## Standard Conditions

- Often it is useful to pretend that a gas is at a different temperature and pressure than it is actually at
- You can only add gas volumes that are at the same temperature and pressure
- Equipment sizing requires a basis for the handoff from one machine to another
- Units are Standard Cubic Feet (SCF) or Standard Cubic Metre (SCM)
- Science and Industry use "Standard Temperature and Pressure (STP)" as the pretend conditions
- "Standard" is anything but standard
- Each regulating body can specify their definition
- Each contract has the obligation to define it
- No one has any obligation to follow anyone else's standards


## STP

|  | Pressure | Temperature |
| :--- | :---: | :---: |
| Undergrad Chemistry Texts | $14.696 \mathrm{psia}(101.325 \mathrm{kPa})$ | $60^{\circ} \mathrm{F}\left(15.56^{\circ} \mathrm{C}\right)$ |
| Gas Measurement (USA) | $14.73 \mathrm{psia}(101.56 \mathrm{kPa})$ | $60^{\circ} \mathrm{F}\left(15.56^{\circ} \mathrm{C}\right)$ |
| EPA Reporting | $14.696 \mathrm{psia}(101.325 \mathrm{kPa})$ | $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ |
| NM and LA State Reporting | $15.025 \mathrm{psia}(103.59 \mathrm{kPa}$ | $60^{\circ} \mathrm{F}\left(15.56^{\circ} \mathrm{C}\right)$ |
| ISO | $101.33 \mathrm{kPa}(14.696 \mathrm{psia})$ | $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ |
| Gas Measurement (Europe) | $100.0 \mathrm{kPa}(14.5 \mathrm{psia})$ | $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$ |
| Gas Measurement (Queensland) | $101.325 \mathrm{kPa}(14.696 \mathrm{psia})$ | $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$ |

## Standard Volume Conversion

$$
\operatorname{mass}=V_{1} \rho_{1}=V_{2} \rho_{2} \rightarrow V_{2}=\frac{V_{1} \rho_{1}}{\rho_{2}}
$$

- So if you know an actual volume and density, you can convert it to "standard" by dividing the product by the density at "standard" conditions
- More often, you have standard and need actual (because calculating velocity at imaginary conditions is meaningless)


## Example

- The nitrogen (SG 0.967) in a tank is sold by the Standard Cubic Foot (SCF)
- How many SCF are there in a tank:
$-\vee \rightarrow 5 \mathrm{ft}^{3}$
$-\mathrm{P} \rightarrow 2,000$ psia $\quad N_{2}$ approximates an ideal gas so $\mathrm{Z}=1.0$
$-\mathrm{T} \quad \rightarrow 80^{\circ} \mathrm{F}$
- STP $\rightarrow 14.73$ psia at $60^{\circ} \mathrm{F}$
- Therefore, you would have $\begin{aligned} & \text { to have a vessel with } 654 \mathrm{ft}^{3} \\ & \text { to hold the same volume at }\end{aligned} \rho_{2000}=\frac{2000 \frac{\mathrm{lbf}}{\mathrm{in}} 0.967 \frac{144 \mathrm{in}^{2}}{\mathrm{ft}^{2}}}{53.355 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot R} \cdot(80+460) R}=9.666 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}$ $\begin{aligned} & \text { to have a vessel with } 654 \mathrm{ft}^{3} \\ & \text { to hold the same volume at }\end{aligned} \rho_{2000}=\frac{2000 \frac{\mathrm{lbf}}{\mathrm{in}} 0.967 \frac{144 \mathrm{in}^{2}}{\mathrm{ft}^{2}}}{53.355 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot R} \cdot(80+460) R}=9.666 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}$ STP as a $5 \mathrm{ft}^{3}$ tank holds at 2,000 psia and $80^{\circ} \mathrm{F}$

$$
\rho_{s t p}=\frac{P \cdot S G}{R_{\text {air }} \cdot T}=\frac{14.73 \frac{l b f}{i n^{2}} 0.967 \frac{144 i \mathrm{in}^{2}}{f t^{2}}}{53.355 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot R} \cdot 520 R}=0.0739 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}
$$

$$
V_{\text {stp }}=V_{\text {physical }} \frac{\rho_{2000}}{\rho_{\text {stp }}}=5 f t^{3}\left(\frac{9.666 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}}{0.0739 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}}\right)=654 \mathrm{SCF}
$$

