FAKE NAME, PE

Chemical Process Engineer

CA Professional Engineer License #1234

fakeemail@gmail.com

123.456.7890

SUMMARY

Chemical engineer with 3 years experience, coprocess design and plant operations. Seeking fresh challenges in process engineering or industrial R&D.

EDUCATION

University of Southern California | Los Angeles, CA

MS Chemical Engineering, Dec 2015 (GPA: 4.0) Project: Analysis of a Brandy Distillery

University of California, Berkeley | Berkeley, CA BS Chemical Engineering, May 2012 (GPA: 3.3)

SKILLS & KNOWLEDGE

Chemical Process Engineering

Unit Operation Sizing and Analysis, Mass/Enthalpy Balances, Vapor Liquid Equilibrium Calculations, Metallurgy & Materials Selection, Reaction Kinetics, Intensive Fermentation and Distillation Experience

Process Development and Industrial R&D

Conceptual Process Synthesis, Benchtop Protyping, Process Scale-Up, Computer Aided Process Design (Skilled with ChemCAD, ASPEN), Process/Unit Operation Start Up and Troubleshooting

Other Skills

Excellent verbal communication skills. Experience preparing technical papers. Conversant in Spanish. Skilled with MATLAB, MS Project, Visio, Office

PUBLICATION

K. Shill, **F. Name**, et al. (2012). This is a Fake Title of an Actual Paper that I Published. I am putting this fake title to preserve my privacy. *Fake Bioengineering Journal*. Vol 123, pp. 111-123

INVITED SEMINARS AND LECTURES

University of California, Berkeley

Dept. of Chemical & Biomolecular Engineering FALL 2012 – SPRING 2015 | BERKELEY, CA Invited Lecturer- Distillation & Fermentation ChE 170A, Biochemical Engineering ChE 154, Unit Operations

American Institute of Chemical Engineers

Invited Speaker, Northern California Chapter, 2015 "Engineering Brandy" Seminar

PERSONAL INTERESTS

Artisan spirits distillation, science fiction, hiking

WORK EXPERIENCE

Advanced Process Engineer | Fake Name- A Major Winery APRIL 2015 – PRESENT | FAKE TOWN, CA

- Lead subject matter expert (SME) for chemical process engineering at "A Major Winery"
- Scaled Reactive Distillation process from bench to pilot plant and oversaw production
- Created Arrhenius model for thermal deactivation of wine spoilage organisms to optimize sanitation time
- Designed aseptic process to inject wine adjuvants
- Mentored newly graduated chemical engineers
- Mission Award for excellence in project teams

Associate Process Engineer | Fake Name- A Major Winery APRIL 2014 – APRIL 2015| FAKE TOWN, CA

- Process engineering SME for Fake Facility, a \$9MM project. Analyzed water demand, sized and installed Reverse Osmosis and Deionization units.
 Performed startup, troubleshooting, and critical path optimization. Analyzed impact of vapor liquid equilibria on sparkling wine processing
- Determined root cause for endemic corrosion of 304L process piping (IGC and elevated chlorides), implemented countermeasures

Assistant Distiller 2 | Fake Name- A Major Winery

JULY 2012 - APRIL 2014| FAKE TOWN, CA

- Designed reactive distillation process to convert distillery waste to valuable aroma compounds, products valued at \$150-300 MM in market share
- Applied ChemCAD to optimize efficiency, product quality, and economics of "Major Winery" distilleries
- Supervised installation, commissioning, and start up of new Fake Town Distillery, a \$9.6MM project.

Assistant Distiller 1 | Fake Name- A Major Winery JUNE 2012 – JULY 2013| FAKE TOWN, CA

- Improved A Popular Gin process to reduce operating expenses by \$450K/year and forgo \$1MM capital investment
- Used ChemCAD to create high-fidelity models of existing and future distilleries
- Piloted resin chromatographic treatment of brandy to reduce negative sensory characteristics
- ▷ Directed wine fermentation and brandy distillation

Undergraduate Researcher | Clark Group University of California, Berkeley

JANUARY 2011 - DECEMBER 2011 | BERKELEY, CA

- Designed and performed experiments to convert lignocellulosic material to fermentable biofuel substrate via lonic Liquid Solvation
- Created MATLAB code to fit Arrhenius parameters