38 SIMPLE SWITCHING TRANSIENTS
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Fig. 3.1. An RL circuit with a sine wave
drive.
di 5
RI+ L P =V=V,_, sin(wt+ 6) (3.2.2)

The inclusion of the arbitrary phase angle 8 permits closing of the switch at
any instant in the voltage cycle.

_Before attempting to solve Eq. 3.2.2, let us consider for a moment what
we have already discovered about this circuit. It is clear that in due course
the current will attain a steady-state value of V/Z, and that it will lag in
phase the voltage by an angle ¢ defined by Eq. 3.2.1. However, it is equally
clear that except perhaps for some special circumstance, the current cannot
achieve this value instantaneously, because the circuit inductance demands
that the current start at zero. We would suppose, therefore, that there is
some transient that leads the current to its steady-state value in a smooth,
continuous way and that since this is an RL circuit, the exponential o e
will play an important part in the solution. These observations say a great
deal about the solution of Eq. 3.2.2, although as yet we have made no
attempt to solve it. We now proceed to this task.

Equation 3.2.2 can be rewritten

dl

..'.. —_—
RI Ldt

=V, (sin @t cos @ + cos wt sin 8)

Transforming both sides,

® cos @ ssme) (22.3)

ok Bt _
Ri(s) + Lsi(s) LI(0) V’"(s2+co2 2+ w0l

Remember that sin @ and cos 8 are constants once the value of @ has been
assigned. In this circuit (0) =0, so the operational solution for current is

an_ Vi 1 (mcosﬂ ssin&)
i(s) = L s+ (R/L) A % eI (3.2.4)
This can be written more consisely as follows:
£ B (3.2.5)

)= (s + a)(s*> + ©°) * (3 +a)(s® + o)
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A—I—wcosﬂ, B——L—sme, a=7y

These are new transforms, but they can be reduced readily by the method
‘partial fractions outlined in Section 2.4. Simple manipulation reveals that

1 _ 1 ( 1 s, _ @ )
s+a)(s* + 0)) (a’+ ol st S twl 2tal
+a)s*+e®) (a’+0?) @ w (3.2.6)

5 1 _ 1 ( —at _ a . )
Gra)sTed)  @iren \¢ Teoswrt Tsinwt) (327)

The other terms, Bs/(s + a)(s® + w?)in Eq. 3.2.5 can be evaluated by the
~same method. Instead let us turn around Eq. 2.2.12 and obtain the inverse
transform of this second term by differentiating Eq. 3.2.7:

= s 1

G+a)s’+0?) (a2 +w?)

X(—ae ™" +owsinwt+acoswt+1—1+ 0) (3.2.8)

Equation 3.2.4 can now be evaluated with the aid of Egs. 3.2.7 and 3.2.8:

(1)

|74 = a .
=—t [w cos 0(£ *' ~ cos @t + — sin mt)
L{a®+ %) ®

+ sin 6(a cos wt + o sin wf — ae _“')]
v;n ( B - 6 —al
=773 357 [(wcosf — asin §)e
L(a2 + mz) [ )

— (@ cos 8 — a sin 8) cos wt

+ (a cos 6 + @ sin ) sin wi] (3.2.9)

Now from Eq. 3.2.1, tan ¢ = wL/R = w/a, so that sin o= ol(a®+ w?)?
and cos ¢ = a/(a’ + w?)""%. Equation 3.2.9 simplifies further:

Von , =aly
I(t)-= m [—sm (6 - Qe +sin (wt + 4 — go)]

V . g
= (Rz_!_w"z‘Lz)uz [sin (wr+ 6 — ‘P)"s"l(e‘q;)f ]
(3.2.10)



