SURGE IMPEDANCE LOADING (SIL)

Surge impedance of a line,
$$
Z_0 = \sqrt{\frac{L}{C}}
$$
.

$$
SIL = \frac{(kV_{LL})^2}{Z_o} , \quad (MW)
$$

A transmission line loaded to its surge impedance loading:

- (i) has no net reactive power flow into or out of the line, and
- (ii) will have approximately a flat voltage profile along its length.

For (i) to hold:

$$
I^2X_L = \frac{V^2}{X_c}
$$
, or, $\frac{V^2}{I^2} = X_LX_c = \frac{\omega L}{\omega C}$, or, $\frac{V}{I} = \sqrt{\frac{L}{C}} = Z_o$ = Load impedance

This means that there will be no net reactive power flow at surge-impedance loading.

For (ii) to hold:

$$
V_s = AV_r + BI_r ; I_s = CV_r + DI_r,
$$

where, $A = D = \cosh\sqrt{ZY}$; $B = Z_o \sinh\sqrt{ZY}$; $C = \frac{\sinh\sqrt{ZY}}{Z}$ $Z^{\vphantom{\dagger}}_{\rm o}$; $Z = j\omega L\ell$; $Y = j\omega C\ell$

$$
\sqrt{ZY} = j\omega \ell \sqrt{LC} = \frac{j\omega \ell}{v_c} = j\frac{2\pi f \ell}{f\lambda} = j\frac{2\pi \ell}{\lambda}
$$

Then,
$$
A = D = \cos \frac{2\pi \ell}{\lambda}
$$
; $B = jZ_o \sin \frac{2\pi \ell}{\lambda}$; $C = j \frac{\sin \frac{2\pi \ell}{\lambda}}{Z_o}$

At surge-impedance loading,
$$
\frac{V_r}{I_r} = Z_o
$$
.

And,
$$
V_s = (A + \frac{B}{Z_o})V_r = (\cos \frac{2\pi \ell}{\lambda} + j \sin \frac{2\pi \ell}{\lambda})V_r = V_r \angle \tan^{-1} \frac{2\pi \ell}{\lambda}
$$
,

$$
I_s = (CZ_o + D)I_r = (j\sin\frac{2\pi\ell}{\lambda} + \cos\frac{2\pi\ell}{\lambda})I_r = I_r \angle \tan^{-1}\frac{2\pi\ell}{\lambda}
$$

This means that the line will have a flat voltage profile, i.e., no voltage drop.

LOADABILITY CURVES

Loadability of a line is limited by :

- (i) thermal limitation $(I²R$ losses)
- (ii) voltage regulation
- (iii) stability limitation

Figure 2.4.4. EHV-UHV line loadability curves.

(**EPRI Publication EL-2500)**