if per ACI 318
. . . the Sustained Loading strength reduction factor will have
vsr = 0.8 Sustglned andmg strength reduction faCth (from 0.75 to 0.85) fo = feag-vsL scarce effect in the s?rengthgof beams designed to fail by
see fig 39.3 in EHE code (preferably not bigger than 0.8) steel fracture, but will be essential to the safety of columns
[+l

grc €valuation ere(fe) 1= 0015 +.002—=

The strain at which concrete reachs its higher strenght f is Sfc(fc) = 0.00194

gst €vValuation

. You can alternatively make k= 6.7 . P
Kfet = 7.3 if for strenght or simply to be more fCt(fC) = Koty fe-psi
conservative
kgf kgf kgf
fu(fe) = 33.6— fu(fe) = 33.6— fu(fe) = 33.6—
cm cm cm

We could get approximately the strain at which the ultimate tensile strain is reached, but will
do exactly solving the equation in first quadrant:

kgf
f. = 285.52i2 Reminder
cm
We'll solve the limit tensile strain without
Our unwarranted guess ¢ = .0005-—— units since Mathcad 8 doesn't seem able
cm  to manage here properly these
- kgf
for(fe) = Keory/ferpsi fu(fe) = 33.6E

17



2
cm

—
kgf
el fc) == .0015 +.002-
() 1300 £(fo) = 0.00194 =
cm
Given
fct(fc) € € 2
=12 —
f, ere(f) ) \er(fe)
€fet0 = —Find(g) €fet0 = —0.00012
gfct(fc) = if (Tensile_stress,gfctO,O) afct(fc) =0
£, €valuation .
100 .0039
350 .0035
kef .
Stress := — 500 Strain := | .0028
‘M1 800 0028
1200 .0034
vs := Ispline(Stress, Strain) Scu(fc) = interp(vs,Stress,Strain,fc)

The ultimate strain for the given fc for a flexural condition like this is then Scu(fc) = 0.00371

(5(8) evaluation Stress in concrete corresponding to strain ¢

Kecy := if (Confinement ,0.98,0.91) kg, = 0.91 as per disgression



0 if & < egy(fe)
otherwise
—€ —€ 2
-1 12 — if fi) <e <0
8fc(fc) 8fc(fc) 1 ngt( C) °
otherwise
£ £ 2
2 - if 0 < f,
8fc(fc) 8fc(fc) 1 = SfC( C)
otherwise
g” — 2e-ep(f) +en(fe)
1- (1 - kscu) 5 >
8cu(fc) - 2‘8fc(fc)‘8cu(fc) + 8fc(fc)
0 if € > acu(fc) otherwise

will rule stress determination in concrete for input €

Parts := 400

Say

ole) = 237.02kif2

cm

e :=0.00114

. 8cu(fc) - 8fct(fc) .
8CJ a Parts 0-D

j:=1.Parts+1

ff,

T G(gcj)

ff,

MPa

30

25

20

15

10

5.10

0.001 0.0015 0.002

€c.
J

0.0025 0.003 0.0035

fczg = 35MPa

f. = 28 MPa

the stress-strain diagram needs to be scaled down to give the
effective (really available) strenght for sustained loads.

any load that must be held about two hours is to strength effects
a sustained load, and for what | know most structures are used
for, if any overload can occur it is almost sure it can also stay
for such time or more, i.e., the sustained load strenght reduction
factor is required.

this means you can only count on about 80% of the average
strength you would get from probes tested at the normal rate.
probability considerations, the fact of that part of the load is live
load and if it grows it won't know when to stop (so the failure is
likely to be by instantaneous overload), the safety factors, and
the growth of strength of concrete with age make that a
sustained load reduction factor bigger than 0.8 can be taken
without much structural concern; in fact 0.9 is explicitly
permitted by some codes (may be undermining a bit safety for
short term sustained loads); we prefer our more substantiated
value of 0.8 applied to specified strength

this sustained loads strength reduction factor is completely
different from any within codes; this is required in a compatibility
of deformations setup to get the real strength of the structural
member, while those of codes must further diminish the resulting
strength to compare with factored loads; not all code writers
seem fully aware of this.
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2
Phax = 7| — | -1 we accept to no make it interact with atop and at bottom strains for
steel voids deductions

Pmax = 560.62ton full section at fc, a reference value

b(z,r) = 2-r-sin(acos(r_ ZD bi(z,r) :=b[r—(z-1),1]

r

r 2-r
fe fe
Prer == —z-z-(4-r—z)-b(z,r) dz + —2-z-(4-r—z)-b1(z,r) dz
4.1 4.r
0-m r

Integration of the first branch parabolic fc growth of strength along
D for a circular section, the circular section decompression
milestone against which to gauge how much we will be curtailing
the strain towards that of at maximum compressive strength from
that of a non compressively loaded case.

Prer = 385.43 ton

M,
Cto_center ‘= ? €to center = 20.88cm We will be assuming P, Mu data referred to center of brute section as usual
- and will establish equilibrium integrating moments respect bottom of the
D section; that is, the moment of the P as per above implied positioned will be
e to_bottom = €y center + — e to bottom = 45.88 cm in place equilibrated by the moments of inner forces in steel and concrete;
- = - 2 - = all moments will be referred to bottom edge of section.

We take compression stresses positive, and tension stresses negative.
We dump the areas of both steel reinforcement and concrete layers at their c.o.g.

We need 3 epsilons to define a status of the section in the plane remain plane hypothesis.

We set these unwarranted assumptions

€1 := 0.000 at common origin (bottom, left)
€, := 0.0005 top left vertex (on ordinate axis) referred to bottom left corner of the encasing adjusted square
€5 := 0.0005 bottom right vertex (on abscissas axis)

Now we establish the strain in any point in the plane by interpolation

8(X,y,81 ,82,83) =g+ %‘(82 —81) + %'(83 — 81)

We will take into account the displaced concrete diminishing the ability of steel to contribute to
equilibrium in exactly the value of the displaced (absent) concrete force. So, the corresponding
total forces for passive steel with the effect of displaced concrete dumped unto them are
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n

Steelporce(sl,sz,s3) = Z Ask-(fs(s(Xsk,Ysk,gl,82,83)) —G(g(XSk,Ysk,sl,sz,s3)))

k=1
n
SteelMoment_X(sl ,82,83) = Z Ysk’[Ask'(fs(s(XskaYskagl ,82’83)) — G(g(Xsk’Ysk’gl ,82,83)))] respect bottom (abscissas) axis
k=1
n
SteelMoment_Y(sl ,82,83) = Z Xsk’[Ask'(fs(s(XskaYskagl ,82’83)) — G(g(Xsk’Ysk’gl ,82,83)))] respect left (ordinates) axis
k=1
p
PrestressForce(gl ,82,83) = Z Apk-(fps(go + S(ka,ka,Sl ,82,83)) - G(S(ka,ka,Sl ,82,83)))
k=1

Prestressnioment X(sl,sz,s3 Z kaA ( ps(so—i-s(Xp s Yp ,81,82,83)) (S(ka,ka,81,82,83)))
k=1

Prestressyioment Y(sl,sz,s3 Z kaA ( ps(so—i-s(Xp s Yp ,81,82,83)) (S(ka,ka,81,82,83)))
k=1

With discretization, integration of stresses for concrete becomes summation

e
Concreteporce(gl,gz,s3 Z Ac G( (Xc , Y ,81,82,83))
k=1
¢
Concretepoment X(sl ’82’83 Z Ye A G( (XC ’YC &1 ’82’83)) respect bottom (abscissas) axis
k=1
¢
Concretenoment Y(sl,sz,s3 Z Xe A G( (Xc , Y ,81,82,83)) respect left (ordinates) axis
k=1

Totalforce(sl ,82,83) = Steelporce(gl €9, 83) + Concreteporce(sl ,82,83) + PrestressForce(gl ,82,83)
Totalmoment X(81 ,82,83) = Steelnrioment X(81 ,82,83) + Concretepjoment X(81 ,82,83) + Prestressypoment X(81 ,82,83)

Totalmoment Y(81 ,82,83) = Steelpioment Y(81 ,82,83) + Concretepjoment Y(81 ,82,83) + Prestressypoment Y(81 ,82,83)
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Masztrain(sl ,82,83) = |maxe « 0

for jel..ng

maxec

8cu_current(SI €25 83) =

ecu(fc) if Concreteporce(81,82,83) < Pref

Concreteporce(s 1,€2,€ 3)

Pref

Pmax

Pmax

2

Scu(fc) + (gfc(fC) - SCU(fC))

Solving the problem

Given
Totalforce(sl ,82,83) =P

M,
Totalmomem_x(al ,82,83) =Pr+ ?

Totalmomem_y(al ,82,83) =Pr

Maxcstrain(gl ) 983) = 8cu_current(gl €2 983)

Result := Find(sl ,82,83)

Result; €, := Resulty €3 := Results

€1 :
€4 : 8(D,D,81,82,83)

feonc(X,Yy) = G(S(X,}’,Sl a82983))

Max_Concrete_stress := & (Masztrain( €1,€7,€ 3) )

Pref

Pmax

2

since we have reduced the problem to plane P, M

maxe(—s(Xcl,Yc_,gl,gz,s3) if S(XC_,Y04,81,82,83) > maxe
J J J J

ne maximum (mean) compresive stress
1 our meshed elements

otherwise

fc_max_inferred = G(S(O-m,D »€1,€2 ,83))
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fsteet(xa, ya) := fs(g(xa’ya’gl ’82’83)) €¢ max inferred = S(O'm,D »€1,€2 a83)

Attack ppgle := 0-deg

D €1 €3
Traceangle := atan| —- -
Dlej—¢e, e3-¢g4

fps_at_equilibrium = ps(so + 8(1",1',81 €2 a83))

MaxCytrain(e1,82,83) = 0.0011

M
Please note we have solved equilibrium in axes different from those data, so rotated B = 16.7deg where B = atan[—yj
X

[]

Equilibrium Attack and Response Angles

Totalforce| €1,€2,€3) = 100ton _

( ) L = Ui Attack ppgle = Odeg
Totalmoment_x(sl ,82,83) = 45.88 m-ton M, + P-r = 45.88m-ton
Traceangle = —0.02deg

Totalmoment_y(sl ,82,83) = 25m-ton P-r = 25m-ton

Concrete Strains and Stresses

. lculated fib inferred worst solicitations, value atop, extrapolated from

In calculated tioers derived from solution the plane that produces

equilibrium
MaxCytrain(e1,82,83) = 0.0011 €c max inferred = 0-00126
kgf kgf
Max_Concrete stress = 232.09i2 fc max_inferred = 250.23 iz
cm cm

MaXCStrain(gl €2 a83) —90.68% €¢ max_inferred _33.90%

8cu_current(sl »€2 ’83) 8cu_current(gl ’82a83)
E .

i:=1.n Xj = Xci yi = Yci Zi == fconc(XiaYi)

[]
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X

Concrete Stresses

y V4

cm cm  kef

2

e Plot curtailed to
centers of
considered
concrete elements

e If you want more
precision use
elements of lesser
size

cm
[+]
ji==1.n XXj 1= ij yyj = Ysj 7zj = fsteel(xxj',yyj)
Lower_Steel stress := min(zz)
Higher Steel stress := max(zz)
[«

Steel stresses

if negative tensile
if positive compressive

kef kgf
Lower_Steel stress = —1586.61 % Higher Steel stress = 2046.6i2

cm cm
If negative tensile if positive compressive
Lmier iigel 5IGss = -37.61% Higher Steel stress

= 48.52%
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Steel Stresses

&
XX Vy 7z
cm cm kef
cm2
Prestressing Material Stresses Prior to apply moments and axial force  fi,5 45 prestressed = —1023 MPa
ji=1.np XXXj = ij yyyj = ij 777j = fps(so + S(XXXj,yyyj,81,82,83))
Lower Prestress Mat_stress := min(zzz) Ap; = —(fps_as . prestressed — Lower_Prestress_Mat_stress)

Higher Prestress Mat_stress := max(zzz) Ap, := —(fps_as prestressed — Higher_Prestress_Mat_stress)

Lower Prestress Mat stress = —1116.45 MPa Higher Prestress Mat stress = —886.69 MPa

e if negative tensile
e if positive compressive If negative tensil if positive compressive,
gative tenstie otherwise remains tensile

Lower Prestress Mat _stress Higher Prestress Mat stress

= —60.02%
fou fou

= —47.67%

Apy = —93.45MPa Ap, = 136.31 MPa
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XXX Yyy 77z
cm cm  MPa

Strains

i:=1.n¢ xj = X¢. yi =Y epsilon; := s(xi,yi,al ,82,83)

e Plot curtailed to centers of
considered concrete
elements

e If you want more precision
use elements of lesser size

( . y ! )
— ,— ,epsilon
cm cm
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.01

0 0.01

S.
pJ

foy = 246.84ksi

0.02 0.03

E, = 27557.15ksi
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