Check flange slenderness.

$$\lambda_{rf} = 1.0 \sqrt{\frac{E}{F_y}} \text{ from AISC Specification Table B4.1b Case 10}$$
$$= 1.0 \sqrt{\frac{29,000 \text{ ksi}}{50 \text{ ksi}}}$$
$$= 24.1$$
$$\lambda = \frac{b_f}{2t_f}$$

 $= 9.43 < \lambda_{rf}$; therefore, the flange is not slender

For a WT with a noncompact flange, the nominal flexural strength due to flange local buckling is:

$$M_{n} = \left[M_{p} - \left(M_{p} - 0.7F_{y}S_{xc} \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right] \le 1.6M_{y}$$
(Spec. Eq. F9-6)
= $\left\{ 110 \text{ kip-in.} - \left[110 \text{ kip-in.} - 0.7(50 \text{ ksi})(3.20 \text{ in.}^{3}) \right] \left(\frac{9.43 - 9.15}{24.1 - 9.15} \right) \right\} \le 97.6 \text{ kip-in.}$
= 110 kip-in. > 97.6 kip-in.

Therefore use:

 $M_n = 97.6$ kip-in. or 8.13 kip-ft

$$M_n = M_p$$

= 8.13 kip-ft yielding limit state controls (Spec. Eq. F9-1)

From AISC Specification Section F1, the available flexural strength is:

LRFD		ASD	
$\phi_b = 0.90$		$\Omega_b = 1.67$	
$\phi_b M_n = 0.90 (8.13 \text{ kip-ft})$		$\frac{M_n}{\Omega_b} = \frac{8.13 \text{ kip-ft}}{1.67}$	
= 7.32 kip-ft > 2.16 kip-ft o	.k.	= 4.87 kip-ft > 1.44 kip-ft	o.k.

EXAMPLE F.11A SINGLE ANGLE FLEXURAL MEMBER

Given:

Select an ASTM A36 single angle with a simple span of 6 ft. The vertical leg of the single angle is up and the toe is in compression. The vertical loads are a uniform dead load of 0.05 kip/ft and a uniform live load of 0.15 kip/ft. There are no horizontal loads. There is no deflection limit for this angle. The angle is braced at the end points only. Assume bending about the geometric x-x axis and that there is no lateral-torsional restraint.

Beam Loading & Bracing Diagram (braced at end points only)

Solution:

From AISC Manual Table 2-4, the material properties are as follows:

ASTM A36 $F_y = 36$ ksi $F_u = 58$ ksi

From Chapter 2 of ASCE/SEI 7, the required flexural strength is:

LRFD	ASD
$w_{ux} = 1.2(0.05 \text{ kip/ft}) + 1.6(0.15 \text{ kip/ft})$	$w_{ax} = 0.05 \text{ kip/ft} + 0.15 \text{ kip/ft}$
= 0.300 kip/ft	= 0.200 kip/ft
$M_{ux} = \frac{0.300 \text{ kip/ft} (6 \text{ ft})^2}{8}$	$M_{ax} = \frac{0.200 \text{ kip/ft} (6 \text{ ft})^2}{8}$
= 1.35 kip-ft	= 0.900 kip-ft

Try a L4 \times 4 \times 14.

From AISC Manual Table 1-7, the geometric properties are as follows:

 $L4 \times 4 \times \frac{1}{4}$ $S_x = 1.03 \text{ in.}^3$

Nominal Flexural Strength, M_n

Flexural Yielding

From AISC Specification Section F10.1, the nominal flexural strength due to the limit state of flexural yielding is:

$$M_n = 1.5M_y$$

= 1.5F_yS_x
= 1.5(36 ksi)(1.03 in.³)
= 55.6 kip-in.

(Spec. Eq. F10-1)

Lateral-Torsional Buckling

From AISC Specification Section F10.2, for single angles bending about a geometric axis with no lateral-torsional restraint, M_v is taken as 0.80 times the yield moment calculated using the geometric section modulus.

$$M_y = 0.80F_yS_x$$

= 0.80(36 ksi)(1.03 in.³)
= 29.7 kip-in.

Determine M_e .

For bending moment about one of the geometric axes of an equal-leg angle with no axial compression, with no lateral-torsional restraint, and with maximum compression at the toe, use AISC *Specification* Section F10.2(b)(iii)(a)(i), Equation F10-6a.

$$C_b = 1.14$$
 from AISC Manual Table 3-1

$$M_{e} = \frac{0.66Eb^{4}tC_{b}}{L_{b}^{2}} \left(\sqrt{1 + 0.78 \left(\frac{L_{b}t}{b^{2}}\right)^{2}} - 1 \right)$$
(Spec. Eq. F10-6a)
$$= \frac{0.66(29,000 \text{ ksi})(4.00 \text{ in.})^{4} (\frac{1}{4} \text{ in.})(1.14)}{(72.0 \text{ in.})^{2}} \left(\sqrt{1 + 0.78 \left(\frac{(72.0 \text{ in.})(\frac{1}{4} \text{ in.})}{(4.00 \text{ in.})^{2}}\right)^{2}} - 1 \right)$$

= 110 kip-in. > 29.7 kip-in.; therefore, AISC Specification Equation F10-3 is applicable

$$M_{n} = \left(1.92 - 1.17 \sqrt{\frac{M_{y}}{M_{e}}}\right) M_{y} \le 1.5 M_{y}$$

$$= \left(1.92 - 1.17 \sqrt{\frac{29.7 \text{ kip-in.}}{110 \text{ kip-in.}}}\right) 29.7 \text{ kip-in.} \le 1.5 (29.7 \text{ kip-in.})$$

$$= 39.0 \text{ kip-in.} \le 44.6 \text{ kip-in.}; \text{ therefore, } M_{n} = 39.0 \text{ kip-in.}$$
(Spec. Eq. F10-3)

Leg Local Buckling

AISC Specification Section F10.3 applies when the toe of the leg is in compression.

Check slenderness of the leg in compression.

$$\lambda = \frac{b}{t}$$
$$= \frac{4.00 \text{ in.}}{\frac{1}{4} \text{ in.}}$$
$$= 16.0$$

Determine the limiting compact slenderness ratios from AISC Specification Table B4.1b Case 12.

$$\lambda_p = 0.54 \sqrt{\frac{E}{F_y}}$$

$$= 0.54 \sqrt{\frac{29,000 \,\mathrm{ksi}}{36 \,\mathrm{ksi}}}$$

= 15.3

Determine the limiting noncompact slenderness ratios from AISC Specification Table B4.1b Case 12.

$$\lambda_r = 0.91 \sqrt{\frac{E}{F_y}}$$
$$= 0.91 \sqrt{\frac{29,000 \text{ ksi}}{36 \text{ ksi}}}$$
$$= 25.8$$

 $\lambda_p < \lambda < \lambda_r$, therefore, the leg is noncompact in flexure

$$M_n = F_y S_c \left(2.43 - 1.72 \left(\frac{b}{t} \right) \sqrt{\frac{F_y}{E}} \right)$$
(Spec. Eq. F10-7)

$$S_{c} = 0.80S_{x}$$

= 0.80(1.03 in.³)
= 0.824 in.³
$$M_{n} = 36 \operatorname{ksi}(0.824 \text{ in.}^{3}) \left(2.43 - 1.72(16.0) \sqrt{\frac{36 \operatorname{ksi}}{29,000 \operatorname{ksi}}} \right)$$

= 43.3 kip-in.

The lateral-torsional buckling limit state controls.

 $M_n = 39.0$ kip-in. or 3.25 kip-ft

From AISC Specification Section F1, the available flexural strength is:

LRFD		ASD	
$\phi_b = 0.90$		$\Omega_b = 1.67$	
$\phi_b M_n = 0.90(3.25 \text{ kip-ft})$ = 2.93 kip-ft > 1.35 kip-ft	o.k.	$\frac{M_n}{\Omega_b} = \frac{3.25 \text{ kip-ft}}{1.67}$ $= 1.95 \text{ kip-ft} > 0.900 \text{ kip-ft}$	o.k.

EXAMPLE F.11B SINGLE ANGLE FLEXURAL MEMBER

Given:

Select an ASTM A36 single angle with a simple span of 6 ft. The vertical leg of the single angle is up and the toe is in compression. The vertical loads are a uniform dead load of 0.05 kip/ft and a uniform live load of 0.15 kip/ft. There are no horizontal loads. There is no deflection limit for this angle. The angle is braced at the end points and at the midspan. Assume bending about the geometric x-x axis and that there is lateral-torsional restraint at the midspan and ends only.

Beam Loading & Bracing Diagram (braced at end points and midspan)

Solution:

From AISC Manual Table 2-4, the material properties are as follows:

ASTM A36 $F_y = 36$ ksi $F_u = 58$ ksi

From Chapter 2 of ASCE/SEI 7, the required flexural strength is:

LRFD	ASD
$w_{ux} = 1.2(0.05 \text{ kip/ft}) + 1.6(0.15 \text{ kip/ft})$	$w_{ax} = 0.05 \text{ kip/ft} + 0.15 \text{ kip/ft}$
= 0.300 kip/ft	= 0.200 kip/ft
$M_{ux} = \frac{0.300 \text{ kip/ft}(6 \text{ ft})^2}{8}$	$M_{ax} = \frac{0.200 \text{ kip/ft} (6 \text{ ft})^2}{8}$
= 1.35 kip-ft	= 0.900 kip-ft

Try a L4×4×¼.

From AISC Manual Table 1-7, the geometric properties are as follows:

 $L4 \times 4 \times \frac{1}{4}$ S_x = 1.03 in.³

Nominal Flexural Strength, M_n

Flexural Yielding

From AISC Specification Section F10.1, the nominal flexural strength due to the limit state of flexural yielding is:

$M_n = 1.5 M_y$		(Spec. Eq. F10-1)
$=1.5F_{v}S_{x}$		

 $= 1.5(36 \text{ ksi})(1.03 \text{ in.}^3)$ = 55.6 kip-in.

Lateral-Torsional Buckling

From AISC Specification Section F10.2(b)(iii)(b), for single angles with lateral-torsional restraint at the point of maximum moment, M_y is taken as the yield moment calculated using the geometric section modulus.

$$M_y = F_y S_x$$

= 36 ksi (1.03 in.³)
= 37.1 kip-in.

Determine M_e .

For bending moment about one of the geometric axes of an equal-leg angle with no axial compression, with lateral-torsional restraint at the point of maximum moment only (at midspan in this case), and with maximum compression at the toe, M_e shall be taken as 1.25 times M_e computed using AISC Specification Equation F10-6a.

$$C_b = 1.30$$
 from AISC *Manual* Table 3-1

$$M_{e} = 1.25 \left(\frac{0.66Eb^{4}tC_{b}}{L_{b}^{2}}\right) \left(\sqrt{1 + 0.78 \left(\frac{L_{b}t}{b^{2}}\right)^{2}} - 1\right)$$
(Spec. Eq. F10-6a)
$$= 1.25 \left[\frac{0.66(29,000 \text{ ksi})(4.00 \text{ in.})^{4} (\frac{1}{4} \text{ in.})(1.30)}{(36.0 \text{ in.})^{2}}\right] \left(\sqrt{1 + 0.78 \left(\frac{(36.0 \text{ in.})(\frac{1}{4} \text{ in.})}{(4.00 \text{ in.})^{2}}\right)^{2}} - 1\right)$$
$$= 179 \text{ kip-in } > 37.1 \text{ kip-in therefore AISC Specification Equation F10-3 is applicable}$$

sip-in. > 37.1 kip-in., therefore, AISC *Specification* Equation F10-3 is applicable

$$M_{n} = \left(1.92 - 1.17 \sqrt{\frac{M_{y}}{M_{e}}}\right) M_{y} \le 1.5 M_{y}$$

$$= \left(1.92 - 1.17 \sqrt{\frac{37.1 \text{ kip-in.}}{179 \text{ kip-in.}}}\right) 37.1 \text{ kip-in.} \le 1.5 (37.1 \text{ kip-in.})$$

$$= 51.5 \text{ kip-in.} \le 55.7 \text{ kip-in.}, \text{ therefore, } M_{n} = 51.5 \text{ kip-in.}$$
(Spec. Eq. F10-3)

Leg Local Buckling

 $M_n = 43.3$ kip-in. from Example F.11A.

The leg local buckling limit state controls.

 $M_n = 43.3$ kip-in. or 3.61 kip-ft

From AISC Specification Section F1, the available flexural strength is:

LRFD		ASD	
$\phi_b = 0.90$		$\Omega_b = 1.67$	
$\phi_b M_n = 0.90(3.61 \text{ kip-ft})$ = 3.25 kip-ft > 1.35 kip-ft	o.k.	$\frac{M_n}{\Omega_b} = \frac{3.61 \text{ kip-ft}}{1.67}$ $= 2.16 \text{ kip-ft} > 0.900 \text{ kip-ft}$	o.k.