
Design a reinforced concrete retaining wall for the following conditions.

$$f'c = 3000 \text{ psi}$$

 $fy = 60 \text{ ksi}$

Natural Soil: φ = 32° allowable bearing pressure = 5000psf

Development of Structural Design Equations. In this example, the structural design of the three retaining wall components is performed by hand. Two equations are developed in this section for determining the thickness & reinforcement required to resist the bending moment in the retaining wall components (stem, toe and heel).

<u>Equation to calculate effective depth, d:</u> Three basic equations will be used to develop an equation for d.

$$\begin{split} M_u &= \phi M_n \\ M_n &= A_s f_y \bigg(d - \frac{a}{2} \bigg) \\ M_u &= \phi A_s f_y \bigg(d - \frac{a}{2} \bigg) \quad [Eqn \, 1] \end{split}$$

$$C = T$$
, $0.85 f'_{c} a b = A_{s} f_{y}$
 $A_{s} = 0.85 \frac{f'_{c}}{f_{y}} ab$ [Eqn 2]

strain compatibility:
$$\frac{0.003}{a/\beta_1} = \frac{\varepsilon_s + 0.003}{d}$$
, $\frac{a}{d} = \frac{0.003}{\varepsilon_s + 0.003} \beta_1$

Assuming $\beta_1 = 0.85$,

$\mathbf{\epsilon}_{\mathrm{s}}$	a/d
0.005	0.319
0.00785	0.235
0.010	0.196
<u> </u>	-

and choosing a value for ε_s in about the middle of the practical design range,

$$\frac{a}{d} = 0.235, \quad a = 0.235d \quad [Eqn \ 3]$$

Substituting Eqn. 2 into Eqn. 1:

$$M_u = \phi \left(0.85 \frac{f_c}{f_y} ab \right) f_y \left(d - \frac{a}{2} \right)$$

And substituting Eqn. 3 into the above:

$$M_{u} = \phi \ 0.85 \frac{f_{c}^{'}}{f_{y}} 0.235 d b f_{y} \left(d - \frac{0.235 d}{2} \right)$$

$$0.883 d$$

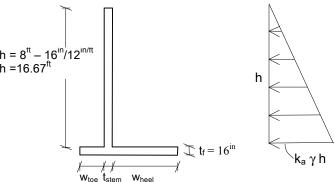
Inserting the material properties: f'c = 3 ksi and fy = 60 ksi, and $b = 12^{in}$ (1-foot-wide strip of wall, in the direction out of the paper).

$$M_u = 0.90(0.85)3^{ksi}(12^{in})(0.235)(0.883)d^2$$

 $M_u = 5.71^{\frac{k}{in}} d^2$

Equation for area of reinforcement, $A_{\underline{s}}$. The area of reinforcement required is calculated from Eqn. 1:

$$M_u = \phi A_s f_v 0.883d = 0.90 A_s 60^{ksi} 0.883d$$


 $M_u = 47.7^{ksi} A_s d$

Design Procedure (after Phil Ferguson, Univ. Texas)

- 1. Determine $\underline{\mathbf{H}}_{\underline{\mathbf{T}}}$. Usually, the top-of-wall elevation is determined by the client. The bottom-of-wall elevation is determined by foundation conditions. $\underline{\mathbf{H}}_{\underline{\mathbf{T}}} = 18$ feet.
- **2. Estimate thickness of base.** $t_f \approx 7\%$ to 10% H_T (12" minimum) $T_f = 0.07 (18' \times 12")' = 15.1"$

use $t_f = 16''$

<u>3.</u> <u>Design stem</u> (t_{stem}, As_{stem}) . The stem is a vertical cantilever beam, acted on by the horizontal earth pressure.

calc. d:

$$P_{fill} = \frac{1}{2} (k_a \gamma h) h \ (1^{fi} \ out \ of \ page)$$

$$k_a = \frac{1 - \sin \phi}{1 + \sin \phi} = \frac{1 - \sin(32^\circ)}{1 + \sin(32^\circ)} = 0.31$$

$$P_{fill} = \frac{1}{2} (0.31)(100 pcf)(16.67^{ft})^2 \ (1^{ft}) = 4310^{lb}$$

$$P_{sur} = k_a q_{sur} h (1^{ft}) = 0.31(400 psf)(16.67^{ft})(1^{ft}) = 2070^{lb}$$

$$M_u = (\text{Earth Pressure LoadFactor})(P_{fill})(\frac{h}{3}) + (\text{Live LoadFactor})(P_{\text{sur}})(\frac{h}{2})$$

$$M_u = (1.6)(4310^{lb})(\frac{16.67^{ft}}{3}) + (1.6)(2070^{lb})(\frac{16.67^{ft}}{2}) = 65.9^{k-ft}$$

$$M_{u} = 5.71^{\frac{k}{in}} d^{2}$$

$$65.9^{k-ft} (12\frac{in}{ft}) = 5.71^{\frac{k}{in}} d^{2}, d = 11.8^{in}$$

$$t_{stem} = 11.8^{in} + 2^{in} \operatorname{cover} + \frac{1}{2} (1.0^{in}) = 14.3^{in}, (assume \#8 \ bars)$$

$$d = 15^{in} - 2^{in} - 0.5^{in} = 12.5^{in}$$

$$M_u = 47.7^{ksi} A_s d$$

$$65.9^{k-ft} (12\frac{in}{ft}) = 47.7^{ksi} A_s (12.5^{in}), A_s = 1.33in^2$$

$$A_s$$
 of one #8 bar = 0.79 in²

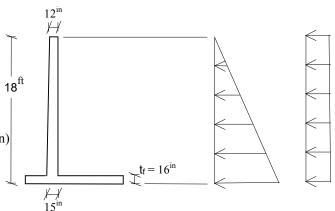
$$\frac{0.79\frac{in^2}{bar}}{1.33\frac{in^2}{ft \text{ of wall}}} 12\frac{in}{ft} = 7.13\frac{in}{bar},$$

use #8 @, 6in

4. Choose Heel Width, w_{heel} Select w_{heel} to prevent sliding. Use a key to force sliding failure to occur in the soil (soil-to-soil has higher friction angle than soil-to-concrete).

Neglect soil resistance in front of the wall.

$$set \frac{F_{resist}}{FS} = F_{sliding}$$


FS = Factor of Safety = 1.5 for sliding

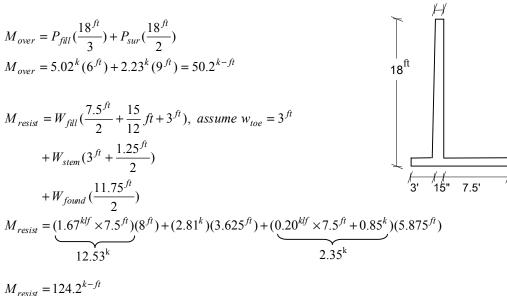
 $F_{resist} = (Vertical Force)(coefficient of friction)$

$$F_{\text{resist}} = W_T \left(\tan \phi_{natural \, soil} \right)$$

$$\tan \phi_{natural \, soil} = \tan(32^{\circ}) = 0.62$$

$$W_T = W_{fill} + W_{stem} + W_{found}$$

$$\begin{split} W_{fill} &= (100pcf)(16.67^{ft})(w_{heel})(1^{ft}) = 1670\frac{lb}{ft} w_{heel} \\ W_{stem} &= (150pcf)(16.67^{ft})(\frac{12^{in} + 15^{in}}{2} \frac{1^{ft}}{12^{in}})(1^{ft}) = 2810^{lb} \\ W_{found} &= (150pcf)(\frac{16}{12}ft)(w_{heel} + \frac{15}{12}ft + 3^{ft})(1^{ft}) = 200plf w_{heel} + 850 \end{split}$$


$$\begin{split} F_{sliding} &= P_{fill} + P_{sur} \\ P_{fill} &= \frac{1}{2} (0.31 \times 100 \, pcf) (18^{ft})^2 \, (1^{ft}) = 5020^{lb} \\ P_{sur} &= (0.31 \times 400 \, psf) (18^{ft}) (1^{ft}) = 2230^{lb} \\ F_{sliding} &= 5020^{lb} + 2230^{lb} = 7250^{lb} \end{split}$$

$$7250^{lb} = \frac{\left[1670 \frac{lb}{ft} w_{heel} + 2810^{lb} + 200 \frac{lb}{ft} w_{heel} + 850^{lb}\right] (0.62)}{1.5}$$

$$7250^{lb} \frac{1.5}{0.62} = 3660^{lb} + 1870 \frac{lb}{ft} w_{heel}, \quad w_{heel} = 7.42^{ft},$$

$$use w_{heel} = 7.5^{ft}$$

5. Check Overturning.

$$M_{resist} = 124.2^{k-f}$$

$$\frac{M_{resist}}{M_{over}} = \frac{124.2^{k-ft}}{50.2^{k-ft}} = 2.47 > 2.0 = FS_{over}, OK$$

6. Check Bearing.

$$\begin{split} &\sigma_v \ at \ end \ of \ toe = \frac{W_T}{bL} + \frac{M}{\frac{bL^2}{6}}, \ \ \text{equation is valid only if } e < \frac{L}{6} \\ &W_T = W_{fill} + W_{stem} + W_{found} \\ &W_T = 12.45^k + 2.81^k + 2.35^k = 17.69^k \\ &M = M_{over} - W_{fill} (5.875^{ft} - \frac{7.5^{ft}}{2}) + W_{stem} (7.5^{ft} + \frac{1.25^{ft}}{2} - 5.875^{ft}) + W_{found} \ (0) \\ &M = 50.2^{k-ft} - 12.53^k (2.125^{ft}) + 2.81^k (2.25^{ft}) = 29.9^{k-ft} \end{split}$$

Check that e < L/6:

$$e = \frac{m}{W_T} = \frac{29.9^{k-ft}}{17.69^k} = 1.68^{ft}, \quad \frac{L}{6} = \frac{11.75^{ft}}{6} = 1.96^{ft}, \quad \therefore e < \frac{L}{6}, \quad OK$$

$$\sigma_{v} = \frac{17.69^{k}}{(1^{ft})(11.75^{ft})} + \frac{29.9^{k-ft}}{\frac{1}{6}(1^{ft})(11.75^{ft})^{2}} = 2.80^{ksf} < 5.0^{ksf} = \text{allowable bearing capacity, OK}$$

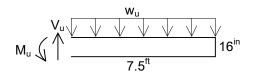
7. Heel Design.

Max. load on heel is due to the weight of heel + fill + surcharge as the wall tries to tip over.

Flexure:

$$W = W_{heel} + W_{fill} + W_{sur}$$

$$W = 1.2(150pcf)(\frac{16}{12}ft)(1^{ft})$$


$$+1.2(100pcf)(16.67^{ft})(1^{ft})$$

$$+1.6(400plf)$$

$$W = 2.88^{klf}$$

$$M_u = \frac{w_u L^2}{2} = \frac{2.88^{klf} (7.5^{ft})^2}{2} = 81.0^{k-ft}$$

$$M_u = 5.71 \frac{k}{in} d^2$$

$$81.0^{k-ft} (12\frac{in}{ft}) = 5.71\frac{k}{in}d^2$$
, $d = 13.0^{in}$ for flexure

Shear:

$$V_u = w_u(7.5^{ft}) = 2.88^{klf}(7.5^{ft}) = 21.6^k$$

$$\phi V_c = (0.75) 2 \sqrt{f_c'} b_w d = (0.75) 2 \sqrt{3000 psi} (12^{in}) d$$

$$setV_u = \phi V_c$$
, $21,600^{lb} = (0.75) 2\sqrt{3000 psi} (12^{ln}) d$, $d = 21.9^{ln}$ for shear, controls

Shear controls the thickness of the heel.

$$t_{heel} = 21.9^{in} + 2^{in} \operatorname{cover} + \frac{1}{2} in = 24.4^{in} \quad (assume \#8 \, bar),$$

$$use \, t_{heel} = 21.5^{in}$$

Reinforcement in heel:

$$M_{u} = 47.7^{ksi} A_{s} d$$

$$81.0^{k-fi} (12 \frac{in}{ft}) = 47.7^{ksi} A_{s} (21.9^{in}), A_{s} = 1.07in^{2}$$

$$\frac{0.79 \frac{in^{2}}{bar}}{1.07 \frac{in^{2}}{a}} (12 \frac{in}{ft}) = 8.83^{in},$$

$$use #8 @8"$$

8. Toe Design.

Earth Pressure at Tip of Toe:

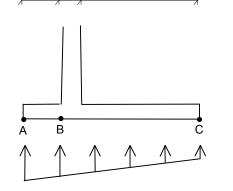
$$\sigma_v = \frac{W_u}{bL} \pm \frac{M_u}{\frac{1}{6}bL^2}$$

$$W_u = 1.2(W_{fill} + W_{stem} + W_{found}) + 1.6(W_{sur})$$

$$W_{u} = 1.2(12.53^{k} + 2.81^{k} + 2.35^{k}) + 1.6(0.4^{ksf})(18^{ft})(1^{ft}) = 32.7^{k}, \text{ (did not recalc foundation wt b.c. neglible change)}$$

$$M_{u} = 1.6M_{over} - 1.2(W_{soil} \times 2.125^{ft} + W_{stem} \times 1.0^{ft})$$

$$3' \quad 1.25' \quad 7.5'$$


$$M_u = 1.6(50.2^{k-ft}) - 1.2[12.53^k(2.125^{ft}) + 2.81^k(1^{ft})] = 45.0^{k-ft}$$

$$\sigma_{v} = \frac{32.7^{k}}{(1^{ft})(11.75^{ft})} + \frac{45.0^{k-ft}}{\frac{1}{6}(1^{ft})(11.75^{ft})^{2}}$$

$$\sigma_{v_{A}} = 2.78^{ksf} + 1.96^{ksf} = 4.74^{ksf}$$

$$\sigma_{v_{C}} = 2.78^{ksf} - 1.96^{ksf} = 0.82^{ksf}$$

$$\sigma_{v_{B}} = 0.82^{ksf} + \frac{4.74^{ksf} - 0.82^{ksf}}{11.75^{ft}} (8.75^{ft}) = 3.74^{ksf}$$

d for flexure:

$$M_u = (3.74^{ksf})(3^{ft})(1^{ft})(\frac{3^{ft}}{2}) + \frac{1}{2}(1.00^{ksf})(3^{ft})(1^{ft})(\frac{2}{3}3^{ft}) = 19.8^{k-ft}$$

$$M_u = 5.71 \frac{k}{in} d^2$$

 $19.8^{k-ft} (12 \frac{in}{ft}) = 5.71 \frac{k}{in} d^2, d = 6.5^{in} \text{ for flexure}$

d for shear:

Assume $t_{heel} = t_{toe} = 21.5^{in}$

Critical section for shear occurs at "d" from face of stem, d = 21.5" - 3"cover-1/2"=18"

$$\sigma_{v_{critical\,section}} = 0.82^{ksf} + \frac{4.74^{ksf} - 0.82^{ksf}}{11.75^{ft}} (8.75^{ft} + \frac{18}{12}ft) = 4.24^{ksf}$$

$$V_u = \frac{1}{2} (4.74^{ksf} + 4.24^{ksf})(3^{ft} - \frac{18}{12} ft)(1^{ft}) = 6.74^k$$

$$\phi V_c = (.75)2\sqrt{3000psi} \ (12^{in})(18^{in}) = 17,750^{lb} > V_u, \ OK, \ d \ for \ flexure \ controls$$

Reinforcement in toe:

$$M_{u} = 47.7^{ksi} A_{s} d$$

$$19.8^{k-ft} (12\frac{in}{ft}) = 47.7^{ksi} A_{s} (18^{in}), A_{s} = 0.28in^{2}$$

$$\frac{0.79\frac{in^{2}}{bar}}{0.28\frac{in^{2}}{ft}} (12\frac{in}{ft}) = 33^{in}, try smaller bars, say #4$$

$$\frac{0.20\frac{in^{2}}{bar}}{0.28\frac{in^{2}}{ft}} (12\frac{in}{ft}) = 8.6^{in}$$

use #4 @,8"