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linearly elastic response. Classical modal analysis is also not applicable to the analysis
of nonlinear systems even if the damping is of classical form. One of the most important
nonlinear problems of interest to us is calculating the response of structures beyond their
linearly elastic range during earthquakes.

The damping matrix for practical structures should not be calculated from the
structural dimensions, structural member sizes, and the damping of the structural materials
used. One might think that it should be possible 10 determine the damping matrix
for the structure from the damping properties of individual structural elements, just as
the structural stiffness matrix is determined. However, it is impractical to determine the
damping matrix in this manner because unlike the elastic modulus, which enters into the
computation of stiffness, the damping properties of materials are not well established.
Even if these properties were known, the resulting damping matrix - would not account
for a significant part of the energy dissipated in friction at steel connections, opening
and closing of microcracks in concrete, stressing of nonstructural elemenis—partition
walls, mechanical equipment, fireproofing, etc.—friction between the structure itself and
nonstructural elements, and other similar mechanisms, some of which are even hard to
identify.

Thus the damping matrix for a structure should be determined from its modal
damping ratios, which account for all energy dissipating mechanisms. As discussed in
Section 11.2, the modal damping ratios should be estimated from available data on similar
structures shaken strongly during past earthquakes but not deformed into the inelastic
range; lacking such data the values of Table 11.2.1 are recommended.

11.4 CLASSICAL DAMPING MATRIX

Classical damping is an appropriate idealization if similar damping mechanisms are
distributed throughout the structure (e.g., a multistory building with a similar structural
system and structural materials over its height). In this section we develop two procedures
for constructing a classical damping matrix for a structure from modal damping ratios
which have been estimated as described in Section 11.2. These two procedures are
presented in the following two subsections.

11.4.1 Rayleigh Damping and Caughey Damping

Consider first mass-proportional damping and stiffness-proportional damping:
c=qgym and c¢c=ak (11.4.1

where the constants ap and a; have units of sec™ and sec, respectively. For both of
these damping matrices the matrix C of Eq. (10.9.4) is diagonal by virtue of the modal
orthogonality properties of Eq. (10.4.1); therefore, these are classical damping matrices.
Physically, they represent the damping models shown in Fig. 11.4.1 for a multistory
building. The stiffness-proportional damping appeals to intuition because it can be in-
terpreted to model the energy dissipation arising from story deformations. In contrast,
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Figure 11.4.1 (a) Mass-proportional damping; (b) stiffness-proportional damping.

the mass-proportional damping is difficult to justify physically because the air damping
it can be interpreted to model is negligibly small for most structures. Later we shall
see that, by themselves, neither of the two damping models are appropriate for practical
application.

We now relate the modal damping ratios for a system with mass-proportional
damping to the coefficient ap. The generalized damping for the nth mode, Eq. (10.9.10), is

C, = apM, (11.4.2)
and the modal damping ratio, Eq. (10.9.11), is
[74)] 1
Iy = —— (11.4.3)
2 w,

The damping ratio is inversely proportional to the natural frequency (Fig. 11.4.2a). The
coefficient @y can be selected to obtain a specified value of damping ratio in any one
mode, say ¢; for the ith mode. Equation (11.4.3) then gives

ap = 2L w; (114.4)

With ap determined, the damping matrix ¢ is known from Eq. (11.4.1a), and the damping
ratio in any other mode, say the nth mode, is given by Eq. (11.4.3).

Similarly, the modal damping ratios for a system with stiffness-proportional damp-
ing can be related to the coefficient a;. In this case

Co = qy2M, and 2, = %]w,, (11.4.5)

wherein Eq. (10.2.4) is used. The damping ratio increases linearly with the natural
frequency (Fig. 11.4.2a). The coefficient @, can be selected to obtain a specified value
of the damping ratio in any one mode, say ¢; for the jth mode. Equation (11.4.5b) then
gives

a =2 (11.4.6)
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Figure 11.4.2 Variation of modal damping ratios with natural frequency: (a) mass-proportional
damping and stiffness-proportienal damping; (b) Rayleigh damping.

With a; determined, the damping matrix ¢ is known from Eq. (11.4.1b), and the damping
ratio in any other mode is given by Eq. (11.4.5b). Neither of the damping matrices
defined by Eq. (11.4.1) are appropriate for practical analysis of MDF systems. The
variations of modal damping ratios with natural frequencies they represent (Fig. 11.4.2a)
are not consistent with experimental data that indicate roughly the same damping ratios
for several vibration modes of a structure.

As a first step toward constructing a classical damping matrix consistent with
experimental data, we consider Rayleigh damping:

¢ =gom+ ak (11.4.7)
The damping ratio for the nth mode of such a system is

L=t (11.4.8)

" 2w, 27" *
The coetficients ag and a; can be determined from specified damping ratios ¢; and ¢;
for the ith and jth modes, respectively. Expressing Eq. (11.4.8) for these two modes in

matrix form leads to
V1w w ] |ao [Cf}
hd = 11.4.9
v o lat=15 1149)

These two algebraic equations can be solved to determine the coefficients ag and a,. If
both modes are assumed to have the same damping ratio ¢, which is reasonable based
on experimental data, then

20),‘ (J)j 2

ay =g
w; + W, w; + w;

ap=¢

(11.4.10)

The damping matrix is then known from Eq. (11.4.7) and the damping ratio for any other
made, given by Eq. (11.4.8), varies with natural frequency as shown in Fig. 11.4.2b.
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In applying this procedure to a practical problem, the modes i and j with specified
damping ratios should be chosen to ensure reasonable values for the damping ratios in
all the modes contributing significantly to the response. Consider, for example, that five
modes are 10 be included in the response analysis and roughly the same damping ratio &
is desired for all modes. This Z should be specified for the first mode and possibly for the
fourth mode. Then Fig. 11.4.2b suggests that the damping ratio for the second and third
modes will be somewhat smaller than £ and for the fifth mode it will be somewhat larger
than ¢. The damping ratio for modes higher than the fifth will increase monotonically
with frequency and the corresponding modal responses will be essentially eliminated
because of their high damping.

Example 11.1

The properties of a three-story shear building are given in Fig. E11.1. These include the
floor weights, story stiffnesses, natural frequencies, and modes. Derive a Rayleigh damping
matrix such that the damping ratio is 5% for the first and second modes. Compute the
damping ratio for the third mode.

Ao0Kps g kipsfin.
610 o, = 12.57, 34.33, 46.89 rad/sec
0400 0.401 (.803 0.401
610 @, =10.695;, ¢,=5 0 [, ¢3=1-0.695
400 0.803 -0.803 0.803
610
T T
Figure E11.1
Solution

1. Set up the mass and stiffness matrices.

1 400 2 -1 0
200 0 -1 1

2. Determine ap and a| from Eg. (11.4.9).

[1/12.57 12.57] {ao ] ) 0.05 }
1/34.33 3433 la )] 71005

These algebraic equations have the following solution:
ap = 0.9198 a1 = 0.0021

3. Evaluate the damping matrix.

355 —-130 ©
c=am+ a1k = 3.55 -1.30
(sym) 1.78



