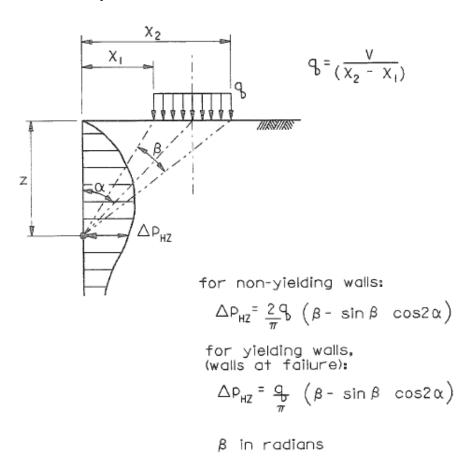

A uniformly distributed surcharge load is applied to a strip of ground parallel to a wall, as shown below.

Design Code

AASHTO


Design Criteria

- do not consider any load factors
- assume the wall is restrained from movement

At a point 4 feet below the top-of-soil elevation, the horizontal pressure due to the surcharge, $\Delta_{\rm ph},$ is most nearly

- (A) 0.14 kip/ft²
- (B) 0.30 kip/ft²
- (C) 0.52 kip/ft²
- (D) 0.90 kip/ft²

Uniform Surcharge From EM1110-2-2502 or any soil textbook.

$$\beta = \tan^{-1}\left(\frac{\chi_2}{z}\right) - \tan^{-1}\left(\frac{\chi_1}{z}\right)$$

$$\alpha = \tan^{-1}\left(\frac{\chi_2 + \chi_1}{2z}\right)$$

$$X_1 = 4 \text{ ft}$$

 $X_2 = 14 \text{ ft}$
 $q = 640 \text{ psf}$
 $z = 4 \text{ ft}$
 $\alpha = \tan^{-1} \left[(14+4)/(2(4)) \right] = 1.153 \text{ rad}$
 $\beta = \tan^{-1} (14/4) - \tan^{-1} (4/4) = 0.507 \text{ rad}$
 $\Delta P_{HZ} = 2(640)/\pi \left[0.507 - \sin(0.507) \cos 2(1.153) \right] = 339 \text{ psf}$

AASHTO Surcharge Loads

3.11.6 Surcharge Loads: ES and LS

3.11.6.1 Uniform Surcharge Loads (ES)

Where a uniform surcharge is present, a constant horizontal earth pressure shall be added to the basic earth pressure. This constant earth pressure may be taken as:

$$\Delta_{p} = k_{s} q_{s}$$
 (3.11.6.1-1)

where:

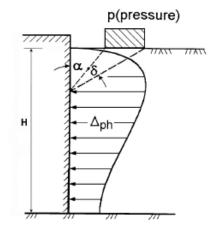
 $\Delta_{_{D}}$ = constant horizontal earth pressure due to uniform surcharge (ksf)

k_s = coefficient of earth pressure due to surcharge

q = uniform surcharge applied to the upper surface of the active earth wedge (ksf)

3.11.6.2 Point, Line and Strip Loads (ES) — Walls Restrained from Movement

The horizontal pressure, Δ ph in ksf, on a wall resulting from a uniformly loaded strip parallel to the wall may be taken as:


$$\Delta_{ph} = \frac{2p}{\pi} [\delta - \sin \delta \cos(\delta + 2\alpha)] \qquad (3.11.6.2-1)$$

where:

p = uniform load intensity on strip parallel to wall (ksf)

 α = angle specified in Figure 1 (rad.)

 δ = angle specified in Figure 1 (rad.)

 α = angle between foundation wall and a line connecting the point on the wall under consideration and a point on the bottom corner of the footing nearest to the wall (rad.)

 δ = angle between foundation wall and a line connecting the point on the wall under consideration and a point on the bottom corner of the footing furthest from the wall (rad.)

$$X_1 = 4 \text{ ft}$$

 $X_2 = 14 \text{ ft}$
 $Q = 640 \text{ psf}$
 $Z = 4 \text{ ft}$

$$\delta = \tan^{-1}(14/4) = 1.29 \text{ rad}$$

$$\alpha = \tan^{-1}(4/4) = 0.785 \text{ rad}$$

$$\Delta_{\rm ph}$$
 = 2(640)/ π [1.29 - sin(1.29) cos(1.29 + 2(0.785)] = 901.7 psf