Standard Conditions

- Often it is useful to pretend that a gas is at a different temperature and pressure than it is actually at
 - You can only add gas volumes that are at the same temperature and pressure
 - Equipment sizing requires a basis for the handoff from one machine to another
- Units are Standard Cubic Feet (SCF) or Standard Cubic Metre (SCM)
- Science and Industry use "Standard Temperature and Pressure (STP)" as the pretend conditions
- "Standard" is anything but standard
 - Each regulating body can specify their definition
 - Each contract has the obligation to define it
 - No one has any obligation to follow anyone else's standards

13

STP

	Pressure	Temperature
Undergrad Chemistry Texts	14.696 psia (101.325 kPa)	60°F (15.56°C)
Gas Measurement (USA)	14.73 psia (101.56 kPa)	60°F (15.56°C)
EPA Reporting	14.696 psia (101.325 kPa)	20°C (68°F)
NM and LA State Reporting	15.025 psia (103.59 kPa	60°F (15.56°C)
ISO	101.33 kPa (14.696 psia)	0°C (32°F)
Gas Measurement (Europe)	100.0 kPa (14.5 psia)	15°C (59°F)
Gas Measurement (Queensland)	101.325 kPa (14.696 psia)	15°C (59°F)

14

Standard Volume Conversion

$$mass = V_1 \rho_1 = V_2 \rho_2 \rightarrow V_2 = \frac{V_1 \rho_1}{\rho_2}$$

- So if you know an actual volume and density, you can convert it to "standard" by dividing the product by the density at "standard" conditions
- More often, you have standard and need actual (because calculating velocity at imaginary conditions is meaningless)

$$Fraction is a set of the set of$$