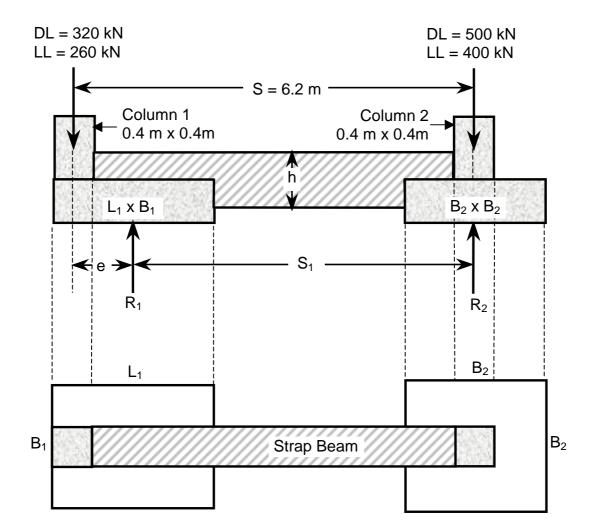
# ADVANCED FOUNDATION ENGINEERING


Strap (Cantilever) Footing (Design Equations)

#### Example #1 (Design)

Example 9-3 pp. 487–489 in Textbook by J. Bowles. This example is partial in the textbook and completed here

Design the strap footing shown below. Given:

 $f_c{'}=24$  MPa,  $f_y=345$  MPa, and soil  $q_a$  = 120 kPa



### SOLUTION

$$\begin{array}{l} \textbf{STEP 1} - \underline{\text{DIMENSION FOOTINGS (Determine } L_1, B_1, \text{ and } B_2)} \\ & \text{Allowable loads: } P_1 = \ 320 + 260 \ = 580 \ \text{kN} \\ & P_2 = \ 500 + 400 \ = 900 \ \text{kN} \end{array} \right\} \ P = 580 + 900 = 1480 \ \text{kN} \end{array}$$

Ultimate loads :  $P_{u1} = 1.4(320) + 1.7(260) = 890 \text{ kN}$  $P_{u2} = 1.4(500) + 1.7(400) = 1380 \text{ kN}$  $P_u = 890 + 1380 = 2270 \text{ kN}$ 

Ultimate ratio  $r_u = P_u/P = 2270/1480 = 1.53$ 

Ultimate applied pressure  $q_u = 120 \times 1.53 = 183.6$  kPa

| $\Sigma M_{\text{col. 2}} = 0$ : | $R_1 (6.2 - e) + (890 \times 6.2) = 0$                                                                                             | (1) |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\Sigma M_{R1} = 0$ :            | 1380 $(6.2 - e) - R_2 (6.2 - e) - 890 e = 0$                                                                                       | (2) |
| $\Sigma F = 0$ :                 | $2270 - R_1 - R_2 = 0 \dots \dots$ | (3) |

To solve these three equations assume e = 1.2 m (trial value)

- a) By Eq. 1, R<sub>1</sub> = 1103.6 kN
- b) By Eq. 1, R<sub>2</sub> = 1166.4 kN
- c)  $R_1 + R_2 = 2270$ , therefore Eq. 3 is satisfied.

Calculation of dimensions L1, B1 and B2

Footing 1: 
$$L_1 = 2 x \left( e + \frac{l_1}{2} \right) = 2 x \left( 1.2 + \frac{0.4}{2} \right) = 2.8 m$$

$$B_1 = \frac{R_1}{q_u L_1} = \frac{1103.6}{183.6 \times 2.8} = 2.15 \text{ m}$$

Area of footing 1,  $A_1 = 2.8 \times 2.15 = 6.01 \text{ m}^2$ 

Footing 2: 
$$B_2 = \sqrt{\frac{R_2}{q_u}} = \sqrt{\frac{1166.4}{183.6}} = 2.52 \text{ m}$$

Area of footing 2,  $A_2 = (2.52)^2 = 6.35 \text{ m}^2$ 

Total Area of strap footing A =  $A_1 + A_2 = 6.01 + 6.35 = 12.36 \text{ m}^2$ 

| е   | R <sub>1</sub> , kN | kN R <sub>2</sub> , kN | ŀ                  | -ooting '          | 1          | Footing 2          |                                 | Total A,       |
|-----|---------------------|------------------------|--------------------|--------------------|------------|--------------------|---------------------------------|----------------|
|     |                     |                        | L <sub>1</sub> , m | B <sub>1</sub> , m | $A_1, m^2$ | B <sub>2</sub> , m | A <sub>2</sub> , m <sup>2</sup> | m <sup>2</sup> |
| 0.8 | 1021.9              | 1248.1                 | 2.00               | 2.78               | 5.57       | 2.61               | 6.80                            | 12.36          |
| 0.9 | 1041.1              | 1228.9                 | 2.20               | 2.58               | 5.67       | 2.59               | 6.69                            | 12.36          |
| 1.0 | 1061.2              | 1208.8                 | 2.40               | 2.41               | 5.78       | 2.57               | 6.58                            | 12.36          |
| 1.1 | 1082.0              | 1188.0                 | 2.60               | 2.27               | 5.89       | 2.54               | 6.47                            | 12.36          |
| 1.2 | 1103.6              | 1166.4                 | 2.80               | 2.15               | 6.01       | 2.52               | 6.35                            | 12.36          |
| 1.3 | 1126.1              | 1143.9                 | 3.00               | 2.04               | 6.13       | 2.50               | 6.23                            | 12.36          |
| 1.4 | 1149.6              | 1120.4                 | 3.20               | 1.96               | 6.26       | 2.47               | 6.10                            | 12.36          |
| 1.5 | 1174.0              | 1096.0                 | 3.40               | 1.88               | 6.39       | 2.44               | 5.97                            | 12.36          |
| 1.6 | 1199.6              | 1070.4                 | 3.60               | 1.81               | 6.53       | 2.41               | 5.83                            | 12.36          |
| 1.7 | 1226.2              | 1043.8                 | 3.80               | 1.76               | 6.68       | 2.38               | 5.69                            | 12.36          |

The following table shows alternative solutions for the various e-values.

From this table the following can be observed:

- 1. All values of e will check Eq. 3, i.e.  $R_1 + R_2 = 2270$
- 2. Regardless of the value of e, the total area A = 12.36 m<sup>2</sup>. This makes sense since the total area A =  $\frac{R_1 + R_2}{q_u} = \frac{2270}{183.6} = 12.36 \text{ m}^2$  and is independent of e.
- 3. For e = 0.9 m,  $B_1 = B_2$ . This would seem to be the best choice. However, the value of e gives  $L_1 < B_1$
- 4. For e= 1.0 m the resulting Footing 1 is square with  $L_1 \approx B_1 = 2.41$  m. This would seem to the most ideal solution


To continue with the solution of the textbook, we shall assume e = 1.2 m and use  $L_1 = 2.8$  m,  $B_1 = 2.15$  m and  $B_2 = 2.52$  m.

# STEP 2 - DRAW SHEAR AND MOMENT DIAGRAMS (L - DIRECTION)

q<sub>u1, L</sub> = 183.6 x 2.15 = 394.1 kN/m

 $q_{u2, L} = 183.6 \times 2.52 = 462.9 \text{ kN/m}$ 

#### The shear and bending moment diagrams are shown on the next page.



Advanced Foundation Engineering Example on Design of Strap Footing Dr. Adnan A. Basma



Estimate d' for footing 1 by 3-way punching shear under column 1 Using <u>Structural Depth of Concrete</u> table for punching shear failure, with  $P_{u1} = 890 \text{ kN}, f_c' = 24 \text{ MPa} \text{ and } p' = 2/ + w = 2(0.4) + 0.4 = 1.2 \text{ m}, \text{ the}$ value of **d'**  $\approx$  **0.35 m** 

Estimate d' for footing 2 by 4-way punching shear under column 2 Using <u>Structural Depth of Concrete</u> table for punching shear failure, with  $P_{u2} = 1380 \text{ kN}, f_c' = 24 \text{ MPa} \text{ and } p' = 2/ + 2w = 2(0.4) + 2(0.4) = 1.6 \text{ m},$ the value of **d'** ≈ **0.42 m** 

### Therefore use d' = 0.45 m for both footings

### STEP 4 - REINFORCEMENT IN L-DIRECTION

Calculation of moments per meter (values from moment diagram)

Footing 1 (top steel),  $M_u / m = 828/2.15 = 383.1$  kN.m/m Footing 2 (top steel),  $M_u / m = 270/2.15 = 125.6$  kN.m/m Footing 2 (bottom steel),  $M_u / m = 260/2.15 = 120.9$  kN.m/m

Strap beam,  $M_u = 770 \text{ kN/m}$ 

#### STEP 5 - REINFORCEMENT IN B-DIRECTION

For Footing 1

$$L_{1}' = \frac{B_{1} - b_{1}}{2} = \frac{2.1 - 0.3}{2} = 0.925 \text{ m}$$
$$M_{u1} = \frac{q_{u}}{2} (L_{1}')^{2} = \frac{186.6}{2} (0.925)^{2} = 78.5 \text{ kN.m/m}$$

For Footing 2

$$L_{2}' = \frac{B_{2} - b_{2}}{2} = \frac{2.52 - 0.3}{2} = 1.11 \text{ m}$$
$$M_{u2} = \frac{q_{u}}{2} (L_{2}')^{2} = \frac{186.6}{2} (1.11)^{2} = 113.1 \text{ kN.m/m}$$

# STEP 6 - DEPTH OF STRAP BEAM

Assume that the width of the trap = b = 0.3 m

V<sub>Strap</sub> = 213 kN (from shear diagram)

Shear strength of concrete  $v_c = 8.87\sqrt{f'_c} = 8.87\sqrt{24000} = 1374.1$  kPa

The shear stress,  $v_u = \frac{V_{strap}}{b h} = \frac{213}{0.3 h} = 1374.1$ 

Solving for h, we get h = 0.52 m. Use h = 0.55 m

#### **Reinforcements:**

Using the footing depth in step 3 and the moments in steps 4 and 5, the reinforcement of Footing 1 and 2 are obtained from <u>Percent Steel Tables</u>. In a similar fashion, using h of the strap in step 6 and the moment in step 4, the reinforcement of the strap is obtained from <u>Percent Steel Tables</u>. It should be noted that the reinforcement in the footings is per meter while for the strap it is total. For these reinforcements, the following table is prepared.

|               |                       |                            |               |                      |                                     | y                               | 0                                  |
|---------------|-----------------------|----------------------------|---------------|----------------------|-------------------------------------|---------------------------------|------------------------------------|
| Direction     | Steel<br>Location     | M <sub>u</sub> ,<br>kN.m/m | p, %<br>per m | P <sub>min</sub> , % | Required, A <sub>s</sub> ,<br>cm²/m | Bar size @ spacing<br>in cm c-c | Provided<br>A <sub>s</sub> , cm²/m |
| L - Direction | Footing 1<br>(top)    | 383.1                      | 0.62          |                      | 27.9                                | φ20 @ 12.5 cm                   | 28.27                              |
|               | Strap Beam<br>(top)   | 770                        | 0.90          |                      | 14.9*                               | 2 ¢20 @ 25 cm**                 | 15.71                              |
|               | Footing 2<br>(top)    | 125.6                      | 0.21          | 0.41                 | 18.5                                | φ20 @ 20 cm                     | 18.85                              |
|               | Footing 2<br>(bottom) | 120.9                      | 0.20          | 0.41                 | 18.5                                | φ20 @ 20 cm                     | 18.85                              |
| B-Direction   | Footing 1<br>(bottom) | 78.5                       | 0.13          |                      | 18.5                                | φ20 @ 20 cm                     | 18.85                              |
|               | Footing 2<br>(bottom) | 113.1                      | 0.18          |                      | 18.5                                | φ20 @ 20 cm                     | 18.85                              |

Reinforcement for the footings and strap:  $f_c' = 24$  MPa and  $f_v = 345$  MPa

\* Since the strap beam used is  $0.3 \times 0.55$  m, then A<sub>s</sub> =  $0.90 \times 0.3 \times 0.55$ 

\*\* Total number of bars in strap bean

The problem is completed by drawing the final design sketch, which shows all dimensions and reinforcements. This is left to the student.